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Inference on the parameters and reliability characteristics of generalized
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Abstract A generalized inverted scale family of distributions is considered. Two measures of reliability are discussed,
namely ρ(t) = P (X > t) and P = P (X > Y ). Point and interval estimation procedures are developed for the parameters,
ρ(t) and P based on records. Two types of point estimators are developed - uniformly minimum variance unbiased estimators
(UMVUES) and maximum likelihood estimators (MLES). A comparative study of different methods of estimation is done
through simulation studies and asymptotic confidence intervals of the parameters based on MLE and log transformed MLE
are constructed. Testing procedures are also developed for the parametric functions of the distribution and a real life example
has been analysed for illustrative purposes.
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1. Introduction

A scale family of distributions plays an important role in reliability analysis with some of its most common
members being exponential distribution, Rayleigh distribution, half-logistic distribution etc. Gupta and Kundu
(1999, 2001a, 2001b) introduced the generalized exponential distribution. If Y is an exponential random variable
(rv), then X = 1

Y has an inverted exponential distribution. Lin et al. (1989) and Dey (2007) discussed inverted
exponential distribution (IED) to analyze lifetime data. Abouammoh and Alshingiti (2009) discussed generalized
inverted exponential distribution (GIED) by introducing a shape parameter and discussed their statistical and
reliability properties. Under Type II censoring, Krishna and Kumar (2012) estimated reliability characteristics
of GIED. Potdar and Shirke (2012, 2013) discussed inference on the scale family of lifetime distributions based
on progressively censored data and generalized inverted scale family of distributions respectively. In this paper, we
develop UMVUES and MLES of the powers of the parameters and reliability functions of the generalized inverted
scale family of distributions based on record data. The powers of the parameter are estimated as they appear in
expressions for moments and the hazard rate of the distributions.

The reliability function ρ(t) is defined as the probability that a system survives until time t. Thus, if the rv X
denotes the lifetime of an item or a system, then ρ(t) = P (X > t). The reliability characteristic under stress-
strength setup defined as P = P (X > Y ), is another measure of reliability function which represents the reliability
of a system (or an item) of random strength (or supply) X subject to random stress (or demand) Y . Thus, P is a
measure of system’s performance. A lot of work has been done in the literature for the point estimation and testing
of ρ(t) and P . For example, Pugh (1963), Basu (1964), Bartholomew (1957, 1963), Tong (1974, 1975), Johnson
(1975), Kelley et al. (1976), Sathe and Shah (1981), Chao (1982), Chaturvedi and Surinder (1999) developed
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inferential procedures for ρ(t) and P for exponential distribution. Constantine et al. (1986) derived UMVUE and
MLE for P associated with gamma distribution. Awad and Gharraf (1986) estimated P for Burr distribution.
For estimation of ρ(t) corresponding to Maxwell and generalized Maxwell distributions, one may refer to Tyagi
and Bhattacharya (1981) and Chaturvedi and Rani (1998), respectively. Inferences have been drawn for ρ(t) and
P for some families of lifetime distributions by Chaturvedi and Rani (1997), Chaturvedi and Tomer (2003),
Chaturvedi and Singh (2006, 2008), Chaturvedi and Kumari (2015) and Chaturvedi and Malhotra (2016, 2917).
Chaturvedi and Tomer (2002) derived UMVUE for ρ(t) and P for negative binomial distribution. For exponentiated
Weibull and Lomax distributions, the inferential procedures are available in Chaturvedi and Pathak (2012, 2013,
2014). Chaturvedi and Vyas (2017) developed estimation and testing procedures for the reliability functions of
exponentiated distributions under Type I and Type II censoring.

Chandler (1952) introduced the concept of records as a statistic of successive extremes from a sequence of
independent and identically distributed rvs. This theory is largely based on the theory of order statistics and is
especially closely related to extreme order statistics. Record values and the associated statistics are of particular
interest in the areas of climatology, sports, traffic, medicine, economics etc. A large number of record data saved
for a long time motivated the development of several mathematical models reflecting the corresponding record
processes and forecasting the future record results. Several inferential procedures for the parameters of different
distributions, based on record data, have been developed by Glick (1978), Nagaraja (1988a,1988b), Balakrishan et
al. (1995), Arnold et al. (1992), Habibi et al. (2006), Arashi and Emadi (2008), Razmkhah and Ahmadi (2011),
Belaghi et al. (2015) and others.

The rest of the paper is organised as follows. In Section 2, we discuss the generalized inverted family of
distributions proposed by Potdar and Shirke (2013) who introduced a shape parameter to the scale family of
distributions. In Section 3, we develop point estimation procedures based on records when the scale parameter is
known and also discuss the case when both the shape and scale parameters are unknown. As far as point estimation
is concerned, we derive UMVUES and MLES. A new technique of obtaining these estimators is developed, in
which first of all the estimators of powers of parameter are obtained. These estimators are used to obtain estimators
of ρ(t). Using the derivatives of the estimators of ρ(t), the estimators of sampled probability density function
(pdf), at a specified point, are obtained which are subsequently used to obtain estimators of P . The estimators of
P are derived for the cases when X and Y belong to the same and different families of distributions. In Section 4,
asymptotic confidence intervals for scale and shape parameters and reliability function are constructed and in
Section 5, testing procedures are developed for various parametric functions. In Section 6, we present numerical
findings and illustrate a real example.

