On Local Antimagic b-Coloring of Graphs: New Notion
Keywords:
Local antimagic b-coloring, local antimagic b-chromatic number, specific families of graphs
Abstract
Let $G=(V,E)$ be a simple, connected and un-directed graph. Given that a map $f: E(G) \longrightarrow \{1,2,3, \dots, |E(G)|\}$. We define a vertex weight of $v\in V$ as $w(v)=\Sigma_{e\in E(v)}f(e)$ where $E(v)$ is the set of edges incident to $v$. The bijection $f$ is said to be a local antimagic labeling if for any two adjacent vertices, their vertex weights must be distinct. Furthermore a $b-$coloring of a graph is a proper $k-$coloring of the vertices of $G$ such that in each color class there exists a vertex having neighbors in all other $k-1$ color classes. If we assign color on each vertex by the vertex weight $w(v)$ such that it induces a graph coloring satisfying $b-$coloring property, then this concept falls into a local antimagic $b-$coloring of graph. A local antimagic $b-$chromatic number, denoted by $\varphi_{la}(G),$ is the maximum number of colors chosen for any colorings generated by local antimagic $b-$coloring of $G$. In this study, we initiate to study the $b-$chromatic number of $G$ and the exact values of $\varphi_{la}(G)$ of certain classes of graph families.References
\bibitem{Gross} J. L. Gross, J. Yellen and P. Zhang, Handbook of graph Theory Second Edition CRC Press Taylor and Francis Group, 2014.
\bibitem{Chartrand} G. Chartrand and L. Lesniak. Graphs and digraphs 3rd ed (London: Chapman and Hall). 2000.
\bibitem{Hartsfield} N. Hartsfield, G. Ringel. Pearls in Graph Theory: A Comprehensive Introduction. Academic Press, INC. Boston. 1990. (Revised version 1994).
\bibitem{A. I. Kristiana} A. I. Kristiana, R. Alfarisi, Dafik, N. Azahra. Local Irregular Vertex Coloring of Some Families of Graph. Journal of Discreate Mathematical Sciences and Cryptography (2020). 10.1080/09720529.2020.1754541 1-16. \url{https://doi.org/10.1080/09720529.2020.1754541}.
\bibitem{S. Bhavanari} S. Bhavanari, S. Devanaboina, and M. Bhavanari. Star Number of a Graph. Journal of Science and IT Management (2016). 5(11) 18-22.
\bibitem{Jakovac1} M. Jakovac, S. Klavžar, The $b-$Chromatic Number of Cubic Graphs. Graphs and Combinatorics 26 (2010), 107–118. https://doi.org/10.1007/s00373-010-0898-9.
\bibitem{Irving} R. W. Irving, and D. F. Manlove. The b-chromatic number of a graph. Discrete Applied Mathematics (1999). Volume 91, Issues 1–3, Pages 127-141, https://doi.org/10.1016/S0166-218X(98)00146-2.
\bibitem{Javadi} R. Javadi and B. Omoomi. On $b-$coloring of the Kneser graphs. Discrete Mathematics (2009). Volume 309, Issue 13, Pages 4399-4408, https://doi.org/10.1016/j.disc.2009.01.017.
\bibitem{Javadi2} Ramin Javadi and Behnaz Omoomi. On $b-$coloring of Cartesian product of graphs. Ars Combinatoria (2012). pp. 1-16 (2012).
\bibitem{Sudev} J. Kok, \& N. Sudev. The b-chromatic number of certain graphs and digraphs. arXiv:1511.00680v1 [math.GM] 2 Nov 2015 (2015). https://arxiv.org/pdf/1511.00680.pdf.
\bibitem{Gella} I. T. S. Diego and F. S. Gella. The b-Chromatic Number of Bistar Graph. Applied Mathematical Sciences (2014), Vol. 8, no. 116, 5795 - 5800. http://dx.doi.org/10.12988/ams.2014.47529.
\bibitem{Ansari} N. Ansari, R. S. Chandel, \& R. Jamal. On b-chromatic Number of Prism Graph Families. Applications and Applied Mathematics: An International Journal (AAM) (2018). Vol. 13, Issue 1, pp. 286 - 295.
\bibitem{Effantin} Effantin, B. \& H. Kheddouci. The b-chromatic number of some power graphs. Discrete Mathematics and Theoretical Computer Science (2003), pp. 45-54.
