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Abstract In this paper, the statistical evidences in lifetimes of dynamic r-out-of-n systems, which are modelled by
sequential order statistics (SOS), are studied. Weak and misleading evidences in SOS for hypotheses concerning the
population parameters are derived in explicit expressions and their behaviours with respect to the model parameters are
investigated in details. Optimal sample sizes are provided while a minimum desired level for the decisive and the correct
probabilities is given. It is shown that the optimal sample size does not depend on some model parameters.
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1. Introduction

Let X1, · · · , Xn be independent and identically distributed (i.i.d.) random variables with a cumulative distribution
function (CDF), say F , and abbreviated by X1, · · · , Xn

i.i.d.∼ F . Denote in magnitude order of X1, · · · , Xn by
X1:n ≤ · · · ≤ Xn:n, which are called order statistics (OSs). Theory of OSs has been used widely in practice; See,
e.g., David and Nagaraja [9] and references therein. In engineering system reliability analyses, lifetimes of r-out-
of-n systems (T ) coincide to Xr:n. Here X1, · · · , Xn stand for component lifetimes. If X1, · · · , Xn

i.i.d.∼ F , the
OSs are used for describing the system lifetime.

Notice that failing a component does not change here the lifetimes of the surviving components. As mentioned
by Cramer and Kamps [7], the failure of a component may result in a higher load on the surviving components
and hence causes the lifetime distributions change. Examples of such phenomena include automobile industries,
gas and oil transmission pipelines, etc. In these cases, the system lifetimes may be adequate to model by
sequential(dynamic) order statistics (SOSs) as an extension of OSs. To see this, suppose that Fj , for j = 1, · · ·n,
denotes the CDF of the component lifetimes when n− j + 1 components are working. The components begin
to work independently at time t = 0 with the CDF F1. When at time x1, the first component failure occurs, the
remaining n− 1 components are working with the CDF F2. This process continues up to n− r + 1 components
with the CDF Fr work until the r-th failure occurs at time xr and hence the whole system fails. The mentioned
system is known as sequential r-out-of-n system and the system lifetime is then r-th component failure time,
denoted by X⋆

(r). In the literature, (X⋆
(1), · · · , X

⋆
(n)) is called SOSs; See, e.g., Cramer and Kamps [7]. Statistical

inferences on the basis of SOSs have been considered in the literature. For example, Bedbur [3] obtained the
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uniformly most powerful unbiased test under a conditional proportional hazard rates (CPHR) model via a decision-
theoretic approach and Cramer and Kamps [8], Statistical inferences on the basis on one and two parameter
exponential distributions. Let F̄j(t) = F̄

αj

0 (t) for j = 1, · · · , r, where the underlying CDF F0(t) is a baseline DF.
In this paper, the Burr XII distribution with DF

F0(x;σ) = 1− (1 + xc)
−θ

, x > 0, θ > 0. (1)

is considered.
The two-parameter Burr type XII distribution was first introduced by Burr (1942), and has gained special

attention in the last two decades due to the importance of using it in practical situations. It has been applied
in various areas of reliability studies and failure time data modelling [20]. The hazard rate function of the Burr
CDF Fj , defined by hj(t) = fj(t)/F̄j(t) for t > 0 and j = 1, · · · , n, is proportional to the hazard rate function
of the baseline CDF F0, i.e. hj(t) = αjh0(t). Statistical inference on the basis of SOS has been considered in
literature; see, e.g, Beutner and Kamps [4], Cramer and Kamps [8], Esmailian and Doostparast [13], Hashempour
and Doostparast [15], Schenk et al. [18], Shafay et al. [19] and references therein. Notice that for the special case
r = n and α1 = · · · = αn, the SOS reduce to ordinary order statistics based on a random sample from the CDF F1.
See also Table 1 of Ceramer and Kamps [8].

In this paper, we consider the problem of hypothesis testing for the Burr XII populations on the basis of multiple
SOS samples under the CPHR model via a Bayesian approach. To do this, denote the available data by

x = [[xij ]]i=1,··· ,s,j=1,··· ,r, (2)

where the i-th row of the matrix x in (2) denotes the SOS sample coming from the i-th population.
Some non-statistical scientists misuse statistical methods which lead to the misinterpretation of observations.

