Real-Time Scheduling Optimization of Integrated Energy Systems in Smart Grids based on Approximate Dynamic Programming
Keywords:
Carbon emissions, Approximate dynamic programming, Demand response, Real-time scheduling
Abstract
With the large-scale integration of renewable energy (RE) sources and rapid advancements in smart grid (SG) technologies, the efficient integration of diverse energy resources to achieve supply-demand balance and maximize costeffectiveness has emerged as a research hotspot in the energy sector. This paper addresses the real-time scheduling challenge in integrated energy systems (IES) within the context of SG, emphasizing pivotal factors such as electric and thermal load scheduling, energy storage control, dynamic electricity pricing, carbon emission mechanisms, and demand response (DR). To this end, we propose a comprehensive scheduling model tailored for IES, aiming to minimize the total cost over the dispatch cycle. Furthermore, an optimal scheduling algorithm based on approximate dynamic programming (ADP) was designed to solve this model. Numerical experiments reveal that, while ensuring user comfort, the proposed real-time scheduling scheme, by comprehensively considering the interactions among various system inputs, significantly enhances system flexibility and economic performance. It effectively tackles the uncertainty of RE, thereby improving energy utilization efficiency.
Published
2024-11-17
How to Cite
Wang, D., Wu, Y., Sun, Y., Duan, K., Wang , Z., Tian, X., & Xu, D. (2024). Real-Time Scheduling Optimization of Integrated Energy Systems in Smart Grids based on Approximate Dynamic Programming. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2217
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).