2. The Generalized Inverted Scale Family of Distributions

Let Y be a rv having distribution belonging to a scale family of distributions with cumulative distribution function
(cdf) G, probability density function (pdf) g and scale parameter λ. Potdar and Shirke (2013) generalized this
family by introducing a shape parameter α to obtain a generalized scale family of distributions. Let X = 1

Y , then
distribution of X belongs to generalized inverted scale family of distributions. The pdf and cdf of the generalized
inverted scale family of distributions are respectively given as:

fX(x;λ, α) =
α

λx2
g

(
1

λx

)[
G

(
1

λx

)]α−1

; x > 0, λ > 0, α > 0 (2.1)

FX(x;λ, α) = 1−
[
G

(
1

λx

)]α
; x > 0, λ > 0, α > 0 (2.2)

We obtain the model in equation (2.1) by differentiating FX(x;λ, α) in (2.2) with respect to x. Some of the members
of the family of distributions in (2.1) are generalized inverted exponential distribution (GIED), generalized inverted
half-logistic distribution (GIHD), generalized inverted Rayleigh distribution (GIRD) and so on. The following
Figure 1 shows the pdf plot of the generalized inverted scale family of distributions.
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Figure 1. The pdf plot of some members of Generalized Inverted Scale Family of Distributions for different values of the
shape parameter α.

3. Point Estimation Procedures

Let X1, X2, . . . be an infinite sequence of independent and identically distributed (iid) rvs from (2.1). An
observation Xj will be called an upper record value (or simply a record) if its value exceeds than all the previous
observations up to time j. Thus Xj is a record if Xj > Xi for every i < j.

The record time sequence {Tn, n ≥ 0} is a sequence of all time points when an observation is marked as a record
and is mathematically defined as:{

T0 = 1; with probability 1
Tn = min{j : Xj > XTn−1}; n ≥ 1

The record value sequence {Rn} is a sequence of all observations marked as records and is mathematically defined
as:

Rn = XTn ; n = 0, 1, 2, . . .

We can rewrite (2.1) as follows:

fX(x;λ, α) =
αg
(

1
λx

)(
λx2G

(
1
λx

)) exp{−α log

(
1

G
(

1
λx

))} ; x > 0, λ > 0, α > 0

The likelihood function of the first n+ 1 upper record values R0, R1, R2, . . . , Rn is:

L(α|R0, R1, R2, . . . , Rn) = fX(Rn;λ, α)

n−1∏
i=0

fX(Ri;λ, α)

1− FX(Ri;λ, α)

It is easy to see that

L(α|R0, R1, R2, . . . , Rn) =
(α
λ

)n+1

exp

−α log

 1

G
(

1
λRn

)
 n∏

i=0

g
(

1
λRi

)
R2

iG
(

1
λRi

) (3.1)

The following theorem provides UMVUE of powers of α. This estimator will be utilized to obtain the UMVUE of
reliability functions. For simplicity, we define:

U(x) = log

(
1

G
(

1
λx

))
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Theorem 1
For q ∈ (−∞,∞), q ̸= 0, the UMVUE of αq is given by:

α̃q =

{{
Γ(n+1)

Γ(n−q+1)

}
(U(Rn))

−q; n > q − 1

0; otherwise

Proof
It follows from (3.1) and factorisation theorem [see Rohtagi and Saleh (2012, p.361)] that U(Rn) is a sufficient
statistic for α and the pdf of U(Rn) is:

h(U(Rn)|α) =
αn+1U(Rn)

n

Γ(n+ 1)
exp(−αU(Rn)); U(Rn) ≥ 0 (3.2)

From (3.2), since the distribution of U(Rn) belongs to exponential family, it is also complete [see Rohtagi and
Saleh (2012, p.367)]. The result now follows from (3.2) that

E[U(Rn)
−q] =

{
Γ(n− q + 1)

Γ(n+ 1)

}
αq

In the following theorem, we obtain UMVUE of the reliability function.

Theorem 2
The UMVUE of the reliability function is

ρ̃(t) =


[
1− U(t)

U(Rn)

]n
; U(t) < U(Rn)

0; otherwise

Proof
It is easy to see that

ρ(t) = exp{−αU(t)}

=

∞∑
i=0

(−1)i

i!
{αU(t)}i (3.3)

Applying Theorem 1, it follows from (3.3) that

ρ̃(t) =

∞∑
i=0

(−1)i

i!
{U(t)}iα̃i

=

n∑
i=0

(−1)i
(
n

i

){
U(t)

U(Rn)

}i

and the theorem follows.

The following corollary provides UMVUE of the sampled pdf . This estimator is derived with the help of
Theorem 2.

Corollary 1
The UMVUE of the sampled pdf (2.1) at a specified point x is

f̃X(x;λ, α) =


ng( 1

λx )
λx2U(Rn)G( 1

λx )

[
1− U(x)

U(Rn)

]n−1

; U(x) < U(Rn)

0; otherwise
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Proof

We note that the expectation of
∫∞
t

f̃X(x;λ, α)dx with respect to Rn is ρ(t). Hence, ρ̃(t) =
∫ ∞

t

f̃X(x;λ, α)dx.

The result follows from Theorem 2.

In the following theorem, we obtain expression for the variance of ρ̃(t), which will be needed to study its
efficiency.

Theorem 3
The variance of ρ̃(t) is given by:

Var{ρ̃(t)} =
1

n!
{αU(t)}(n+1) exp{−αU(t)}

[
an

αU(t)
− an−1 exp{αU(t)}Ei(−αU(t))

+

n−2∑
i=0

ai

{ n−i−1∑
m=1

(m− 1)!

(n− i− 1)!
(−αU(t))n−i−m−1

− 1

(n− i− 1)!
(−αU(t))n−i−1 exp(αU(t))Ei(−αU(t))

}
+

2n∑
i=n+1

ai(i− n)!

(
1

(αU(t))

)i−n+1 i−n∑
r=0

1

r!
(αU(t))r

]
− exp{−2αU(t)}, (3.4)

where ai = (−1)i
(
2n
i

)
and −Ei(−x) =

∫∞
x

e−u

u du.

