On Local Antimagic b-Coloring of Graphs: New Notion

  • Ika Hesti Agustin University of Jember
  • Dafik Dafik University of Jember
  • Ika Nur Maylisa University of Jember
  • M Venkatachalam Kongunadu Arts and Science College
  • K Abirami Kongunadu Arts and Science College
  • N Mohanapriya Kongunadu Arts and Science College
Keywords: Local antimagic b-coloring, local antimagic b-chromatic number, specific families of graphs

Abstract

Let $G=(V,E)$ be a simple, connected and un-directed graph. Given that a map $f: E(G) \longrightarrow \{1,2,3, \dots, |E(G)|\}$. We define a vertex weight of $v\in V$ as $w(v)=\Sigma_{e\in E(v)}f(e)$ where $E(v)$ is the set of edges incident to $v$. The bijection $f$ is said to be a local antimagic labeling if for any two adjacent vertices, their vertex weights must be distinct. Furthermore a $b-$coloring of a graph is a proper $k-$coloring of the vertices of $G$ such that in each color class there exists a vertex having neighbors in all other $k-1$ color classes. If we assign color on each vertex by the vertex weight $w(v)$ such that it induces a graph coloring satisfying $b-$coloring property, then this concept falls into a local antimagic $b-$coloring of graph. A local antimagic $b-$chromatic number, denoted by $\varphi_{la}(G),$ is the maximum number of colors chosen for any colorings generated by local antimagic $b-$coloring of $G$. In this study, we initiate to study the $b-$chromatic number of $G$ and the exact values of $\varphi_{la}(G)$ of certain classes of graph families.

References

\bibitem{Gross} J. L. Gross, J. Yellen and P. Zhang, Handbook of graph Theory Second Edition CRC Press Taylor and Francis Group, 2014.

\bibitem{Chartrand} G. Chartrand and L. Lesniak. Graphs and digraphs 3rd ed (London: Chapman and Hall). 2000.

\bibitem{Hartsfield} N. Hartsfield, G. Ringel. Pearls in Graph Theory: A Comprehensive Introduction. Academic Press, INC. Boston. 1990. (Revised version 1994).

\bibitem{A. I. Kristiana} A. I. Kristiana, R. Alfarisi, Dafik, N. Azahra. Local Irregular Vertex Coloring of Some Families of Graph. Journal of Discreate Mathematical Sciences and Cryptography (2020). 10.1080/09720529.2020.1754541 1-16. \url{https://doi.org/10.1080/09720529.2020.1754541}.

\bibitem{S. Bhavanari} S. Bhavanari, S. Devanaboina, and M. Bhavanari. Star Number of a Graph. Journal of Science and IT Management (2016). 5(11) 18-22.

\bibitem{Jakovac1} M. Jakovac, S. Klavžar, The $b-$Chromatic Number of Cubic Graphs. Graphs and Combinatorics 26 (2010), 107–118. https://doi.org/10.1007/s00373-010-0898-9.

\bibitem{Irving} R. W. Irving, and D. F. Manlove. The b-chromatic number of a graph. Discrete Applied Mathematics (1999). Volume 91, Issues 1–3, Pages 127-141, https://doi.org/10.1016/S0166-218X(98)00146-2.

\bibitem{Javadi} R. Javadi and B. Omoomi. On $b-$coloring of the Kneser graphs. Discrete Mathematics (2009). Volume 309, Issue 13, Pages 4399-4408, https://doi.org/10.1016/j.disc.2009.01.017.

\bibitem{Javadi2} Ramin Javadi and Behnaz Omoomi. On $b-$coloring of Cartesian product of graphs. Ars Combinatoria (2012). pp. 1-16 (2012).

\bibitem{Sudev} J. Kok, \& N. Sudev. The b-chromatic number of certain graphs and digraphs. arXiv:1511.00680v1 [math.GM] 2 Nov 2015 (2015). https://arxiv.org/pdf/1511.00680.pdf.

\bibitem{Gella} I. T. S. Diego and F. S. Gella. The b-Chromatic Number of Bistar Graph. Applied Mathematical Sciences (2014), Vol. 8, no. 116, 5795 - 5800. http://dx.doi.org/10.12988/ams.2014.47529.

