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1. Introduction

It is known that the logistic equation is one of the most important models in mathematical ecology. The aim of this
paper is to provide some new contributions to stochastic logistic equations of the form

dXt =
(
a(t)Xt − b(t)X2

t

)
dt+ σ(t)XtdBt, t ∈ [0, T ], (1)

with the initial condition X0 = x0 > 0, where a, b, σ are deterministic continuous functions and B is a standard
Brownian motion.

The study of the model (1) has a long history. When a, b, σ are constants, the stability of solutions to (1)
was studied by May in [11], the optimal harvesting plan was discussed by Alvarez and Shepp in [1], etc. In
recent years, various aspects of stochastic logistic models have been continued studying by many authors (see
[2, 3, 4, 5, 9, 10, 13] and references therein).

From ecological point of view, if the intensity of noises is large enough, the population size can be changed even
when the time is small. Motivations of this paper come from the following important and interesting question: If
the number of individuals in the population at the present time (t0 = 0) is x0, what can we say about the number
of individuals at time t ≃ t0? In order to answer this question, one need to investigate the small-time behavior of
solutions to (1). However, in the most of papers related to logistic models, the authors only focus on the long-time
behaviors of solutions.

Since the solution is continuous, we always have Xt → x0 as t → 0. Our purpose in the present paper is to
exactly describe the rate of this convergence and hence, give an answer to the above question. More specifically,
we obtain the following new contributions

(i) E[Xn
t ]−xn

0

t = n[a(0) + 1
2 (n− 1)σ2(0)]xn

0 − b(0)xn+1
0 +O(t),
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(ii) Xn
t −xn

0√
t

converges in distribution to a centered Gaussian random variable, where n is a real number and
n > 1.

In order to prove the property (i), we will use the technique of measure transformations via Girsanov’s theorem.
Meanwhile, to obtain Gaussian convergence (property (ii)) we will introduce an interpolation method which allows
us to estimate the distance between Xn

t −xn
0√

t
and a centered Gaussian random variable. Then, the convergence

follows from the classical results in probability theory.
The rest of this paper is organized as follows. Section 2 contains the main results of this paper and an application

to predator-prey systems. The conclusion and some remarks are given in Section 3.

2. The main results

Throughout this section, we assume that

b(t) ≥ 0 for all t ∈ [0, T ],

which ensures the existence and uniqueness of solutions. In fact, the explicit solution of (1) is given by (see, e.g.
page 125 in [7])

Xt =
e

t∫
0

[a(s)− 1
2σ

2(s)]ds+
t∫
0

σ(s)dBs(
x−1
0 +

t∫
0

b(s)e

s∫
0

[a(u)− 1
2σ

2(u)]du+
s∫
0

σ(u)dBu

ds

) , t ∈ [0, T ]. (2)

We first study the small-time behavior for the moments of the solution.

Theorem 2.1
For any real number n > 1, we have

E[Xn
t ] = xn

0 + c1t+O(t2)

as t → 0, where c1 := n[a(0) + 1
2 (n− 1)σ2(0)]xn

0 − b(0)xn+1
0 . Consequently,

lim
t→0

E[Xn
t ]− xn

0

t
= c1.

Proof
We have

Xn
t =

e

t∫
0

n[a(s)− 1
2σ

2(s)]ds+
t∫
0

nσ(s)dBs(
x−1
0 +

t∫
0

b(s)e

s∫
0

[a(u)− 1
2σ

2(u)]du+
s∫
0

σ(u)dBu

ds

)n
. (3)

By Girsanov’s theorem (see, e.g. [6]), the stochastic process

Wt := Bt −
∫ t

0

nσ(s)ds

is a standard Brownian motion under the probability measure Q, where Q is defined as

dQ

dP
= exp

−1

2

∫ T

0

n2σ2(s)ds+

T∫
0

nσ(s)dBs

 .
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We have

E[Xn
t ] = EQ

 e

t∫
0

n[a(s)+ 1
2 (n−1)σ2(s)]ds(

x−1
0 +

t∫
0

b(s)e

s∫
0

[a(u)+(n− 1
2 )σ

2(u)]du+
s∫
0

σ(u)dWu

ds

)n


= e

t∫
0

n[a(s)+ 1
2 (n−1)σ2(s)]ds

F (n, t), (4)

where the function F defined on (1,∞)× [0,∞) by

F (p, t) = EQ

 1(
x−1
0 +

t∫
0

b(s)e

s∫
0

[a(u)+(p− 1
2 )σ

2(u)]du+
s∫
0

σ(u)dWu

ds

)p

 .