Proof
Using (3.2) and Theorem 2,

E{ρ̃(t)2} =
αn+1

Γ(n+ 1)

∫ ∞

U(t)

[
1− U(t)

U(Rn)

]2n
{U(Rn)}n exp{−αU(Rn)}dU(Rn)

=
1

(Γ(n+ 1))
(αU(t))n+1 exp(−αU(t))

∫ ∞

0

z2n

(1 + z)n
exp(−zαU(t))dz

=
1

(Γ(n+ 1))
(αU(t))n+1 exp(−αU(t))I, (say) (3.5)

where

I =

n∑
i=0

ai

∫ ∞

0

1

(z + 1)n−i
exp(−zαU(t))dz

+

2n∑
i=n+1

ai

∫ ∞

0

(z + 1)i−n exp(−zαU(t))dz (3.6)

Using a result of Erdélyi (1954) that

∫ ∞

0

(exp?(−up))

(u+ a)n
du =

n−1∑
m=1

(m− 1)!(−p)n−m−1

(n− 1)!am
− (−p)n−1

(n− 1)!
exp?(ap)Ei(−ap)
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we have ∫ ∞

0

1

(z + 1)n−i
exp(−zαU(t))dz

=

n−i−1∑
m=1

(m− 1)!

(n− i− 1)!
(−αU(t))n−i−m−1

− 1

(n− i− 1)!
(−αU(t))n−i−1 exp(αU(t))Ei(−αU(t)), i = 0, 1, 2, . . . , n− 2 (3.7)

Furthermore,∫ ∞

0

1

(1 + z)
exp(−zαU(t))dz = exp(αU(t))

∫ ∞

0

1

(z + 1)
exp(−αU(t)(z + 1))dz

= exp(αU(t))

∫ ∞

(αU(t))

e−y

y
dy = − exp(αU(t))Ei(−αU(t)). (3.8)

We have ∫ ∞

0

exp(−zαU(t))du =

(
1

αU(t)

)
(3.9)

Finally, ∫ ∞

0

(1 + z)i−n exp(−zαU(t))dz =

i−n∑
r=0

(
i− n

r

)∫ ∞

0

zi−n−r exp?(−zαU(t))dz

=

i−n∑
r=0

(
i− n

r

){
1

αU(t)

}i−n−r+1

Γ(i− n− r + 1) (3.10)

The theorem now follows on making substitutions from (3.7), (3.8), (3.9) and (3.10) in (3.6) and then using
(3.5).

Theorem 4
The MLE of ρ(t) is given by:

ρ̂(t) = exp

{
−(n+ 1)U(t)

U(Rn)

}
.

Proof
It can be easily seen from (3.1) that the MLE of α is α̂ = (n+1)

U(Rn)
. The theorem now follows from invariance property

of MLE.

In the following corollary, we obtain the MLE of sampled pdf with the help of Theorem 4. This will be used to
obtain MLE of P .

Corollary 2
The MLE of fX(x;λ, α) at a specified point x is

f̂X(x;λ, α) =
(n+ 1)g

(
1
λx

)
λx2U(Rn)G

(
1
λx

) exp{−(n+ 1)U(x)

U(Rn)

}
; x > 0, λ > 0, α > 0

Proof

The result follows from Theorem 4 on using the fact that f̂X(x;λ, α) = − d

dt
ρ̂(t).
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In the following theorem, we obtain the expression for variance of ρ̂(t).

Theorem 5
The variance of ρ̂(t) is given by:

Var{ρ̂(t)} =
2

n!
{2(n+ 1)αU(t)}

n+1
2 Kn+1(2

√
2(n+ 1)αU(t))

−
[
2

n!
{(n+ 1)αU(t)}

n+1
2 Kn+1(2

√
(n+ 1)αU(t))

]2
where Kr(·) is modified Bessel function of second kind of order r.

Proof
Using (3.2) and Theorem 4, we have

E{ρ̂(t)} =
αn+1

Γ(n+ 1)

∫ ∞

0

exp

[
−
{
αU(Rn) +

(n+ 1)U(t)

U(Rn)

}]
{U(Rn)}ndU(Rn)

=
1

Γ(n+ 1)

∫ ∞

0

exp

[
−
{
y +

(n+ 1)αU(t)

y

}]
yndy (3.11)

Applying a result of Watson (1952) that∫ ∞

0

u−m exp

{
−
(
au+

b

u

)}
du = 2

(a
b

)m−1
2

Km−1(2
√
ab)

[it is to be noted that K−m(·) = Km(·) for m = 0, 1, 2, . . .], we obtain from (3.11) that

E{ρ̂(t)} =
2

n!
{(n+ 1)αU(t)}

n+1
2 Kn+1(2

√
(n+ 1)αU(t))

Similarly, we can obtain the expression for E{ρ̂(t)2} and the result follows.

Let X and Y be two independent rvs following the generalized inverted scale families of distributions
fX(x;λ1, α1) and fY (y;λ2, α2) respectively. We consider the case when X and Y belong to different families
of distributions, i.e.

fX(x;λ1, α1) =
α1g

(
1

λ1x

)
λ1x2G

(
1

λ1x

) exp

−α1 log

 1

G
(

1
λ1x

)
 ; x > 0, λ1 > 0, α1 > 0

and

fY (y;λ2, α2) =
α2h

(
1

λ2y

)
λ2y2H

(
1

λ2y

) exp

−α2 log

 1

H
(

1
λ2y

)
 ; y > 0, λ2 > 0, α2 > 0

Let {Rn} and {R∗
m} be the record value sequences for X’s and Y ’s respectively. For simplicity, we define:

U(x) = log

 1

G
(

1
λ1x

)


V (x) = log

 1

H
(

1
λ2y

)
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The following theorem provides the UMVUE of P when X and Y belong to different families of distributions.