\bibitem{Ansari} N. Ansari, R. S. Chandel, \& R. Jamal. On b-chromatic Number of Prism Graph Families. Applications and Applied Mathematics: An International Journal (AAM) (2018). Vol. 13, Issue 1, pp. 286 - 295.

\bibitem{Effantin} Effantin, B. \& H. Kheddouci. The b-chromatic number of some power graphs. Discrete Mathematics and Theoretical Computer Science (2003), pp. 45-54.

\bibitem{Kaliraj} K. Kaliraj \& M. Manjula. b-CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT OF SOME GRAPHS. Palestine Journal of Mathematics (2021). Vol 10, Special Issue II, pp. 110-121.

\bibitem{Venkatachalam} M. Venkatachalam, \& V. J. Vernold. The b-CHROMATIC NUMBER OF STAR GRAPH FAMILIES. LE MATEMATICHE. Vol. LXV (2010), pp. 119-125. doi: 10.4418/2010.65.1.10.

\bibitem{Nagarathinam} R. Nagarathinam \& N. Parvathi. On $b-$coloring line, middle and total graph of tadpole graph. AIP Conference Proceedings 2277 (2020), 100012, https://doi.org/10.1063/5.0026012.

\bibitem{Jeeva} A. Jeeva, R. Selvakumar, \& M. Nalliah. The b-chromatic number of some special families of graphs. IOP Conf. Series: Materials Science and Engineering 263 (2017) 042113. doi:10.1088/1757-899X/263/4/042113.

\bibitem{Vernold} V. J. Vernold, M. Venkatachalam, \& M. Mohanapriya. On b-Chromatic Number of Some Line, Middle and Total Graph Families. International J.Math. Combin (2016). Vol.1, 116-125.

\bibitem{Lisna} P. C. Lisna, \& M. S. Sunitha. The b-chromatic number of Mycielskian of some graphs. International Journal of Convergence Computing (2016). Vol. 2 No. 1. doi:10.1504/IJCONVC.2016.080395.

\bibitem {Kalp} Kalpana, M., \& Vijayalakshmi, D. On b-coloring of central graph of some graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics. (2019). 68(1), 1229-1239.

\bibitem {Jaff} Jaffke, L., Lima, P. T., \& Lokshtanov, D. b-Coloring parameterized by clique-width. Theory of Computing Systems. (2023). 1-33.

\bibitem {Melo} Melo, R. A., Queiroz, M. F., \& Santos, M. C. A matheuristic approach for the b-coloring problem using integer programming and a multi-start multi-greedy randomized metaheuristic. European Journal of Operational Research. (2021). 295(1), 66-81.

\bibitem {Karthi} Karthikeyan, S., \& Mary, U. On b-coloring and Johan coloring of line graphs. In AIP Conference Proceedings. (2020, October). (Vol. 2261, No. 1). AIP Publishing.

\bibitem {Raj} Raj, S. F., \& Gokulnath, M. b-Coloring of the Mycielskian of Some Classes of Graphs. Discussiones Mathematicae Graph Theory. (2022). 42(2), 363-381.

\bibitem {Saras} Saraswathi, S., \& Poobalaranjani, M. Exact 2-distance b-coloring of some classes of graphs. Malaya Journal of Matematik (MJM). (2020). 8(1, 2020), 195-200.

\bibitem {Koch} Koch, I., \& Marenco, J. An integer programming approach to b-coloring. Discrete Optimization. (2019). 32, 43-62.

\bibitem {Jafke} Jaffke, L., Lima, P. T., \& Sharma, R. Structural Parameterizations of b-Coloring. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik. (2023).

\bibitem {Francis} Francis Raj, S., \& Gokulnath, M. b-Coloring of the Mycielskian of Regular Graphs. In Conference on Algorithms and Discrete Applied Mathematics. (2019, January). (pp. 91-96). Cham: Springer International Publishing.

\bibitem {Wati} SARASWATHI, S., \& POOBALARANJANI, M. 2-DISTANCE STRONG B-COLORING OF HELM AND CLOSED HELM GRAPHS.