By the straightforward computations we obtain

t∫
0

b(v)e

v∫
0

[a(u)+(p− 1
2 )σ

2(u)]du+
v∫
0

σ(u)dWu(
x−1
0 +

v∫
0

b(s)e

s∫
0

[a(u)+(p− 1
2 )σ

2(u)]du+
s∫
0

σ(u)dWu

ds

)p+1
dv

= xp
0 −

1(
x−1
0 +

t∫
0

b(s)e

s∫
0

[a(u)+(p− 1
2 )σ

2(s)]du+
s∫
0

σ(u)dWu

ds

)p
.

As a consequence,

F (p, t) = xp
0 −

t∫
0

EQ

 b(v)e

v∫
0

[a(u)+(p− 1
2 )σ

2(u)]du+
v∫
0

σ(u)dWu(
x−1
0 +

v∫
0

b(s)e

s∫
0

[a(u)+(p− 1
2 )σ

2(u)]du+
s∫
0

σ(u)dWu

ds

)p+1

 dv. (5)

We now define the probability measure Q̃ by

dQ̃

dQ
= exp

−1

2

∫ T

0

σ2(s)ds+

T∫
0

σ(s)dWs

 .

Under Q̃, the stochastic process

W̃t = Wt −
∫ t

0

σ(s)ds
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is a standard Brownian motion and we have

EQ

 b(v)e

v∫
0

[a(u)+(p− 1
2 )σ

2(u)]du+
v∫
0

σ(u)dWu(
x−1
0 +

v∫
0

b(s)e

s∫
0

[a(u)+(p− 1
2 )σ

2(u)]du+
s∫
0

σ(u)dWu

ds

)n+1



= EQ̃

 b(v)e

v∫
0

[a(u)+pσ2(u)]du(
x−1
0 +

v∫
0

b(s)e

s∫
0

[a(u)+(p+ 1
2 )σ

2(u)]du+
s∫
0

σ(u)dW̃u

ds

)p+1


= b(v)e

v∫
0

[a(u)+pσ2(u)]du

F (p+ 1, v).

Recalling (5), we get the following relation

F (p, t) = xp
0 −

t∫
0

b(v)e

v∫
0

[a(u)+pσ2(u)]du

F (p+ 1, v)dv. (6)

By its definition, the function F is continuous and

F (p, 0) = xp
0 for all p > 1.

Moreover, it follows from (6) that F is differentiable in t. We have

F ′
t (p, t) = −b(t)e

t∫
0

[a(u)+pσ2(u)]du

F (p+ 1, t)

and
F ′
t (p, 0) = −b(0)F (p+ 1, 0) = −b(0)xp+1

0 for all p > 1.

From (4) we deduce

dE[Xn
t ]

dt
= n[a(t) +

1

2
(n− 1)σ2(t)]e

t∫
0

n[a(s)+ 1
2 (n−1)σ2(s)]ds

F (n, t) + e

t∫
0

n[a(s)+ 1
2 (n−1)σ2(s)]ds

F ′
t (n, t),

which gives us
dE[Xn

t ]

dt

∣∣
t=0

= n[a(0) +
1

2
(n− 1)σ2(0)]xn

0 − b(0)xn+1
0 .

By using the Taylor expansion, we can obtain

E[Xn
t ] = xn

0 +
dE[Xn

t ]

dt

∣∣
t=0

t+O(t2)

= xn
0 +

(
n[a(0) +

1

2
(n− 1)σ2(0)]xn

0 − b(0)xn+1
0

)
t+O(t2).

So we can finish the proof.

Remark 2.1. If the coefficients a, b and σ are differentiable functions, then F is a differentiable function of second
order. By simple calculations we have

F ′′
t (p, 0) = −b′(0)xp+1

0 − b(0)[a(0) + pσ2(0)]xp+1
0 + b2(0)xp+2

0 for all p > 1
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and

d2E[Xn
t ]

dt2

∣∣
t=0

= n[a′(0) +
1

2
(n− 1)σ′2(0)]xp

0 + n2[a(0) +
1

2
(n− 1)σ2(0)]2xp

0

− 2n[a(0) +
1

2
(n− 1)σ2(0)]b(0)xp+1

0 − b′(0)xp+1
0 − b(0)[a(0) + pσ2(0)]xp+1

0 + b2(0)xp+2
0

:= c2.