Theorem 6
The UMVUE of P is given by

P̃ =



m

∫ ∞

1

V (R∗
m) log

 1

H(λ1
λ2

G−1(e−U(Rn)))


(1− z)m−1

1− U(Rn)
−1 log

 1

G
(

λ2

λ1
H−1(e−zV (R∗

m))
)

n

dz;

λ1G
−1(e−U(Rn)) ≤ λ2H

−1(e−V (R∗
m))

m

∫ ∞

1

(1− z)m−1

1− U(Rn)
−1 log

 1

G
(

λ2

λ1
H−1(e−zV (R∗

m))
)

n

dz;

λ1G
−1(e−U(Rn)) > λ2H

−1(e−V (R∗
m))

Proof
It follows from Corollary 1 that the UMVUES of fX(x;λ1, α1) and fY (y;λ2, α2) at specified points x and y are
respectively:

f̃X(x;λ1, α1) =


ng
(

1
λ1x

)
λ1x2U(Rn)G

(
1

λ1x

) [1− U(x)

U(Rn)

]n−1

; U(x) < U(Rn)

0; otherwise

and

f̃Y (y;λ2, α2) =


mh
(

1
λ2y

)
λ2y2V (R∗

m)H
(

1
λ2y

) [1− V (y)

V (R∗
m)

]n−1

; V (y) < V (R∗
m)

0; otherwise

From the arguments similar to those used in the proof of Corollary 1,

P̃ =

∫ ∞

y=0

∫ ∞

x=y

f̃X(x;λ1, α1)f̃Y (y;λ2, α2)dx dy

=

∫ ∞

y=0

ρ̃X(y)

{
− d

dy
ρ̃Y (y)

}
dy

= m

∫ ∞

max[λ1G−1(e−U(Rn)),λ2H−1(e(−V (R∗
m)))]

[
1− U(y)

U(Rn)

]n h
(

1
λ2y

)
λ2y2V (R∗

m)H
(

1
λ2y

)

[
1− V (y)

V (R∗
m)

]m−1

dy

The theorem now follows on considering the two cases and putting V (y)
V (R∗

m) = z.
In the following theorem, we obtain the UMVUE of P when X and Y belong to same families of distributions.
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Theorem 7
When X and Y belong to same families of distributions and λ1 = λ2

P̃ =


1−m

m−1∑
i=0

(−1)i
(
m− 1

i

){
U(Rn)

U(R∗
m)

}i+1

B(i+ 1, n+ 1); U(Rn) < U(R∗
m)

1−m

n∑
i=0

(−1)i
(
n

i

){
U(R∗

m)

U(Rn)

}i

B(i+ 1,m); U(R∗
m) < U(Rn)

Proof
Taking G(·) = H(·) in Theorem 6, then for U(Rn) < U(R∗

m)

P̃ = m

∫ ∞

U(Rn)
U(R∗

m)

(1− z)m−1

{
1− zU(R∗

m)

U(Rn)

}n

dz

= 1−m

{
U(Rn)

U(R∗
m)

}∫ 1

0

{
1− wU(Rn)

U(R∗
m)

}m−1

(1− w)ndw

= 1−m

m−1∑
i=0

(−1)i
(
m− 1

i

){
U(Rn)

U(R∗
m)

}i+1 ∫ 1

0

wi(1− w)ndw

and the first assertion follows. Similarly, we can prove the second assertion.

The following theorem provides the MLE of P when X and Y belong to different families of distributions.

Theorem 8
The MLE of P when X and Y belong to different families of distributions, is

P̂ =

∫ ∞

0

e−z exp

−(n+ 1)

U(Rn)
log

 1

G
(

λ2

λ1
H−1(e

−zV (R∗
m)

m+1 )
)

 dz

Proof
We have,

P̂ =

∫ ∞

y=0

∫ ∞

x=y

f̂X(x;λ1, α1)f̂Y (y;λ2, α2)dx dy

=

∫ ∞

y=0

ρ̂X(y)f̂Y (y;λ2, α̂2)dy

=

∫ ∞

y=0

exp

{
−(n+ 1)U(y)

U(Rn)

} (m+ 1)h
(

1
λ2y

)
λ2y2V (R∗

m)H
(

1
λ2y

)
 exp

{
−(m+ 1)V (y)

V (R∗
m)

}
dy

The result now follows on putting
{

(m+1)V (y)
V (R∗

m)

}
= z.

The following theorem provides MLE of P when X and Y belong to same families of distributions. The result
follows from Theorem 8.

Theorem 9
When X and Y belong to same families of distributions and λ1 = λ2, the MLE of P is given by

P̂ =
(m+ 1)U(Rn)

(m+ 1)U(Rn) + (n+ 1)U(R∗
m)
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Now we consider the case when both the parameters α and λ are unknown. From (3.1), the log-likelihood
function is given as:

l(α, λ) = L(α, λ|R0, R1, R2, . . . , Rn)

= (n+ 1) log(α)− (n+ 1)log(λ)− αU(Rn) +

n∑
i=0

log

(
g

(
1

λRi

))
− 2 log(Ri)− log

(
G

(
1

(λRi)

))
(3.12)

where

U(x) = log

(
1

G
(

1
λx

))

The MLES of α and λ are the solutions of the two simultaneous equations given below:

n+ 1

α
− U(Rn) = 0 (3.13)

and

−(n+ 1)

λ
− 1

λ2

n∑
i=0

g′
(

1
λRi

)
Rig

(
1

λRi

) +
1

λ2

n∑
i=0

g
(

1
λRi

)
RiG

(
1

λRi

) − α
g
(

1
λRn

)
λ2RnG

(
1

λRn

) = 0 (3.14)

