Magnetic Resonance Image Restoration by Utilizing Fractional-Order Total Variation and Recursive Filtering
Abstract
Total variation-based methods are effective for magnetic resonance image restoration. To eliminate impulse noise, the $\ell_0$-norm total variation model is a proven approach. However, traditional total variation image restoration often results in staircase artifacts, especially at high noise levels. In this paper, we propose an innovative magnetic resonance image restoration model that integrates fractional-order regularization and filtering techniques. Specifically, the first term uses the $\ell_0$-norm as the data fidelity term to effectively remove impulse noise. The second term introduces a fractional-order total variation regularizer, which preserves structural information while reducing staircase artifacts during deblurring. Due to its limitations in texture detail recovery, we employ recursive filtering for high-quality edge-preserving filtering. Finally, we solve the optimization model using the alternating direction method of multipliers. Experimental results demonstrate the effectiveness of our method in restoring magnetic resonance images.
Published
2024-12-10
How to Cite
Wei, N., Xue, W., Gu, X., & Qi, X. (2024). Magnetic Resonance Image Restoration by Utilizing Fractional-Order Total Variation and Recursive Filtering. Statistics, Optimization & Information Computing, 13(1), 138-157. https://doi.org/10.19139/soic-2310-5070-2291
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).