Hence, we can obtain the Taylor expansion of second order as follows

E[Xn
t ] = xn

0 + c1t+ c2t
2 +O(t3).

Denote by C2
b the set of all real-valued bounded functions with bounded derivatives up to second order. We need

the following fundamental result (see, e.g. Remark 2.16 in [12]) to establish the small-time behavior of the solution
in distribution.

Lemma 2.1
If the sequence {Fn}n≥1 is such that |Eh(Fn)− Eh(F )| → 0 as n → ∞ for every h ∈ C2

b , then Fn → F in
distribution.

Theorem 2.2
Let Xt be the solution to the equation (1). It holds that

Xn
t − xn

0√
t

→ N (0, n2σ2(0)x2n
0 ),

in distribution as t → 0, where N (0, n2σ2(0)x2n
0 ) is a normal random variable with mean 0 and variance

n2σ2(0)x2n
0 .

Proof
We set Yt = Xn

t − xn
0 and use Itô’s formula to get

dYt = n

((
a(t) +

1

2
(n− 1)σ2(t)

)
Xn

t − b(t)Xn+1
t

)
dt+ nσ(t)Xn

t dBt, t ∈ [0, T ].

Thanks to Lemma 2.1, we need to show that∣∣Eh

(
Yt√
t

)
− Eh

(
N (0, n2σ2(0)x2n

0 )
) ∣∣→ 0 (7)

as t → 0 for every h ∈ C2
b .

Let φ(z) be the density function of standard normal random variable

φ(z) =
1√
2π

e−
z2

2 .

Given a function h ∈ C2
b , consider the interpolation function H : [0, t]×R −→ R which is defined by

H(s, y) =

∫ ∞

−∞
h

(
y√
t
+ nσ(0)xn

0

√
1− s

t
z

)
φ(z)dz.

Obviously, we have

EH(t, Yt) = Eh

(
Yt√
t

)
and EH(0, Y0) = Eh

(
N (0, n2σ2(0)x2n

0 )
)
. (8)
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By straightforward calculations we obtain

∂

∂y
H(s, y) =

1√
t

∫ ∞

−∞
h′
(

y√
t
+ nσ(0)xn

0

√
1− s

t
z

)
φ(z)dz

and

∂2

∂y2
H(s, y) =

1

t

∫ ∞

−∞
h′′
(

y√
t
+ nσ(0)xn

0

√
1− s

t
z

)
φ(z)dz

As a consequence, we obtain the following estimates

∂

∂y
H(s, y) ≤ ∥h′∥√

t
and

∂2

∂y2
H(s, y) ≤ ∥h′′∥

t
, (9)

where ∥h′∥ = sup
x∈R

|h′(x)| and ∥h′′∥ = sup
x∈R

|h′′(x)|. On the other hand, by the integration by parts formula combined

with the fact φ′(z) = −zφ(z) we get

∂

∂s
H(s, y) = − nσ(0)xn

0

2t
√

1− s
t

∫ ∞

−∞
h′
(

y√
t
+ nσ(0)xn

0

√
1− s

t
z

)
zφ(z)dz

=
nσ(0)xn

0

2t
√

1− s
t

∫ ∞

−∞
h′
(

y√
t
+ nσ(0)xn

0

√
1− s

t
z

)
φ′(z)dz

=
nσ(0)xn

0

2t
√

1− s
t

∫ ∞

−∞
h′
(

y√
t
+ nσ(0)xn

0

√
1− s

t
z

)
dφ(z)

= −n2σ2(0)x2n
0

2t

∫ ∞

−∞
h′′
(

y√
t
+ nσ(0)xn

0

√
1− s

t
z

)
φ(z)dz

= −n2σ2(0)x2n
0

2

∂2

∂y2
H(s, y). (10)

Applying Itô’s formula to H(s, Ys) yields, for all s ∈ [0, t]

H(s, Ys)−H(0, Y0) =

∫ s

0

(
∂

∂u
H(u, Yu) +

∂

∂y
H(u, Yu)f(u,Xu)

)
du

+

∫ s

0

∂

∂y
H(u, Yu)nσ(u)X

n
udBu +

1

2

∫ s

0

∂2

∂y2
H(u, Yu)n

2σ2(u)X2n
u du, (11)

where, for the simplicity, we put

f(u,Xu) := n

((
a(u) +

1

2
(n− 1)σ2(u)

)
Xn

u − b(u)Xn+1
u

)
.

