Variational integrators for reduced field equations

  • Ana Casimiro CMA – Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
  • César Rodrigo CMAF-CIO – Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, CINAMIL, Academia Militar, Portugal
Keywords: Variational Integrator, Reduction, Euler-Poincaré equation, Simplicial complex, Discretization

Abstract

In the reduction of field theories in principal $G$-bundles, when a subgroup $H\subset G$ acts by symmetries of the Lagrangian, each of the $H$-reduced unknown fields decomposes as a flat principal connection and a parallel H-structure. A suitable variational principle with differential constraints on such fields leads to necessary criticality conditions known as Euler-Poincaré equations. We model constrained discrete variational theories on a simplicial complex and generate from the smooth theory, in a covariant way, a discrete variational formulation of $H$-reduced field theories. Critical fields in this formulation are characterized by a corresponding discrete version of Euler-Poincaré equations. We present a numerical integration algorithm for discrete Euler-Poincaré equations, that extends integration algorithms for Euler-Poincaré equations in mechanics to the case of field theories and, also, extends integration algorithms for Euler-Lagrange equations in discrete field theories to the case of variational principles with constraints. For regular reduced discrete Lagrangians, this algorithm allows to univocally propagate initial condition data, on an initial condition band, into a solution of the corresponding equations for the discrete variational principle.

References

D.N. Arnold, R.S. Falk, R. Winther. Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15 (2006), 1–155.

A.I. Bobenko, Yu.B. Suris. Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semidirect products. Letters in Mathematical Physics 49.1(1999): 79–93.

A. Brondsted, An introduction to convex polytopes. Vol. 90. Springer Science & Business Media, 2012.

A.C. Casimiro, C. Rodrigo, First variation formula and conservation laws in several independent discrete variables. J. Geom. Phys. 62.1 (2012), 61–86.

A.C. Casimiro, C. Rodrigo, First variation formula for discrete variational problems in two independent variables. RACSAM Rev. R. Acad. A 106.1 (2012), 111–135.

A.C. Casimiro, C. Rodrigo, Reduction of Forward Difference Operators in Principal G-bundles. Statistics Opt. Inform. Comput., Vol. 6, (2018), 42-85.

M. Castrillón López, Field theories: reduction, constraints and variational integrators. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matematicas 106(1) (2012): 67–74

M. Castrillón López, P. Chacón, P.L. García, Lagrange-Poincaré reduction in affine principal bundles, J.Geom.Mech., 5 (vol 4), 399–414

M. Castrillón López, P.L. García, T.S. Ratiu, Euler-Poincaré reduction on principal bundles, Lett. Math. Phys. 58 (2001) 167–180

M. Castrillón López, P.L. García, C. Rodrigo, Euler-Poincaré reduction in principal bundles by a subgroup of the structure group, Journal of Geometry and Physics, Volume 74, December 2013, Pages 352–369

S. H. Christiansen, H. Z. Munthe-Kaas, B. Owren, Topics in structure-preserving discretization. Acta Numerica 20 (2011), 1–119.

J. Cortés, S. Martínez, Non-holonomic integrators. Nonlinearity 14 (2001) 1365–1392.

K. Crane, Discrete connections for geometry processing. Diss. California Institute of Technology, 2010.

F. Demoures, F. Gay-Balmaz, S. Leyendecker, S. Ober-Bl?baum, T.S. Ratiu, T. S., Y. Weinand. Discrete variational Lie group formulation of geometrically exact beam dynamics. Numerische Mathematik, 130(1), (2015) 73-123.

F. Demoures, F. Gay-Balmaz, T.S. Ratiu. Multisymplectic variational integrators and space/time symplecticity. Analysis and Applications, 14(03), (2016) 341–391.

D.C.P. Ellis, F. Gay-Balmaz, D.D. Holm, T.S. Ratiu, Lagrange-Poincaré field equations, J. Geom. Phys. 61 (11) (2011) 2120-2146.

J. Fernandez, M. Zuccalli. A geometric approach to discrete connections on principal bundles. Journal of Geometric Mechanics. Dec2013, Vol. 5 Issue 4, p433-444. 12p.