For example, the decision-making paradigms since the work of Neyman and Pearson in the 1930s, have been
formulated not in terms of interpreting data as evidence, but in terms of choosing between alternative course of
actions. This lead to the current situation in which the Neyman-Pearson theory view common statistical procedures
as decision-making tools, while much of statistical practice consists of using the same procedures for a different
purpose, namely, interpreting data as evidence. In the Neyman-Pearson theory, a test of two hypotheses H1 and H2

is represented as a procedure for choosing between two actions. But in applications, when an optimal test chooses
H2, it is often taken to mean that data are evidence favoring H2 over H1. This interpretation can be quite wrong.
For more details, see Blume [5, 6] and Royall [16, 17].

As mentioned above, the errors are usually quantitative, as when statistical evidence is judged to be weaker or
stronger than it really is. So evidence is judged to support one hypothesis over another when the opposite is true.
A key question is “when a certain hypothesis is preferred to others”. In other words, when is it right to say that the
observations are evidence in favour of one hypothesis vis-a-vis another? The answer to this fundamental question
can be answered by Bayesian methods. But, the Bayesian methods need prior knowledge on the hypotheses. To
avoid this problem, one may use non-informative priors or references analysis which are solely based on the
observed data. In other words, one may consider the objective priors and then derive the posterior distributions of
the hypotheses. Then the mentioned question can be answered by the posteriors; see, e.g., Berger [2] and references
therein. This paper considers an alternative approach called evidential statistics which is also solely based on data.
Following Royall [16], let λ(> 0) be a given data-based measure of support of H1 against H2. Large (Small)
values of λ can be interpreted as evidence given by data in favor of H1(H2). The probabilities of observing strong
misleading evidence under H1 and H2 are

M1 = P

(
λ <

1

k

∣∣∣∣H1 is correct
)
, (3)

and

M2 = P

(
λ > k

∣∣∣∣H2 is correct
)
, (4)
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respectively, where “k” is a known constant greater than unity. The probability of weak evidence under Hi (i = 1, 2)
is

Wi = P

(
1

k
≤ λ ≤ k

∣∣∣∣Hi is correct
)
. (5)

This paper considers evidences in independent multiple SOS samples given by (2) coming from homogeneous Burr
populations under the above-mentioned CPHR model. Therefore, the rest of this paper is organized as follows: In
Section 2, statistical evidences in SOS arising from the Burr XII populations are derived in explicit expressions
and their behaviours with respect to the model parameters are studied in details. In Section 3, optimal sample sizes
given a minimum desired level for the decisive and the correct probabilities are provided. Section 4 concludes.

2. SOS-based evidences

Let X⋆
(1), · · · , X

⋆
(r) be the first r SOS. The joint probability density function of (X⋆

(1), · · · , X
⋆
(r)) is (Cramer and

Kamps [8])

f(y1, · · · , yr) = B

r−1∏
j=1

[
fj(yj)

(
F̄j(yj)

F̄j+1(yj)

)n−j
]
fr(yr)F̄r(yr)

n−r, (6)

for y1 < y2 < · · · < yr, r = 1, · · · , n, where B = n!/(n− 1)! and F̄j(.) = 1− Fj(.), j = 1, · · · , n. From (6), the
likelihood function (LF) of the data given by (2) reads

L(F ;x) = Bs
s∏

i=1

r−1∏
j=1

f [i]
j (xij)

(
F̄

[i]
j (xij)

F̄
[i]
j+1(xij)

)n−j
 f [i]

r (xir)F̄
[i]
r (xir)

n−r

 , (7)

Under the CPHR modelling introduced in Section 1 and assuming that the baseline CDF in the i-th parent
population (i = 1, · · · , s) follows the Burr XII distribution with mean θi, the LF of the available data is

L(θ1, · · · , θs,α;x) = Bs

(
r∏

j=1

αj

)s( s∏
i=1

θi

)r( s∏
i=1

r∏
j=1

xc−1
ij

)