From (3.13), we get

α̂ =
n+ 1

log

(
1

G
(

1

λ̂Rn

)) (3.15)

where α̂ and λ̂ are the MLES of α and λ respectively.
Since these non-linear equation does not have a closed form solution, therefore we apply Newton Raphson

algorithm to compute MLE of λ. Using this values of λ̂, we can compute α̂ from (3.15).
It is to be noted that from Theorem 4, Theorem 8 and invariance property of MLE, the MLE of ρ(t) is given as:

ρ̂(t) = exp

{
−(n+ 1)U(t)

U(Rn)

}

where U(x) = log

(
1

G( 1

λ̂x
)

)
, λ̂ is the MLE of λ. Whereas the MLE of P when X and Y belong to different family

of distribution is given by:

P̂ =

∫ ∞

0

e−z exp

−(n+ 1)

U(Rn)
log

 1

G
(

λ̂2

λ̂1
H−1(e−zV (R∗

m)m+ 1)
)
 dz

where U(x) = log

(
1

G
(

1

λ̂1x

)
)

, V (x) = log

(
1

H
(

1

λ̂2x

)
)

and λ̂1 and λ̂2 are the MLES of λ1 and λ2 respectively.

Similarly, the MLE of P when X and Y belong to same family of distribution and λ1 = λ2 can be derived from
Theorem 9.
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4. Confidence Intervals

Now, Fisher information matrix of θ = (α, λ)T is:

I(θ) = −E


∂2l

∂α2

∂2l

∂α∂λ

∂2l

∂λ∂α

∂2l

∂λ2


where ∂2l

∂α2 = −(n+1)
α2 , ∂2l

∂α∂λ = ∂2l
∂λ∂α =

−g( 1
λRn

)
λ2RnG( 1

λRn
)

∂2l

∂λ2
=

n+ 1

λ2
+

1

λ4

n∑
i=0

{
g
(

1
λRi

)
g′′
(

1
λRi

)
− (g′

(
1

λRi

)
)2 + 2λRig

(
1

λRi

)
g′
(

1
λRi

)}
{
Rig

(
1

λRi

)}2

− 1

λ4

n∑
i=0

{
G
(

1
λRi

)
g′
(

1
λRi

)
− (g

(
1

λRi

)
)2 + 2λRig

(
1

λRi

)
G
(

1
λRi

)}
{
RiG

(
1

λRi

)}2

+
α

λ4

{
G
(

1
λRn

)
g′
(

1
λRn

)
−
(
g
(

1
λRn

))2
+ 2λRng

(
1

λRn

)
G
(

1
λRn

)}
{
RnG

(
1

λRn

)}2

where g′(·) = d
dλg(·) and g′′(·) = d

λg
′(·).

Since it is a complicated task to obtain the expectation of the above expressions, therefore we use observed
Fisher information matrix which is obtained by dropping the expectation sign. The asymptotic variance-covariance
matrix of the MLES is the inverse of I(θ̂). After obtaining the inverse matrix, we get variance of α̂ and λ̂. We use
these values to construct confidence intervals of α and λ respectively.

Assuming asymptotic normality of the MLES, CIs for α and λ are constructed. Let σ̂2(α̂) and σ̂2(λ̂) be the
estimated variances of α̂ and λ̂ respectively. Then 100(1− ε)% asymptotic CIs for α and λ are respectively given
by: (

α̂− Z ε
2
σ̂(α̂), α̂+ Z ε

2
σ̂(α̂)

)
and

(
λ̂− Z ε

2
σ̂(λ̂), λ̂+ Z ε

2
σ̂(λ̂)

)
where Z ε

2
is the upper 100(1− ε) percentile point of standard normal distribution. Using this CI for α and λ, one

can easily obtain the 100(1− ε)% asymptotic CI for ρ(t) as follows:(G( 1

t(λ̂+ Z ε
2
σ̂(λ̂))

))α̂+Z ε
2
σ̂(α̂)

,

(
G

(
1

t(λ̂− Z ε
2
σ̂(λ̂))

))α̂−Z ε
2
σ̂(α̂)


Meeker and Escober (1998) reported that the asymptotic CI based on log(MLE) has better coverage probability.
An approximate 100(1− ε)% CI for log(α) and log(λ) are:

(log(α̂)− Z ε
2
σ̂(log(α̂)), log(α̂) + Z ε

2
σ̂(log(α̂)))

and

(log(λ̂)− Z ε
2
σ̂(log(λ̂)), log(λ̂) + Z ε

2
σ̂(log(λ̂)))

where σ̂2(log(α̂)) is the estimated variance of log(α) and is approximated by σ̂2(log(α̂)) = σ̂2(α̂)
α̂2 . Similarly,

σ̂2(log(λ̂)) is the estimated variance of log(λ) and is approximated by σ̂2(log(λ̂)) = σ̂2(λ̂)

λ̂2
. Hence, approximate
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100(1− ε)% CI for α and λ are:(
α̂e

−Z ε
2

σ̂(α̂)
α̂ , α̂e

Z ε
2

σ̂(α̂)
α̂

)
and

(
λ̂e

−Z ε
2

σ̂(λ̂)

λ̂ , λ̂e
Z ε

2

σ̂(λ̂)

λ̂

)

5. Testing of Hypotheses

Suppose, for known value of λ, we have to test the hypothesis H0 : α = α0 against H1 : α ̸= α0. It follows from
(3.1) that, under H0,

sup
Θ0

?L(α|R0, R1, . . . , Rn) =
(α0

λ

)n+1

exp

(
−α0 log

(
1/G

(
1

λRn

))) n∏
i=0

g
(

1
λRi

)
R2

iG
(

1
λRi

) ; Θ0 = {α : α = α0}

and

sup
Θ

L(α|R0, R1, . . . , Rn) =

 n+ 1

λ log

(
1

G( 1
λRn

)