A. Fernández, P.L. García, C. Rodrigo. Stress–energy–momentum tensors for natural constrained variational problems. Journal of Geometry and Physics 49.1 (2004): 1–20.

A. Fernández, P. García, C. Rodrigo, Variational integrators in discrete vakonomic mechanics. Rev. R. Acad. A 106 (2012) 137–159.

E.S. Gawlik, P. Mullen, D. Pavlov, J.E. Marsden, M. Desbrun. Geometric, variational discretization of continuum theories. Physica D: Nonlinear Phenomena, 240(21), (2011) 1724–1760.

H.-Y. Guo, K. Wu, On variations in discrete mechanics and field theory, J. Math. Phys 44(12) (2003) 5978–6004.

E. Hairer, C. Lubich, G. Wanner, Geometric numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics 31. Springer Verlag Berlin Heidelberg, New York, 2004.

R. Hermann Gauge Fields and Cartan-Ehresmann Connections, Part A. Vol. 10. Math Science Press, 1975.

A. Iserles, H.Z. Munthe-Kaas, S. P. N?rsett, A. Zanna. Lie-group methods. Acta Numerica, (2005) 1-148.

M. B. Kobilarov, J. E. Marsden. Discrete geometric optimal control on Lie groups IEEE Transactions on Robotics 27.4 (2011): 641-655.

M. Kobilarov. Solvability of Geometric Integrators for Multi-body Systems. Multibody Dynamics. Springer International Publishing, 2014. 145–174.

R. McLachlan, M. Perlmutter. Integrators for nonholonomic mechanical systems Journal of nonlinear science 16.4 (2006): 283–328.

R.I. Mc Lachlan, G.R.W. Quispel, Geometric integrators for ODEs. J. Phys. A: Math. Gen. 39 (2006), 5251–5285.

M. Leok, J.E. Marsden, and A.D. Weinstein. A discrete theory of connections on principal bundles. arXiv preprint math/0508338 (2005).

M. de León, D. Martín de Diego, A. Santamaría Merino, Geometric integrators and nonholonomic mechanics. J. Math. Phys. 45(3) (2004) 1042–1064.

M. de León, J.C. Marrero, D. Martín de Diego, Some applications of semi-discrete variational integrators to classical field theories. Qual. Th. Dyn. Syst. 7.1 (2008), 195–212.

A. Lew, J.E. Marsden, M. Ortiz, M. West, Asynchronous variational integrators. Arch. Rat. Mech. Anal. 167 (2003), 85–146.

J.E. Marsden, G.W.Patrick, and S. Shkoller. Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199.2 (1998), 351–395.

J.E. Marsden, S. Pekarsky, S. Shkoller. Symmetry reduction of discrete Lagrangian mechanics on Lie groups. Journal of geometry and physics 36.1 (2000): 140–151.

J. E. Marsden, M. West, Discrete mechanics and variational integrators. Acta Numer. 10 (2001) 357–514.

S. P. Novikov, Discrete connections and linear difference equations, Tr. Mat. Inst. Steklova 247 (2004), 18601, math-ph/0303035

D. W. Moore, Simplical mesh generation with applications. PhD Thesis Cornell University, 1992.

A.N. Sengupta, Connections over two-dimensional cell complexes. Rev. Math. Phys. 16.3 (2004), 331–352.

J.P. Serre, Lie algebras and Lie groups, Lectures given at Harvard University, 1964, Benjamin, New York, 1965.

J. Vankerschaver. Euler-Poincaré reduction for discrete field theories. Journal of mathematical physics, 48(3), (2007) 032902.

J. Vankerschaver, F. Cantrijn. Discrete Lagrangian field theories on Lie groupoids. Journal of Geometry and Physics 57(2) (2007):665–689.

J.M.Wendlandt, J.E. Marsden, Mechanical integrators derived from a discrete variational principle. Physica D 106 (1997), 223–246.

G.M. Ziegler, Lectures on polytopes. Vol. 152. Springer Science and Business Media, 2012.

Published
2018-02-27
How to Cite
Casimiro, A., & Rodrigo, C. (2018). Variational integrators for reduced field equations. Statistics, Optimization & Information Computing, 6(1), 86-115. https://doi.org/10.19139/soic.v6i1.469
Section
Research Articles