Distance k-domination and k-resolving domination of the corona product of graphs
Keywords:
graph theory, domination, distance domination, metric dimension, distance resolving domination, vertex corona product
Abstract
For two simple graphs $G$ and $H$, the corona product of $G$ and $H$ is the graph obtained by adding a copy of $H$ for every vertex of $G$ and joining each vertex of $G$ to its corresponding copy of $H$. For $k \geq 1$, a set of vertices $D$ in a graph $G$ is a distance $k$-dominating set if any vertex in $G$ is at a distance less or equal to $k$ from some vertex in $D$. The minimum cardinality overall distance $k$-dominating sets of $G$ is the distance $k$-domination number, denoted by $\gamma_k(G)$. The metric dimension of a graph is the smallest number of vertices required to distinguish all other vertices based on distances uniquely. The distance $k$-resolving domination in graphs combines distance $k$-domination and the metric dimension of graphs. In this paper, we investigate for all $k\geq 1$, the distance $k$-domination and the distance $k$-resolving domination in the corona product of graphs. First, we show that for $k\geq 2$ the distance $k$-domination number of $G\odot H$ is equal to $\gamma_{k-1}(G)$ for any two graphs $G$ and $H$. Then, we give the exact value of $\gamma_{k}(G\odot H)$ when $G$ is a complete graph, complete $m$-partite graph, path and cycle. We also provide general bounds for $\gamma_{k}(G\odot H)$. Then, we examine the distance $k$-resolving domination number for $G\odot H$. For $k=1$, we give bounds for $\gamma^r(G\odot H)$ the resolving domination number of $G\odot H$ and characterize the graphs achieving those bounds. Later, for $k\geq 2$, we establish bounds for $\gamma^r_k(G\odot H)$ the distance $k$-resolving domination number of $G\odot H$ and characterize the graphs achieving these bounds.
Published
2024-08-26
How to Cite
Retnowardani, D. A., Susilowati, L., Dafik, & Dliou, K. (2024). Distance k-domination and k-resolving domination of the corona product of graphs. Statistics, Optimization & Information Computing, 13(1), 72-87. https://doi.org/10.19139/soic-2310-5070-2101
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).