Inserting the relation (10) into (11) we deduce

EH(t, Yt)− EH(0, Y0) = E

∫ t

0

∂

∂y
H(u, Yu)f(u,Xu)du

+
1

2
E

∫ t

0

∂2

∂y2
H(u, Yu)n

2[σ2(u)X2n
u − σ2(0)x2n

0 ]du.
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This, togherther with (8) and the estimates (9), gives us

∣∣Eh

(
Yt√
t

)
− Eh

(
N (0, n2σ2(0)x2n

0 )
) ∣∣ ≤ ∥h′∥√

t

∫ t

0

E|f(u,Xu)|du

+
n2∥h′′∥

2t

∫ t

0

E|σ2(u)X2n
u − σ2(0)x2n

0 |du. (12)

It is easy to see from (2) that, for any p > 0

E|Xt|p ≤ xp
0E

e t∫
0

p[a(s)− 1
2σ

2(s)]ds+
t∫
0

pσ(s)dBs


= xp

0e

t∫
0

p[a(s)− 1
2σ

2(s)]ds+ 1
2

t∫
0

p2σ2(s)ds

≤ xp
0e

T∫
0

p|a(s)− 1
2σ

2(s)|ds+ 1
2

T∫
0

p2σ2(s)ds

, t ∈ [0, T ],

and hence, there exists a positive constant C1
T such that

sup
0≤u≤T

E|f(u,Xu)| ≤ C1
T .

The above estimate points out that

lim
t→0

∥h′∥√
t

∫ t

0

E|f(u,Xu)|du = 0. (13)

Moreover, by the triangle inequality

∥h′∥n2

2t

∫ t

0

E|σ2(u)X2n
u − σ2(0)x2n

0 |du

≤ ∥h′∥n2

2t

∫ t

0

σ2(u)E|X2n
u − x2n

0 |du+
∥h′∥n2

2t

∫ t

0

|σ2(u)− σ2(0)|x2n
0 du. (14)

Since σ is a continuous function, this implies

lim
t→0

∥h′∥n2

t

∫ t

0

|σ2(u)− σ2(0)|x2n
0 du = ∥h′∥n2x2n

0

d
(∫ t

0
|σ2(u)− σ2(0)|du

)
dt

∣∣
t=0

= 0. (15)

Using Itô’s formula and Burkholder-Davis-Gundy inequality we get

X2n
t = x2n

0 +

∫ t

0

2n

((
a(s) +

1

2
(2n− 1)σ2(s)

)
Xn

s − b(s)X2n+1
s

)
ds+

∫ t

0

2nσ(s)X2n
s dBs

and

E|X2n
t − x2n

0 | ≤
∫ t

0

2nE

∣∣∣∣(a(s) + 1

2
(2n− 1)σ2(s)

)
Xn

s − b(s)X2n+1
s

∣∣∣∣ ds
+

(∫ t

0

4n2σ2(s)E|X4n
s |ds

) 1
2

≤ C2
T t+

(
C3

T t
) 1

2 ≤ C4
T

√
t, t ∈ [0, T ],
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where Ci
T , i = 2, 3, 4 are finite positive constants. We therefore obtain

∥h′∥n2

2t

∫ t

0

σ2(u)E|X2n
u − x2n

0 |du ≤ ∥h′∥n2∥σ∥2C4
T

3

√
t,

where ∥σ∥ = sup
t∈[0,T ]

|σ(t)|. So it holds that

lim
t→0

∥h′∥n2

2t

∫ t

0

σ2(u)E|X2n
u − x2n

0 |du = 0. (16)

Combining (12)-(16) yields the claim (7). So we can finish the proof.

Now we are in a position to give an answer to the question mentioned in introduction.

Corollary 2.1
Let Xt be the solution to the equation (1) and α ∈ (0, 1). When t is small, we have

Xt ∈
(
x0 − zα/2σ(0)x0

√
t, x0 + zα/2σ(0)x0

√
t
)
, (17)

with confidence level of approximately 1− α, where zα/2 is defined by

P (N (0, 1) < zα/2) = 1− α/2.