\bibitem{Kaliraj} K. Kaliraj \& M. Manjula. b-CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT OF SOME GRAPHS. Palestine Journal of Mathematics (2021). Vol 10, Special Issue II, pp. 110-121.
\bibitem{Venkatachalam} M. Venkatachalam, \& V. J. Vernold. The b-CHROMATIC NUMBER OF STAR GRAPH FAMILIES. LE MATEMATICHE. Vol. LXV (2010), pp. 119-125. doi: 10.4418/2010.65.1.10.
\bibitem{Nagarathinam} R. Nagarathinam \& N. Parvathi. On $b-$coloring line, middle and total graph of tadpole graph. AIP Conference Proceedings 2277 (2020), 100012, https://doi.org/10.1063/5.0026012.
\bibitem{Jeeva} A. Jeeva, R. Selvakumar, \& M. Nalliah. The b-chromatic number of some special families of graphs. IOP Conf. Series: Materials Science and Engineering 263 (2017) 042113. doi:10.1088/1757-899X/263/4/042113.
\bibitem{Vernold} V. J. Vernold, M. Venkatachalam, \& M. Mohanapriya. On b-Chromatic Number of Some Line, Middle and Total Graph Families. International J.Math. Combin (2016). Vol.1, 116-125.
\bibitem{Lisna} P. C. Lisna, \& M. S. Sunitha. The b-chromatic number of Mycielskian of some graphs. International Journal of Convergence Computing (2016). Vol. 2 No. 1. doi:10.1504/IJCONVC.2016.080395.
\bibitem {Kalp} Kalpana, M., \& Vijayalakshmi, D. On b-coloring of central graph of some graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics. (2019). 68(1), 1229-1239.
\bibitem {Jaff} Jaffke, L., Lima, P. T., \& Lokshtanov, D. b-Coloring parameterized by clique-width. Theory of Computing Systems. (2023). 1-33.
\bibitem {Melo} Melo, R. A., Queiroz, M. F., \& Santos, M. C. A matheuristic approach for the b-coloring problem using integer programming and a multi-start multi-greedy randomized metaheuristic. European Journal of Operational Research. (2021). 295(1), 66-81.
\bibitem {Karthi} Karthikeyan, S., \& Mary, U. On b-coloring and Johan coloring of line graphs. In AIP Conference Proceedings. (2020, October). (Vol. 2261, No. 1). AIP Publishing.
\bibitem {Raj} Raj, S. F., \& Gokulnath, M. b-Coloring of the Mycielskian of Some Classes of Graphs. Discussiones Mathematicae Graph Theory. (2022). 42(2), 363-381.
\bibitem {Saras} Saraswathi, S., \& Poobalaranjani, M. Exact 2-distance b-coloring of some classes of graphs. Malaya Journal of Matematik (MJM). (2020). 8(1, 2020), 195-200.
\bibitem {Koch} Koch, I., \& Marenco, J. An integer programming approach to b-coloring. Discrete Optimization. (2019). 32, 43-62.
\bibitem {Jafke} Jaffke, L., Lima, P. T., \& Sharma, R. Structural Parameterizations of b-Coloring. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik. (2023).
\bibitem {Francis} Francis Raj, S., \& Gokulnath, M. b-Coloring of the Mycielskian of Regular Graphs. In Conference on Algorithms and Discrete Applied Mathematics. (2019, January). (pp. 91-96). Cham: Springer International Publishing.
\bibitem {Wati} SARASWATHI, S., \& POOBALARANJANI, M. 2-DISTANCE STRONG B-COLORING OF HELM AND CLOSED HELM GRAPHS.
\bibitem{Xavier} Xavier, D. Francis. b-Chromatic Number of Line Graphs of Certain Snake Graphs. International Journal of Computing Algorithm (2014). Vol. 3, p. 700-703.
\bibitem{AgustinH} Agustin, I. H., Hasan, M., Alfarisi, R., Kristiana, A. I., \& Prihandini, R. M. Local edge antimagic coloring of comb product of graphs. Journal of Physics: Conference Series (2018). Vol. 1008, No. 1, 2018, p. 012038. \url{https://doi.org/10.1088/1742-6596/1008/1/012038}.
\bibitem{Septory} Septory, B. J., Utoyo, M. I., Sulistiyono, B., \& Agustin, I. H. On rainbow antimagic coloring of special graphs. Journal of Physics: Conference Series (2021). Vol. 1836, No. 1, p. 012016. \url{https://doi.org/10.1088/1742-6596/1836/1/012016}.
