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The parameter estimation of the multivariate matrix regression models
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Abstract In this paper, we consider the parameter matrix estimation problem of the multivariate matrix regression models.
We approximate the parameter matrix B and the covariance matrix by using the method of the maximum likelihood
estimation, together with the Kronecker product of matrices, vectorization of matrices and matrix derivatives.
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1. Introduction

The Linear model (LM), or called linear regression model, is a basic tool for statistical analysis, among which
multivariate linear models (MLM) are widely used in many fields such as agriculture, engineering, pharmaceutical
chemical engineering, aerospace, theoretical research and data analysis (see e.g. [1, 4, 5, 7, 8, 12, 16, 20]). The
MLM is the case where the number of response factors is greater than 1. Similar to the general LM, in the
MLM it is always assumed that the response variable is a linear function of some explanatory variables (vectors
or matrices). In a LM, the covariance matrix of the response variables and the parameter matrix B (generally
consists of the linear regression coefficients) are unknown and to be estimated by some methods such as maximum
likelihood (ML) and ordinary least square (OLS) method in terms of the given data of the response variables and
the interpretable variables, and the predict is thus followed after the parameter estimation. The application of the
linear model mainly involves the following two aspects.

• Prediction and minimization of the errors. The regression function between the response and the explaining
factors can be obtained by observations, and the regression coefficients are obtained by some methods.

• The correlation analysis. This may cause the partitioning or clustering of the observed data, leading to a
hierarchical dataset, or to a different model such as the Envelope model[10].

The common approach to estimate the parameters in a linear model is the ordinary least square (OLS)[4, 5], the
maximum likelihood (ML) estimation[6, 7, 11], the minimization of error norm (such as minimizing absolute
deviation regression analysis[4], and the cost function least squares penalty minimization method[16, 20] (l2-norm
penalty ) and Lasso ( l1-norm penalty[7,8] ) etc.. Note that the OLS can also be used to estimate parameters of the
nonlinear regression model[9]. The general MLM can be indicated by

Y = XB + E (1.1)

where it satisfies the following assumptions
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1. The rows of the random matrix Y ∈ Rn×d, denoted Yi., are mutually independent.
2. The design matrix X ∈ Rn×p is fixed and known.
3. The parameter matrix B ∈ Rp×d is unknown and is to be estimated.
4. The response matrix Y ∈ Rp×d has a covariance matrix, which is fixed unknown.
5. The mean of the random error is 0.
6. The covariance matrix of the random error ϵ is Σ⊗ In.

The multivariate linear model under the above assumptions is called the Gauss-Markov model. Note that

Definition 1.1
Let A ∈ Rm1×n1 and B ∈ Rm2×n2 . Then matrix C := A⊗B ∈ Rm1m2×n1n2 , called a direct product( Kronecker
product) of the matrices A and B is defined as the blocking matrix

A⊗B =


a11B a12B a13B . . . a1n−1B a1nB
a21B a22B a23B . . . a2n−1B a2nB

...
...

... . . .
...

...
am−11B am−1,2B am−1,3B . . . am−1,n−1B am−1,nB
am1B am,2B am,3B . . . am,n−1B am,nB


Now we present here some basic propositions related to the Kronecker product. The reader is referred to the

first chapter of [13] for more detail on Kronecker product.

Proposition 1.2
Let Ai ∈ Rmi×ni , Bi ∈ Rni×pi for i = 1, 2. Then we have

(A1 ⊗A2)(B1 ⊗B2) = (A1B1)⊗ (A2B2) (1.2)

and
(A1 ⊗A2)

′ = (A1)
′ ⊗ (A2)

′ (1.3)

Proposition 1.3
Let A ∈ Rm×m, B ∈ Rn×n be both invertible. Then A⊗B is invertible and

(A⊗B)−1 = A−1 ⊗B−1 (1.4)

The vectorization is an operation such that any matrix A ∈ Rm×n can be made into a column vector vec(A) ∈
Rmn by vertically stacking in order all the columns of A. Thus the vec can be regarded as a 1-1 correspondence
from the matrix space Rm×n to Rmn. From the vectorization, we have

Proposition 1.4
Let A ∈ Rm×n, B ∈ Rn×p, C ∈ Rp×q. Then we have

vec(ABC) = (C ′ ⊗B)vec(A) (1.5)

and if p = m, then
Tr(AB) = vec(B)′vec(A) (1.6)

Matrix vectorization plays an important role in solving the regression model of multivariate linear matrix. We
will use this method in the following to figure out the parameter estimation in the model. Firstly, we introduce the
derivative of the matrix function. The matrix derivative is one of the key notions in matrix theory for multivariate
analysis such as in some extreme problems, maximum likelihood estimation, parameter asymptotic expression
of multivariate limit distributions etc.. The real starting point for matrix derivative is by Dwyer MacPhail[9],
then further developed by Bargmann[2] and MacRae[14]. A useful tool employed in matrix derivatives is the
vectorization of matrices, see Neudecker[17] and Tracy Dwyer[18], McDonald Swaminathan [15] and Bentler Lee