Proof
It follows from Theorem 2.2 with n = 1 that, when t is small, the random variable Xt−x0√

σ2(0)x2
0t

is approximated by

the standard normal random variable N (0, 1). Hence,

P
(
x0 − zα/2σ(0)x0

√
t < Xt < x0 + zα/2σ(0)x0

√
t
)

= P

(
−zα/2 <

Xt − x0√
σ2(0)x2

0t
< zα/2

)
≃ P

(
−zα/2 < N (0, 1) < zα/2

)
= 1− α.

So the proof is complete.

Remark 2.2. If we make an observation about the system at t0 and find out that the number of individuals in the
population is xt0 . Then, by repeating the proof of Theorem 2.2 and Corollary 2.1, we can obtain

Xn
t − xn

t0√
t− t0

→ N (0, n2σ2(0)x2n
t0 ), t → t0

and
Xt ∈

(
xt0 − zα/2σ(t0)xt0

√
t− t0, xt0 + zα/2σ(t0)xt0

√
t− t0

)
, t ≃ t0. (18)

Thus, to estimate the number of individuals in a near future, one only need to know the information about the
number of individuals and intensity of noises at the presence time t0.

We end up this section with an application to predator-prey systems. Let us consider a stochastic non-autonomous
predator-prey system with Beddington-DeAngelis functional response of the form

dx(t) = x(t)
(
a1(t)− b1(t)x(t)− c1(t)y(t)

m1(t)+m2(t)x(t)+m3(t)y(t)

)
dt+ σ1(t)x(t)dB1(t)

dy(t) = y(t)
(
−a2(t)− b2(t)y(t) +

c2(t)x(t)
m1(t)+m2(t)x(t)+m3(t)y(t)

)
dt+ σ2y(t)dB2(t),

(19)
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where the coefficients are continuous bounded nonnegative functions, B1 and B2 are independent Brownian
motions.

The existence of positive solutions to the system (19) and its long-time behaviors have been recently discussed
in [8]. Our aim here is to establish the small-time behavior of the solutions. We have

x(t)

(
a1(t)− b1(t)x(t)−

c1(t)

m3(t)

)
≤ x(t)

(
a1(t)− b1(t)x(t)−

c1(t)y(t)

m1(t) +m2(t)x(t) +m3(t)y(t)

)
≤ x(t) (a1(t)− b1(t)x(t)) a.s.

By the comparison theorem for stochastic differential equations we obtain

X1(t) ≤ x(t) ≤ X2(t) a.s.,

where X1(t), X2(t) are the solutions to the following logistic equations

dX1(t) = X1(t)

(
a1(t)−

c1(t)

m3(t)
− b1(t)X1(t)

)
dt+ σ1(t)X1(t)dB1(t),

dX2(t) = X2(t) (a1(t)− b1(t)X2(t)) dt+ σ1(t)X2(t)dB1(t).

Similarly, we also have
Y1(t) ≤ y(t) ≤ Y2(t) a.s,

where Y1(t), Y2(t) satisfy the following equations

dY1(t) = Y1(t) (−a2(t)− b2(t)Y1(t)) dt+ σ2Y1(t)dB2(t),

dY2(t) = Y2(t)

(
−a2(t) +

c2(t)

m2(t)
− b2(t)Y2(t)

)
dt+ σ2Y2(t)dB2(t).

The following theorem follows directly from Theorem 2.2 and Squeeze principle.

Theorem 2.3
We have the following convergence in distribution as t → 0

xn(t)− xn
0√

t
→ N (0, n2σ2

1(0)x
2n
0 ),

yn(t)− yn0√
t

→ N (0, n2σ2
2(0)y

2n
0 ).

3. Conclusion

The study of the stochastic logistic models has a long history. However, the results related to the small-time
behaviors of the system are scarce. Our obtained result can be considered the first attempt to provide such behaviors.
In this sense, we partly enrich the knowledge of the theory of the stochastic logistic models. In particular, the
estimate formulas (17) and (18) are very useful in the circumstances where we have no any information about the
trend coefficients a(t) and b(t).

We also note the the method used in the proof of Theorem 2.2 can be applied to the other population models.
For example, the following nonlinear version of logistic models has been discussed in [13]

dNt =
(
bNt − aN2

t

)
dt+ σ

(
bNt − aN2

t

)
dBt,
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the initial condition N0 = x ∈ (0, b
a ) and a, b, σ are constants. For this model, one can verify that

Nn
t − xn

√
t

→ N (0, n2σ2(bx− ax2)2), t → 0.

We leave the detailed computations to the reader.
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