\bibitem{Gal} J. A. Gallian, A Dynamic survey on Graph Labeling, The Electronic Journal of Combinatorics (2008), 15.
\bibitem{Arumugam} S. Arumugam, K. Premalatha· Martin Baˇca· Andrea Semaniˇcová-Fe ˇnovˇcíková. Local Antimagic Vertex Coloring of a Graph. \textit{Graphs and Combinatorics}. (2017) 33:275–285, DOI 10.1007/s00373-017-1758-7. \url{https://doi.org/10.1007/s00373-017-1758-7}.
\bibitem{JH} J. Haslegrave, Proof of a local antimagic conjecture, Discrete Mathematics and Theoretical Computer Science (2018) 20:1. \url{https://doi.org/10.23638/DMTCS-20-1-18}.
\bibitem{Agustin} I. H. Agustin, Dafik, Marsidi, E. Y. Kurniawati. The upper bound of vertex local antimagic edge labeling on graph operations. Journal of Physics: Conference Series (2020). \textbf{1538} 012019. \url{https://doi.org/10.1088/1742-6596/1538/1/012019}.
\bibitem{Nuris} N. H. Nazula , Slamin, Dafik. Local antimagic vertex coloring of unicyclic graphs. Indonesian Journal of Combinatorics (2018). \textbf{2} (1), 30–34. \url{https://doi.org/10.19184/ijc.2018.2.1.4}.
\bibitem{Dafik2} Dafik, I. H. Agustin, Marsidi, E. Y. Kurniawati. On the local antimagic vertex coloring of sub-devided some special graph. Journal of Physics: Conference Series (2020). \textbf{1538} 012021.
\bibitem{Kurniawati} E. Y. Kurniawati , I. H. Agustin, Dafik, Marsidi. The local antimagic total vertex coloring of graphs with homogeneous pendant vertex. Journal of Physics: Conference Series (2019). \textbf{1306} 012047. \url{https://doi.org/10.1088/1742-6596/1306/1/012047}.
\bibitem{Dafik} Dafik, M. Miller, J. Ryan, and M. Baca. Super edge-antimagic total labelings of mKn,n Ars Combinatoria (2011). 101 97-107.
\bibitem{Hefetz} D. Hefetz, Antimagic graphs via the combinatorial nullstellensatz, J. Graph Theory 50 (2005). No. 4. 263-272.
\bibitem{Wong} T.L. Wong, X. Zhu, Antimagic labeling of vertex weighted graphs, J. Graph Theory 70 (2012). No. 3. 348-350.
\bibitem{Ika} Agustin I H, Dafik, Hasan M, Alfarisi R, and Prihandini R M. 2017. Local Edge Antimagic Coloring of Graphs. \textit{Far East Journal of Mathematical Sciences}. Volume 102, Number 9, Pages 1925-1941.
\bibitem{Chartrand} G. Chartrand and L. Lesniak. Graphs and digraphs 3rd ed (London: Chapman and Hall). 2000.
\bibitem{Hartsfield} N. Hartsfield, G. Ringel. Pearls in Graph Theory: A Comprehensive Introduction. Academic Press, INC. Boston. 1990. (Revised version 1994).
\bibitem{A. I. Kristiana} A. I. Kristiana, R. Alfarisi, Dafik, N. Azahra. Local Irregular Vertex Coloring of Some Families of Graph. Journal of Discreate Mathematical Sciences and Cryptography (2020). 10.1080/09720529.2020.1754541 1-16. \url{https://doi.org/10.1080/09720529.2020.1754541}.
\bibitem{S. Bhavanari} S. Bhavanari, S. Devanaboina, and M. Bhavanari. Star Number of a Graph. Journal of Science and IT Management (2016). 5(11) 18-22.
\bibitem{Jakovac1} M. Jakovac, S. Klavžar, The $b-$Chromatic Number of Cubic Graphs. Graphs and Combinatorics 26 (2010), 107–118. https://doi.org/10.1007/s00373-010-0898-9.
\bibitem{Irving} R. W. Irving, and D. F. Manlove. The b-chromatic number of a graph. Discrete Applied Mathematics (1999). Volume 91, Issues 1–3, Pages 127-141, https://doi.org/10.1016/S0166-218X(98)00146-2.
\bibitem{Javadi} R. Javadi and B. Omoomi. On $b-$coloring of the Kneser graphs. Discrete Mathematics (2009). Volume 309, Issue 13, Pages 4399-4408, https://doi.org/10.1016/j.disc.2009.01.017.