)


n+1

exp(−(n+ 1))

n∏
i=0

g
(

1
λRi

)
R2

iG
(

1
λRi

) ; Θ = {α : α > 0}

Denoting log

(
1

G( 1
λx )

)
by U(x). The likelihood ratio (LR) is given by:

Φ(R0, R1, . . . , Rn) =
supΘ0

?L(α|R0, R1, . . . , Rn)

supΘ L(α|R0, R1, . . . , Rn)

=

{
α0U(Rn)

(n+ 1)

}n+1

exp{−α0U(Rn) + (n+ 1)} (5.1)

We note that the first term on the right hand side of (5.1) is monotonically increasing and the second term is
monotonically decreasing in U(Rn). It follows from (3.2) that 2α0U(Rn) ∼ χ2

2(n+1). Thus, the critical region is
given by:

{0 < U(Rn) < k0} ∪ {k′0 < U(Rn) < ∞}

where k0 and k′0 are obtained such that k0 =
χ2
2(n+1)( ε

2 )
2α0

and k′0 =
χ2
2(n+1)(1− ε

2 )
2α0

where ε is the level of significance.
An important hypothesis in life-testing experiments is H0 : α ≤ α0 against H1 : α > α0. It follows from (3.1)

that for α1 > α2,

L(α1|R0, R1, . . . , Rn)

L(α2|R0, R1, . . . , Rn)
=

(
α1

α2

)n+1

exp{(α2 − α1)U(Rn)} (5.2)

It follows from (5.2) that the family of distributions fX(x;λ, α) has monotone likelihood ratio in U(Rn). Thus, the
uniformly most powerful critical region for testing H0 against H1 is given by [see Lehmann (1959, p.88)]

Φ(R0, R1, . . . , Rn) =

{
1; U(Rn) ≤ k′′0
0; otherwise

where k′′0 =
χ2
2(n+1)(ε)

2α0
.

It can be seen that when X and Y belong to same families of distributions and λ1 = λ2 = λ, P = α2

α1+α2
.
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Suppose we want to test H0 : P = P0 against H1 : P ̸= P0. It follows that H0 is equivalent to α2 = kα1 where
k = P0

1−P0
. Thus, H0 : α2 = kα1 and H1 : α2 ̸= kα1.

It can be shown that, under H0,

α̂1 =
n+m+ 2

U(Rn) + kU(R∗
m)

and

α̂2 =
k(n+m+ 2)

U(Rn) + kU(R∗
m)

The likelihood for observing α1 and α2 is

L(α1, α2|R0, R1, . . . , Rn, R
∗
0, R

∗
1, . . . , R

∗
m)

=
(α1

λ

)n+1 (α2

λ

)m+1

exp(−{α1U(Rn) + α2U(R∗
m)})

n∏
i=0

g
(

1
λRi

)
R2

iG
(

1
λRi

) m∏
j=0

g
(

1
λR∗

j

)
(R∗

j )
2G
(

1
λR∗

j

)
Thus, for a generic constant C,

sup
Θ0

?L(α1, α2|R0, R1, . . . , Rn, R
∗
0, R

∗
1, . . . , R

∗
m)

=
C

{U(Rn) + kU(R∗
m)}n+m+2

exp{−(n+m+ 2)}; Θ0 = {α1, α2 : α2 = kα1} (5.3)

and

sup
Θ

L(α1, α2|R0, R1, . . . , Rn, R
∗
0, R

∗
1, . . . , R

∗
m)

=
C

{U(Rn)}n+1{U(R∗
m)}m+1

exp{−(n+m+ 2)}; Θ = {α1, α2 : α1 > 0, α2 > 0} (5.4)

From (5.3) and (5.4), the LR is:

Θ(R0, R1, . . . , Rn, R
∗
0, R

∗
1, . . . , R

∗
m) =

C
{

U(Rn)
U(R∗

m)

}m+1

{1 + U(Rn)/kU(R∗
m)}n+m+2

Denoting by Fa,b(·), the F -Statistic with (a, b) degrees of freedom and using the fact that U(Rn)
U(R∗

m) ∼
(n+1)α2

(m+1)α1
F2(n+1),2(m+1), the critical region is given by{

U(Rn)

U(R∗
m)

< k2

}
∪
{

U(Rn)

U(R∗
m)

> k′2

}
where k2 = k(n+1)

(m+1) F2(n+1),2(m+1)

(
ε
2

)
and k′2 = k(n+1)

(m+1) F2(n+1),2(m+1)

(
1− ε

2

)
.

6. Numerical Findings

A simulation study is carried out to study the performance of MLES of α and λ and compare the performance of
UMVUE and MLE of α where we consider Generalized Inverted Exponential distribution (GIED). We compute
bias and mean square errors of the estimators for comparison. Also, the length of asymptotic confidence intervals
based on MLE and log-transformed MLE of α and λ are compared.
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Simulation is carried out for (α, λ) = (0.5, 0.5), (0.5, 1), (1, 0.5) and (1, 2) for n = 5, 8, 10 and 12. For each
n, 1000 observations from gamma(n+ 1, α) were generated. Let us denote these observations by Yi; i =
1, 2, . . . , 1000. Thus the average estimate of complete and sufficient statistic U(Rn) is given by U(Rn) =

1
1000

1000∑
i=1

Yi. Tables 1 to 4 show the bias and mean square errors of the MLES of α and λ and UMVUE of α.

In Tables 5 to 8, the length of asymptotic confidence intervals based on MLE and log-transformed MLE of α and
λ at 95% and 90% level of significance are compared for different sample sizes n.