Stat., Optim. Inf. Comput. Vol. 6, June 2018



288 MATRIX REGRESSION MODEL

[3]. The notion of a matrix derivative is a realization of the Fréchet derivative known from functional analysis.
We first recall the definition of the derivative of a vector y = (y1, . . . , yn)

′ w.r.t. another vector x = (x1,...,xm).
Then dy

dx = (Jij) ∈ Rm×n where Jij =
dyj

dxi
for i = 1, . . . ,m; j = 1, . . . , n. Now consider matrix Y = (yij) ∈

Rm×n each of whose entries yij is a differentiable function of X = (xst) ∈ Rp×q, i.e., yij can be regarded as
a function with pq arguments xst. Then we define

dY

dX
=

d(vec(Y )′)

dvec(X)
∈ Rpq×mn

The second order derivative, d2Y
dX2 , is defined by

d2Y

dX2
:=

d

dX
(
dY

dX
) =

d

dvec(X)
vec(

dY

dX
)′ (1.7)

Thus we have d2Y
dX2 ∈ Rpq×mnpq. We can also define any order derivative by using the induction on the order.

Actually we already defined the 1st and the 2nd order derivative of Y w.r.t. X . Now suppose we have defined the
(k − 1)th order derivative, i.e.,

dk−1Y

dXk−1
= A(k−1) ∈ Rpq×mn(pq)k−2

Then the kth order derivative of Y w.r.t. X is defined by

dkY

dXk
=

d

dvec(X)
(
dk−1Y

dXk−1
) ∈ Rpq×mn(pq)k−1

We have

Proposition 1.5
Let X = (xij) ∈ Rm×n and the elements of X are all independent variables, and A be a matrix of proper size with
constant elements, and c is a constant. Then we have

(1) dX
dX = Imn, where Ik represents the k × k identity matrix.

(2) d(cX)
dX = cImn and d(AX)

dX = In ⊗A′.

(3) d(AXB)
dX = B ⊗A′.

The following results concerns the derivatives of the inverse, determinant and the trace of a random matrix.

Proposition 1.6
Let X = (xij) ∈ Rn×n be invertible and A be a matrix of proper size. Then

(1) dX−1

dX = −X−1 ⊗ (X ′)−1.

(2) d(det(X)
dX = det(X)vec((X−1)′).

(3) d(Tr(Y )
dX = dY

dXvec(I).

(4) d(Tr(AXBX′)
dX = vec(A′XB′) + vec(AXB) .
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2. Maximum Likelihood Estimation of B in (1.1)

In this section, we use the maximum likelihood (ML) function and combine the results we obtained in the last
section to estimate B in (1.1). Let the random matrix Y satisfying model (1.1) obeys the normal distribution with
parameter matrix B and the covariance matrix Σ. Then the corresponding distribution density function is

L(B,Σ, Y ) := (2π)−nd/2(det(Σ))−n/2exp

{
−1

2
Tr((Y −XB)Σ−1(Y −XB)′)

}
(2.8)

Theorem 2.1
Suppose r := rank(X) = p ≤ n in (1.1). Then the maximum likelihood estimation of B is

B̂ = (X ′X)−1X ′Y (2.9)

Proof
We regard L(B,Σ, Y ) as a function of B. To get the maximum likelihood of B, we compute the derivative on the
logarithm of L w.r.t. B , since

log(L) = −1

2
nd log(2π)− 1

2
n log(detΣ)− 1

2
S

We have
∂ log(L)

∂B
=

1

2

∂S

∂B

Note that

∂S

∂B
=

∂(Y −XB)

∂B

∂Tr((Y −XB)Σ−1(Y −XB)′)

∂(Y −XB)

= −∂(XB)

∂B
vec[(Y −XB)Σ−1]

= −2(I ⊗X ′)vec[(Y −XB)Σ−1] = −2[X ′(Y −XB)Σ−1]

= −2(X ′Y −X ′XB)Σ−1

Thus ∂ log(L)
∂B = 0 is equivalent to (X ′Y −X ′XB)Σ−1 = 0. It follows that (X ′X)B = X ′Y . Consequently we get

(2.9) under the hypothesis of r := rank(X) = p ≤ n.

In order to estimate the parameter matrix B in (1.1) for the case when X is not full rank, i.e., rank(X) < p, we
need to introduce a class of generalized inverse–the group inverse or g-inverse, which is also called a {1}−inverse.
There are a lot of literatures on generalized inverses of matrices. We refer the reader to the first chapter in [13] for
reference.