\bibitem{Javadi2} Ramin Javadi and Behnaz Omoomi. On $b-$coloring of Cartesian product of graphs. Ars Combinatoria (2012). pp. 1-16 (2012).
\bibitem{Sudev} J. Kok, \& N. Sudev. The b-chromatic number of certain graphs and digraphs. arXiv:1511.00680v1 [math.GM] 2 Nov 2015 (2015). https://arxiv.org/pdf/1511.00680.pdf.
\bibitem{Gella} I. T. S. Diego and F. S. Gella. The b-Chromatic Number of Bistar Graph. Applied Mathematical Sciences (2014), Vol. 8, no. 116, 5795 - 5800. http://dx.doi.org/10.12988/ams.2014.47529.
\bibitem{Ansari} N. Ansari, R. S. Chandel, \& R. Jamal. On b-chromatic Number of Prism Graph Families. Applications and Applied Mathematics: An International Journal (AAM) (2018). Vol. 13, Issue 1, pp. 286 - 295.
\bibitem{Effantin} Effantin, B. \& H. Kheddouci. The b-chromatic number of some power graphs. Discrete Mathematics and Theoretical Computer Science (2003), pp. 45-54.
\bibitem{Kaliraj} K. Kaliraj \& M. Manjula. b-CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT OF SOME GRAPHS. Palestine Journal of Mathematics (2021). Vol 10, Special Issue II, pp. 110-121.
\bibitem{Venkatachalam} M. Venkatachalam, \& V. J. Vernold. The b-CHROMATIC NUMBER OF STAR GRAPH FAMILIES. LE MATEMATICHE. Vol. LXV (2010), pp. 119-125. doi: 10.4418/2010.65.1.10.
\bibitem{Nagarathinam} R. Nagarathinam \& N. Parvathi. On $b-$coloring line, middle and total graph of tadpole graph. AIP Conference Proceedings 2277 (2020), 100012, https://doi.org/10.1063/5.0026012.
\bibitem{Jeeva} A. Jeeva, R. Selvakumar, \& M. Nalliah. The b-chromatic number of some special families of graphs. IOP Conf. Series: Materials Science and Engineering 263 (2017) 042113. doi:10.1088/1757-899X/263/4/042113.
\bibitem{Vernold} V. J. Vernold, M. Venkatachalam, \& M. Mohanapriya. On b-Chromatic Number of Some Line, Middle and Total Graph Families. International J.Math. Combin (2016). Vol.1, 116-125.
\bibitem{Lisna} P. C. Lisna, \& M. S. Sunitha. The b-chromatic number of Mycielskian of some graphs. International Journal of Convergence Computing (2016). Vol. 2 No. 1. doi:10.1504/IJCONVC.2016.080395.
\bibitem {Kalp} Kalpana, M., \& Vijayalakshmi, D. On b-coloring of central graph of some graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics. (2019). 68(1), 1229-1239.
\bibitem {Jaff} Jaffke, L., Lima, P. T., \& Lokshtanov, D. b-Coloring parameterized by clique-width. Theory of Computing Systems. (2023). 1-33.
\bibitem {Melo} Melo, R. A., Queiroz, M. F., \& Santos, M. C. A matheuristic approach for the b-coloring problem using integer programming and a multi-start multi-greedy randomized metaheuristic. European Journal of Operational Research. (2021). 295(1), 66-81.
\bibitem {Karthi} Karthikeyan, S., \& Mary, U. On b-coloring and Johan coloring of line graphs. In AIP Conference Proceedings. (2020, October). (Vol. 2261, No. 1). AIP Publishing.
\bibitem {Raj} Raj, S. F., \& Gokulnath, M. b-Coloring of the Mycielskian of Some Classes of Graphs. Discussiones Mathematicae Graph Theory. (2022). 42(2), 363-381.
\bibitem {Saras} Saraswathi, S., \& Poobalaranjani, M. Exact 2-distance b-coloring of some classes of graphs. Malaya Journal of Matematik (MJM). (2020). 8(1, 2020), 195-200.
\bibitem {Koch} Koch, I., \& Marenco, J. An integer programming approach to b-coloring. Discrete Optimization. (2019). 32, 43-62.
\bibitem {Jafke} Jaffke, L., Lima, P. T., \& Sharma, R. Structural Parameterizations of b-Coloring. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik. (2023).