Table 1. When α = 0.5 and λ = 0.5

α̃ α̂ λ̂

n α̃ MSE(α̃) α̂ Bias(α̂) MSE(α̂) λ̂ Bias(λ̂) MSE(λ̂)

5 0.5642 0.0625 0.6770 0.1000 0.1000 0.4871 -0.0128 0.5291
8 0.6033 0.0357 0.6787 0.0625 0.0491 0.5112 0.0112 0.2185
10 0.5971 0.0277 0.6568 0.0500 0.0361 1.0561 0.5561 0.3361
12 0.6667 0.0227 0.7223 0.0416 0.0284 0.5216 0.0216 0.1232

Table 2. When α = 0.5 and λ = 1

α̃ α̂ λ̂

n α̃ MSE(α̃) α̂ Bias(α̂) MSE(α̂) λ̂ Bias(λ̂) MSE(λ̂)

5 0.4634 0.0625 0.5561 0.1000 0.1000 1.1571 0.1571 0.8439
8 0.6205 0.0357 0.6980 0.0625 0.0491 2.4667 1.4667 2.2360
10 0.7070 0.0277 0.7777 0.0500 0.0361 1.4080 0.4080 0.3954
12 0.7729 0.0208 0.8323 0.0384 0.0256 2.4620 1.4620 2.1895

Table 3. When α = 1 and λ = 0.5

α̃ α̂ λ̂

n α̃ MSE(α̃) α̂ Bias(α̂) MSE(α̂) λ̂ Bias(λ̂) MSE(λ̂)

5 0.9667 0.2000 1.1279 0.1666 0.3000 0.8953 0.3953 0.1707
8 1.2006 0.1428 1.3507 0.1250 0.1964 0.4682 0.0317 0.0586
10 1.6277 0.1111 1.7905 0.1000 0.1444 0.4682 0.0317 0.0520
12 1.5924 0.0909 1.7251 0.0833 0.1136 1.2191 0.7191 0.5211

Table 4. When α = 1 and λ = 2

α̃ α̂ λ̂

n α̃ MSE(α̃) α̂ Bias(α̂) MSE(α̂) λ̂ Bias(λ̂) MSE(λ̂)

5 1.2415 0.2500 1.4898 0.2000 0.4000 2.7793 0.7793 1.2073
8 1.0903 0.1428 1.2266 0.1250 0.1964 3.0306 1.0306 1.3169
10 0.9326 0.1111 1.0259 0.1000 0.1444 2.0310 0.0310 0.4920
12 1.0497 0.0909 1.1372 0.0833 0.1136 1.4164 0.5835 2.0961

From the above tables we observe that for all values of n and α, the mean square error of UMVUE of α is less
than that of MLE of α. Also, as sample size n increases, these mean square errors decrease.
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Table 5. Length of CI of α, log(α), λ and log(λ) when α = 0.5, λ = 0.5 and significance level 95% and 90%

α log(α) λ log(λ)
n 95% 90% 95% 90% 95% 90% 95% 90%
5 1.1759 0.98869 1.3294 1.0766 2.8511 2.3927 9.065 5.6372
8 0.8333 0.6994 0.8867 0.7307 1.8322 1.5376 2.9829 2.1864

10 0.7186 0.6031 0.755 0.6245 0.6431 0.5397 0.653 0.5456
12 0.6401 0.5497 0.6613 0.5497 1.3737 1.1529 1.8065 1.4022

Table 6. Length of CI of α, log(α), λ and log(λ) when α = 0.5, λ = 1 and significance level 95% and 90%

α log(α) λ log(λ)
n 95% 90% 95% 90% 95% 90% 95% 90%
5 1.1759 0.9869 1.4076 1.1215 3.5481 2.9776 5.1109 3.87
8 0.8333 0.6994 0.8837 0.729 1.1413 0.9578 1.1515 0.9639
10 0.7186 0.6031 0.7444 0.6183 1.8756 1.5741 2.0174 1.6573
12 0.6093 0.5113 0.623 0.5194 0.8932 0.7496 0.8981 0.7525

Table 7. Length of CI of α, log(α), λ and log(λ) when α = 1, λ = 2 and significance level 95% and 90%

α log(α) λ log(λ)
n 95% 90% 95% 90% 95% 90% 95% 90%
5 2.3519 1.9738 2.6038 2.1213 3.0361 2.5479 3.1893 2.6381
8 1.6667 1.3988 71.7980 1.4758 1.9783 1.6602 2.0136 1.6810

10 1.4373 1.2062 1.5577 1.2769 2.7470 2.3054 2.9612 2.4311
12 1.2803 1.0745 1.3490 1.1149 5.1938 4.3588 8.6336 6.2941

Table 8. Length of CI of α, log(α), λ and log(λ) when α = 1, λ = 0.5 and significance level 95% and 90%

α log(α) λ log(λ)
n 95% 90% 95% 90% 95% 90% 95% 90%
5 2.0452 1.7164 2.3371 1.8868 0.4719 0.396 0.4774 0.3992
8 1.6667 1.3988 1.7745 1.4621 0.9411 0.7898 1.1077 0.8868
10 1.4373 1.2062 1.4762 1.2291 0.8855 0.7431 1.0235 0.8236
12 1.2803 1.0745 1.3099 1.0919 0.2469 0.2072 0.2473 0.2075

From Tables 4 to 8 we observe that as sample size n increases, the length of CIs based on MLE and log-
transformed MLE decreases. As reported by Meeker and Escober (1998), we too observe that asymptotic CIs
based on log-transformed MLE have better coverage probability.