\bibitem{Xavier} Xavier, D. Francis. b-Chromatic Number of Line Graphs of Certain Snake Graphs. International Journal of Computing Algorithm (2014). Vol. 3, p. 700-703.

\bibitem{AgustinH} Agustin, I. H., Hasan, M., Alfarisi, R., Kristiana, A. I., \& Prihandini, R. M. Local edge antimagic coloring of comb product of graphs. Journal of Physics: Conference Series (2018). Vol. 1008, No. 1, 2018, p. 012038. \url{https://doi.org/10.1088/1742-6596/1008/1/012038}.

\bibitem{Septory} Septory, B. J., Utoyo, M. I., Sulistiyono, B., \& Agustin, I. H. On rainbow antimagic coloring of special graphs. Journal of Physics: Conference Series (2021). Vol. 1836, No. 1, p. 012016. \url{https://doi.org/10.1088/1742-6596/1836/1/012016}.

\bibitem{Gal} J. A. Gallian, A Dynamic survey on Graph Labeling, The Electronic Journal of Combinatorics (2008), 15.

\bibitem{Arumugam} S. Arumugam, K. Premalatha· Martin Baˇca· Andrea Semaniˇcová-Fe ˇnovˇcíková. Local Antimagic Vertex Coloring of a Graph. \textit{Graphs and Combinatorics}. (2017) 33:275–285, DOI 10.1007/s00373-017-1758-7. \url{https://doi.org/10.1007/s00373-017-1758-7}.

\bibitem{JH} J. Haslegrave, Proof of a local antimagic conjecture, Discrete Mathematics and Theoretical Computer Science (2018) 20:1. \url{https://doi.org/10.23638/DMTCS-20-1-18}.

\bibitem{Agustin} I. H. Agustin, Dafik, Marsidi, E. Y. Kurniawati. The upper bound of vertex local antimagic edge labeling on graph operations. Journal of Physics: Conference Series (2020). \textbf{1538} 012019. \url{https://doi.org/10.1088/1742-6596/1538/1/012019}.

\bibitem{Nuris} N. H. Nazula , Slamin, Dafik. Local antimagic vertex coloring of unicyclic graphs. Indonesian Journal of Combinatorics (2018). \textbf{2} (1), 30–34. \url{https://doi.org/10.19184/ijc.2018.2.1.4}.

\bibitem{Dafik2} Dafik, I. H. Agustin, Marsidi, E. Y. Kurniawati. On the local antimagic vertex coloring of sub-devided some special graph. Journal of Physics: Conference Series (2020). \textbf{1538} 012021.

\bibitem{Kurniawati} E. Y. Kurniawati , I. H. Agustin, Dafik, Marsidi. The local antimagic total vertex coloring of graphs with homogeneous pendant vertex. Journal of Physics: Conference Series (2019). \textbf{1306} 012047. \url{https://doi.org/10.1088/1742-6596/1306/1/012047}.

\bibitem{Dafik} Dafik, M. Miller, J. Ryan, and M. Baca. Super edge-antimagic total labelings of mKn,n Ars Combinatoria (2011). 101 97-107.

\bibitem{Hefetz} D. Hefetz, Antimagic graphs via the combinatorial nullstellensatz, J. Graph Theory 50 (2005). No. 4. 263-272.

\bibitem{Wong} T.L. Wong, X. Zhu, Antimagic labeling of vertex weighted graphs, J. Graph Theory 70 (2012). No. 3. 348-350.

\bibitem{Ika} Agustin I H, Dafik, Hasan M, Alfarisi R, and Prihandini R M. 2017. Local Edge Antimagic Coloring of Graphs. \textit{Far East Journal of Mathematical Sciences}. Volume 102, Number 9, Pages 1925-1941.
Published
2024-12-02
How to Cite
Hesti Agustin, I., Dafik, D., Maylisa, I. N., Venkatachalam, M., Abirami, K., & Mohanapriya, N. (2024). On Local Antimagic b-Coloring of Graphs: New Notion. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2064
Section
Research Articles

Most read articles by the same author(s)