\bibitem {Francis} Francis Raj, S., \& Gokulnath, M. b-Coloring of the Mycielskian of Regular Graphs. In Conference on Algorithms and Discrete Applied Mathematics. (2019, January). (pp. 91-96). Cham: Springer International Publishing.
\bibitem {Wati} SARASWATHI, S., \& POOBALARANJANI, M. 2-DISTANCE STRONG B-COLORING OF HELM AND CLOSED HELM GRAPHS.
\bibitem{Xavier} Xavier, D. Francis. b-Chromatic Number of Line Graphs of Certain Snake Graphs. International Journal of Computing Algorithm (2014). Vol. 3, p. 700-703.
\bibitem{AgustinH} Agustin, I. H., Hasan, M., Alfarisi, R., Kristiana, A. I., \& Prihandini, R. M. Local edge antimagic coloring of comb product of graphs. Journal of Physics: Conference Series (2018). Vol. 1008, No. 1, 2018, p. 012038. \url{https://doi.org/10.1088/1742-6596/1008/1/012038}.
\bibitem{Septory} Septory, B. J., Utoyo, M. I., Sulistiyono, B., \& Agustin, I. H. On rainbow antimagic coloring of special graphs. Journal of Physics: Conference Series (2021). Vol. 1836, No. 1, p. 012016. \url{https://doi.org/10.1088/1742-6596/1836/1/012016}.
\bibitem{Gal} J. A. Gallian, A Dynamic survey on Graph Labeling, The Electronic Journal of Combinatorics (2008), 15.
\bibitem{Arumugam} S. Arumugam, K. Premalatha· Martin Baˇca· Andrea Semaniˇcová-Fe ˇnovˇcíková. Local Antimagic Vertex Coloring of a Graph. \textit{Graphs and Combinatorics}. (2017) 33:275–285, DOI 10.1007/s00373-017-1758-7. \url{https://doi.org/10.1007/s00373-017-1758-7}.
\bibitem{JH} J. Haslegrave, Proof of a local antimagic conjecture, Discrete Mathematics and Theoretical Computer Science (2018) 20:1. \url{https://doi.org/10.23638/DMTCS-20-1-18}.
\bibitem{Agustin} I. H. Agustin, Dafik, Marsidi, E. Y. Kurniawati. The upper bound of vertex local antimagic edge labeling on graph operations. Journal of Physics: Conference Series (2020). \textbf{1538} 012019. \url{https://doi.org/10.1088/1742-6596/1538/1/012019}.
\bibitem{Nuris} N. H. Nazula , Slamin, Dafik. Local antimagic vertex coloring of unicyclic graphs. Indonesian Journal of Combinatorics (2018). \textbf{2} (1), 30–34. \url{https://doi.org/10.19184/ijc.2018.2.1.4}.
\bibitem{Dafik2} Dafik, I. H. Agustin, Marsidi, E. Y. Kurniawati. On the local antimagic vertex coloring of sub-devided some special graph. Journal of Physics: Conference Series (2020). \textbf{1538} 012021.
\bibitem{Kurniawati} E. Y. Kurniawati , I. H. Agustin, Dafik, Marsidi. The local antimagic total vertex coloring of graphs with homogeneous pendant vertex. Journal of Physics: Conference Series (2019). \textbf{1306} 012047. \url{https://doi.org/10.1088/1742-6596/1306/1/012047}.
\bibitem{Dafik} Dafik, M. Miller, J. Ryan, and M. Baca. Super edge-antimagic total labelings of mKn,n Ars Combinatoria (2011). 101 97-107.
\bibitem{Hefetz} D. Hefetz, Antimagic graphs via the combinatorial nullstellensatz, J. Graph Theory 50 (2005). No. 4. 263-272.
\bibitem{Wong} T.L. Wong, X. Zhu, Antimagic labeling of vertex weighted graphs, J. Graph Theory 70 (2012). No. 3. 348-350.
\bibitem{Ika} Agustin I H, Dafik, Hasan M, Alfarisi R, and Prihandini R M. 2017. Local Edge Antimagic Coloring of Graphs. \textit{Far East Journal of Mathematical Sciences}. Volume 102, Number 9, Pages 1925-1941.
Published
2024-12-02
How to Cite
Hesti Agustin, I., Dafik, D., Maylisa, I. N., Venkatachalam, M., Abirami, K., & Mohanapriya, N. (2024). On Local Antimagic b-Coloring of Graphs: New Notion. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2064
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).