Table 9. Mean square error of MLE and UMVUE of ρ(t) and length of CI of ρ(t) when α = 2 and λ = 0.5 at significance
level 95% and 90%

t ρ(t) ρ̃(t) ρ̂(t) V ar(ρ̃(t)) MSE(ρ̂(t)) 95% 90%
1 0.7758 0.8062 0.7764 0.0084 0.0105 0.4142 0.3562
2 0.5433 0.5772 0.5355 0.4409 0.0211 0.2079 0.1731
3 0.4365 0.4768 0.4378 0.6729 0.0216 0.0952 0.0794
4 0.3874 0.4244 0.3886 1.6828 0.0209 0.0498 0.0416
5 0.3584 0.3928 0.3596 2.8916 0.0202 0.0289 0.0242
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Figure 2. Mean Square Error of MLE and UMVUE of ρ(t).

From Table 9 we observe that as time t increases, the length of CI of ρ(t) based on MLE of α and λ decreases.
Figure 2 compares the variance of UMVUE of reliability function with the MSE of MLE of reliability function
calculated in Table 9 as time t increases. Since the variance of UMVUE of ρ(t) is always greater than the MSE of
MLE of ρ(t), thus the MLE of ρ(t) is a more efficient estimator of ρ(t).

In the theory developed in Section 5, for testing the hypothesis H0 : α = α0 = 2 against H1 : α ̸= α0 = 2 under
this scheme, we have considered the following sample.

0.1431 0.7565 0.8903 1.5914 1.6962 2.88554.7279 9.6573 14.4171
Now with the help of Chi-Square tables at 5% level of significance, we obtained k0 = 2.0576 and k′0 = 7.8815.

Hence, in this case we may accept H0 at 5% level of significance since U(R8) = 3.7785.
Again, for testing H0 : α ≤ α0 = 2 against H1 : α > α0 = 2, we have considered the above sample. Now at 5%

level of significance we obtained k′′0 = 2.3476 and hence, in this case we may accept H0 at 5% level of significance
since U(R8) = 3.7785.

In order to test H0 : P = P0 = 0.6666 against H1 : P ̸= P0 = 0.6666 under this scheme, we have considered the
following Sample X and Sample Y .

Sample X: 0.1260 0.2755 0.3638 0.5159 0.5316 1.0305 1.9092

Sample Y: 0.1535 0.1653 0.2414 0.2604 0.3426 0.4431 0.5511 0.5709

For these two samples we obtained U(Rn)/U(R∗
m) = 2.2445. Now, with the help of F-tables at 5% level of

significance, we obtained k2 = 0.5986 and k′2 = 4.9297. Hence, in this case we may accept H0 at 5% level of
significance.

An Example on Real Data

Lawless (1982) provided real data which represents the number of million revolutions before failure for each of 23
ball bearings in a life test:

17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.4, 51.84, 51.96, 54.12, 55.56, 67.8, 68.64, 68.64, 68.88, 84.12, 93.12,
98.64, 105.12, 105.84, 127.92, 128.04, 173.4.

Potdar and Shirke (2013) showed that according to Kolmogorov-Smirnov test, this data set best fits generalized
inverted half logistic distribution (GIHD). This is also confirmed in the following Figure 3.
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Figure 3. Empirical and Theoretical cdf of GIHD.

In such a case, since both the parameters α and λ are unknown, thus by applying Newton Raphson algorithm
we obtain the MLES of these parameters. The computed observed Fisher Information matrix is used to obtain
the confidence intervals of the parameters and hence the reliability function ρ(t). Table 10 shows the MLE of the
parameters and length of CIs based on MLE and log-transformed MLE of α and λ. We can see that CIs based
on log transformation of MLE of the parameters α and λ have a higher coverage probability. In Table 11, MLE
and UMVUE of reliability function along with their respective variances and the confidence interval of ρ(t) are
computed. We also see that the variance of UMVUE of ρ(t) is smaller than that of its MLE. Hence UMVUE of
ρ(t) is more efficient estimator of ρ(t).

Table 10. MLE of α and λ and length of CI of α, log(α), λ and log(λ) at significance level 95% and 90%

α log(α) λ log(λ)
n 95% 90% 95% 90% 95% 90% 95% 90%

3.2023 0.0073 4.2370 3.5558 4.5529 3.7413 0.00477 0.00400 0.00485 0.00405

Table 11. MLE and UMVUE of ρ(t) and CI of ρ(t) when t = 20 at significance level 95% and 90%

ρ̃(t) V ar(ρ̂(t)) ρ̂(t) V ar(ρ̂(t)) 95% 90%
0.9384 6.587E-07 0.9357 7.224E-07 [0.9863,0.9984] [0.9874,0.9978]

7. Discussion

This article proposes results on generalized inverted family of distributions having scale and shape parameters.
Point and interval estimation procedures for the parameters and reliability characteristics of the family have been
developed. As a member of this family, generalized inverted exponential distribution is considered and through
simulation techniques, performance of the estimators and confidence intervals are studied. Testing procedures
for various parametric functions have been developed. A real life example on generalized inverted half logistic
distribution has also been analysed.

Tables 1 to 4 show that for all values of n and α, the mean square error of UMVUE of α is less than that of MLE
of α. Also, as sample size n increases, these mean square errors decrease. Tables 5 to 8 show that as sample size n
increases, we obtain better interval estimates of the parameters of the model under study. As reported by Meeker
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and Escober (1998), we too observe that asymptotic CIs based on log-transformed MLE have better coverage
probability. Table 9 shows that as time t increases, we obtain better interval estimates of R(t) based on MLE of α
and λ. Figure 2 compares the mean square error of UMVUE and MLE of reliability function calculated in Table 9
with respect to time t. In all we note that the UMVUE of the shape parameter and the reliability function are better
estimators than their respective MLES. In all we note that the UMVUE of the shape parameter and the MLE of the
reliability function ρ(t) are better estimators than their respective MLE and UMVUE.
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