Fractal as Julia sets of complex functions via a new generalized viscosity approximation type iterative method

Keywords: Algorithms, Escape criteria, Julia sets, Fractals, Iterative methods, Resolvent operator

Abstract

In this article, we study and explore novel variants of Julia set patterns that are linked to the complex exponential function $W(z)=pe^{z^n}+qz+r$, and complex cosine function $T(z)=\cos({z^n})+dz+c$, where $n\geq 2$ and $c,d,p,q,r\in \mathbb{C}$ by employing a generalized viscosity approximation type iterative method introduced by Nandal et al. (Iteration process for fixed point problems and zero of maximal monotone operators, Symmetry, 2019) to visualize these sets. We utilize a generalized viscosity approximation type iterative method to derive an escape criterion for visualizing Julia sets. This is achieved by generalizing the existing algorithms, which led to visualization of beautiful fractals as Julia sets. Additionally, we present graphical illustrations of Julia sets to demonstrate their dependence on the iteration parameters. Our study concludes with an analysis of variations in the images and the influence of parameters on the color and appearance of the fractal patterns. Finally, we observe intriguing behaviors of Julia sets with fixed input parameters and varying values of $n$ via proposed algorithms.

References

P. Blanchard, R. Devaney, A. Garijo and E. Russell, A generalized version of the McMullen domain, Int. J. Bifurcation Chaos, 18 (8), (2008), 2309-2318, http://dx.doi.org/10.1142/S0218127408021725.

S. Costanzo and F. Venneri, Polarization-insensitive fractal metamaterial surface for energy harvesting in IoT applications, Electronics, 9 (6), 959, (2020).

B. Halpern, Fixed points of non-expending maps, Bull. Am. Math. Soc., 73, (1967), 957-961.

L. Jolaoso and S. Khan, Some escape time results for general complex polynomials and biomorphs generation by a new iteration process, Mathematics, 8 (12), (2020), 2172, http://dx.doi.org/10.3390/math8122172.

L. Jolaoso, S. Khan and K. Aremu, Dynamics of RK iteration and basic family of iterations for polynomiography, Mathematics , 10 (18), (2022), 3324, http://dx.doi.org/10.3390/math10183324.

G. Julia, Memoire sur l'iteration des fonctions rationnelles, J. Math. Pures Appl., 8, (1918), 47-245.

S. M. Kang, A. Ra q, A. Latif, A. A. Shahid, and Y. C. Kwun, Tricorns and Multi-corns of S-iteration scheme, J. Funct. Spaces, 2015, Article ID 417167, (2015), 197-203, https://doi.org/10.1155/2015/417167.

S. Kumari, K. Gdawiec, A. Nandal, M. Postolache and R. Chugh, A novel approach to generate Mandelbrot sets, Julia sets and biomorphs via viscosity approximation method, Chaos Solitons Fractals, 163, (2022), 112-140, http://dx.doi.org/10.1016/j.chaos.2022.112540.

W.J. Krzyszto k, Fractals in antennas and metamaterials applications. In: F. Brambila (ed) Fractal Analysis-Applications in Physics, Engineering and Technology, IntechOpen, (2017), 953-978.

Y. C. Kwun, M. Tanveer, W. Nazeer, M. Abas, and S. M. Kang, Fractal Generation in Modi ed Jungck-S Orbit, IEEE Access, 235, (2019), 35060-35071.

A. Lakhtakia, V. Varadan, R. Messier and V. Varadan, On the symmetries of the Julia sets for the process z ! zp + c, J. Phys. A: Math. Gen. 20 (11), (1987) 3533-3535, http://dx.doi.org/10.1088/0305-4470/20/11/051.

B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, New York, 1983.

A. Mauda , Viscosity approximation methods for xed-points problems, J. Math. Anal. Appl., 241 (1), (2000), 46-55.

W.R. Mann, mean value methods in iteration, Proc. Am. Math. Soc. 4 (3), (1953), 506-510. 24

P. Muthukumar and P. Balasubramaniam, Feedback synchronization of the fractional order reverse butter y-shaped chaotic system and its application to digital cryptography, Nonlinear Dyn., 74, (2013), 1169-1181, https://doi.org/10.1007/s11071-013-1032-3.

A. Nandal, R. Chugh and M. Postolache, Iteration process for xed point problems and zero of maximal monotone operators, Symmetry, 11(5), (2019), 655, doi: 10.3390/sym11050655.

K. Nakamura, Iterated inversion system: An algorithm for eciently visualizing Kleinian groups and extending the possibilities of fractal art, J. Math. Arts, 15, (2021), 106-136, https://doi.org/10.1080/17513472.2021.1943998.

P. C. Ouyang, K. W. Chung, A. Nicolas and K. Gdawiec, Self-similar fractal drawings inspired by M. C. Escher's print square limit, ACM Trans. Graphic., 40, (2021), 1-34, https://doi.org/10.1145/3456298.

W. Phuengrattana and S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (9), (2011), 3006-3014.

B. Prasad and K. Katiyar, Fractals via Ishikawa iteration, Commun. Comp. Inf. Sci., 140, (2011), 197-203.

M. Rani and R. Agarwa, E ect of stochastic noise on superior Julia sets, J. Math. Im. Vis., 36 (1), (2010), 63-77.

M. Rani and V. Kumar, Superior Julia sets, J. Korea Soc. Math. Educ. Ser. D Res. Math. Educ., 2004 (8), (2004), 261-277.

A. A. Shahid, W. Nazeer and K. Gdawiec, The Picard-Mann iteration with s-convexity in the generation of Mandelbrot and Julia sets, Monatsh. Math., 195, (2021), 565-584, https://doi.org/10.1007/s00605-021-01591-z.

S. Kumari, K. Gdawiec, A. Nandal, N. Kumar and R. Chugh, On the viscosity approximation type iterative method and its non-linear behavior in the generation of Mandelbrot and Julia sets, Numer. Algorithms, (2023), https://doi.org/10.1007/s11075-023-01644-4.

S. Kumari, K. Gdawiec, A. Nandal, N. Kumar and R. Chugh, An Application of Viscosity Approximation Type Iterative Method in the Generation of Mandelbrot and Julia Fractals, Aequat. Math. 97, 257-278 (2023). https://doi.org/10.1007/s00010-022-00908-z.

M. Tanveer, W. Nazeer and K. Gdawiec, New escape criteria for complex fractals generation in Jungck-CR orbit, Indian J. Pure Appl. Math., 51, (2020), 1285-1303, https://doi.org/10.1007/s13226-020-0466-9.

A. Tomar, V. Kumar, U.S. Rana and M. Sajid, Fractals as Julia and Mandelbrot sets of complex cosine function via xed point iterations, symmetry, 7 (6), (2022), 10939-10957, https://doi.org/10.3934/math.2022611.

G. I. Usurelu, A. Bejenaru and M. Postolache, Newton-like methods and polynomiographic visualization of modi ed Thakur processes, Int. J. Comput. Math., 98, (2021), 1049-1068, https://doi.org/10.1080/00207160.2020.1802017.

X. Zhang, L. Wang, Z. Zhou and Y. Niu, A chaos-based image encryption technique utilizing Hilbert curves and H-fractals, IEEE Access 7, 74734-74746, (2019)70K55; 28A10; 39B12; 47H10.

Published
2024-07-12
How to Cite
Ahmad, I., & Rizvi, H. (2024). Fractal as Julia sets of complex functions via a new generalized viscosity approximation type iterative method. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2089
Section
Research Articles