Given a matrix A ∈ Cm×n, the g-inverse of A, denoted A−, is an n×m matrix satisfying condition

AA−A = A (2.10)

An equivalent definition for the g-inverse is:

Proposition 2.2
Let A ∈ Cm×n, B ∈ Cn×m. Then B is an g-inverse of A if and only if for any vector b ∈ Col(A), x = Bb is a
solution to the linear system Ax = b, where Col(A) := {y = Ax : x ∈ Cn} denotes the range space of A.

Note that the g-inverse of a matrix is usually non-unique. Another useful fact we will utilize in the proof of the
next result is that when matrix A is a square nonsingular matrix, the g-inverse is exactly the inverse matrix (and
therefore it is unique). The following proposition presents a general form of g-inverses of a given matrix A after
given a specific g-inverse.
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Proposition 2.3
Let A ∈ Cm×n and A−

0 be a given g-inverse of A. Then any g-inverse of A is in form

A− = A−
0 + Z −A−

0 AZAA−
0 (2.11)

where Z ∈ Cn×m is arbitrary.

We now generalize the result in (2.1) :

Theorem 2.4
Let Y ∈ Rn×d, X ∈ Rn×p, B ∈ Rp×d in (1.1). Then the maximum likelihood estimation of B is

B̂ = (X ′X)−X ′Y (2.12)

Proof
For r = rank(X) = p, the matrix X ′X is invertible. In this case, we have (X ′X)− = (X ′X)−1. By Theorem
(2.1), we get the result. Now we consider the case r = rank(X) < p. By the similar argument as in the proof of
Theorem (2.1), we obtain (X ′X)B = X ′Y . This is equivalent to (Ip ⊗X ′X)vec(B) = vec(X ′Y ) by Proposition
1.2, where Ip is the p× p identity matrix. Thus we have by Proposition 1.3, 1.4 and the Proposition 2.2 that

vec(B) = (I ⊗X ′X)−vec(X ′Y )

= [Ip ⊗ (X ′X)−]vec(X ′Y )

The result (2.12) follows by using again Proposition 1.3.

We now investigate the covariance matrix of the random matrix B in model (1.1). The covariance matrix of a
random vector x ∈ Rn is a symmetric positive (semi-)definite matrix D[x] = E[(x − µ)(x − µ)′] ∈ Rn×n. For a
random matrix X = (Xij) ∈ Cm×n (i.e., each element of X is a random variable), we define its covariance matrix
D[X] as the covariance matrix of vec(X), that is, D[X] = D[vec(X)] ∈ Cmn×mn. It follows that

Lemma 2.5
Let X = (Xij) ∈ Rm×n be a random matrix. If all rows X(i)’s are uniformly distributed with Cov(X(i)) = Σ for
all i ∈ [m], and all columns Xj’s are uniformly distributed with Cov(Xj) = Φ for all j ∈ [n]. Then D[X] = Σ⊗ Φ.

Given µ ∈ Rm×n,Σ ∈ Rn×n,Φ ∈ Rm×m where Σ,Φ are both positive definite matrices. We say X obeys a
matrix normal distribution with parameter matrices µ, Σ, Φ , or denoted X ∼ Normalm,n (µ,Σ,Φ) . Note that
X ∼ Normalm,n (µ,Σ,Φ)is equivalent to vec(X) ∼ Normalmn (vec(µ),Σ⊗ Φ).

Theorem 2.6
Let Y ∈ Rn×d, X ∈ Rn×p, B ∈ Rp×d in (1.1) satisfying condition (1-6), and let r = rank(X) = p. Then the
covariance matrix Ω is

Ω = Σ⊗ (X ′X)−1 (2.13)

Proof
For r = rank(X) = p, the matrix X ′X is invertible. In this case, we have

(̂B) = (X ′X)−1X ′Y = (X ′X)−1X ′(XB + E)

= B +ME

where M = (X ′X)−1X ′. Therefore we have

Ω = Cov(vec((̂B))) = Cov(vec(B) + vec(ME))

= Cov(vec(ME)) = Cov[(Id ⊗M)vec(E)]

= (Id ⊗M)vec(E)(Id ⊗M)′

= (Id ⊗M)(Σ⊗ In)(Id ⊗M)′

= Σ⊗MM ′ = Σ⊗ (X ′X)−1

Thus we get (2.13). The proof is completed.
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We end the paper by presenting without proof a result on the estimation of the covariance matrix Ω based upon
Theorem 2.13.

Corollary 2.7
Let Y ∈ Rn×d, X ∈ Rn×p, B ∈ Rp×d in (1.1) satisfying condition (1-6), and let r = rank(X) = p. Then the
covariance matrix is Ω = Σ⊗ (X ′X)−1 where Σ can be estimated by

Σ̂ =
1

n
(Y −XB̂)′(Y −XB̂)

3. Conclusion

Based on the generalised inverse and the properties of the matrix inverse, we get the covariance matrix for the error
distribution of the matrix regression model (1.1). We also present the covariance matrix for the model (1.1) when
all the rows (columns) of the design matrix X are uniformly distributed.
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