×
s∏

i=1

r∏
j=1

(
1 + xc

ij

)−(θimj+1)

= Bs

(
r∏

j=1

αj

)s( s∏
i=1

θi

)r( s∏
i=1

r∏
j=1

xc−1
ij

)

× exp

{
−

s∑
i=1

r∑
j=1

(θimj + 1) ln
(
1 + xc

ij

)}
, (8)

where α= (α1, · · · , αr) and mj = (n− j + 1)αj − (n− j)αj+1, (j = 1, · · · , r), with convention αr+1 ≡ 0.
When the baseline Burr XII populations are homogeneous i.e. θ1 = · · · = θr := θ, the LF (8) simplifies to
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L(θ,α;x) = Bs

(
r∏

j=1

αj

)s

(cθ)
sr

(
s∏

i=1

r∏
j=1

xc−1
ij

)

×
s∏

i=1

r∏
j=1

(
1 + xc

ij

)−(θmj+1)

= Bs

(
r∏

j=1

αj

)s

(cθ)
sr

(
s∏

i=1

r∏
j=1

xc−1
ij

)

× exp

{
−

s∑
i=1

r∑
j=1

(θmj + 1) ln
(
1 + xc

ij

)}
. (9)

Remark 1
One can show that 2θ

∑s
i=1

∑r
j=1 ln

(
1 +Xc

i;j

)
∼ χ2

2rs
, where χν stands for the chi-square distribution with ν

degrees of freedom.

Proof
Let Y = ln(1 +Xc). The Jacobian transformation is

J =
1

c
exp {y} (exp {y} − 1)

− 1
c−1

. (10)

The probability density function of Y is fY (y) = θ exp {θy}.
Then

2θ

s∑
i=1

r∑
j=1

ln
(
1 +Xc

i;j

)
∼ χ2

2rs
. (11)

In the sequel, evidences in the available data (2) are derived for the simple hypotheses

H1 : θ = θ1 v.s H2 : θ = θ2 (12)

where θ1 and θ2 are as known positive constants and 0 < θ1 < θ2. Here, the likelihood ratio (LR) is implemented
as a measure for evidence in data for the simple alternative hypotheses. To do this, Equation (9) gives the LR for
the hypothesis H1 against the alternative H2 in (12) as

λ =

(
θ1
θ2

)sr s∏
i=1

r∏
j=1

(
1 + xc

ij

)(θ2−θ1)mj

=

(
θ1
θ2

)sr

exp

{
(θ2 − θ1)

s∑
i=1

r∑
j=1

mj ln
(
1 + xc

ij

)}
. (13)
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According to Remark 1 and Equations (3) and (13), the misleading probability is then derived as

M1 = P

((
θ1
θ2

)sr s∏
i=1

r∏
j=1

(
1 + xc

ij

)(θ2−θ1)mj
<

1

k

∣∣∣∣∣ θ = θ1

)

= P


s∑

i=1

r∑
j=1

mj ln
(
1 + xc

ij

)
<

ln

((
θ2
θ1

)sr

k

)
(θ2 − θ1)

∣∣∣∣∣∣∣∣∣ θ = θ1


= P

2θ1

s∑
i=1

r∑
j=1

mj ln
(
1 + xc

ij

)
<

2θ1
(θ2 − θ1)

ln


(

θ2
θ1

)sr
k

∣∣∣∣∣∣ θ = θ1


= Fχ2

2rs

 2θ1
(θ2 − θ1)

ln


(

θ2
θ1

)sr
k

 , (14)

where Fχν is the CDF of the χν-distribution and “ln” calls for the natural logarithm. Similar procedures yield the
following proposition. The details are given in the appendix.

Corollary 1
Let τ = θ2/θ1 ≥ 1. The misleading and weak evidences based on independent s SOS samples from homogeneous
Burr XII population under the CPHR model are

M1 = Fχ2
2rs

(
2 ln ( τsr/k)

τ − 1

)
, (15)

M2 = 1− Fχ2
2rs

(
2 ln (kτ sr)

1− τ−1

)
, (16)

W1 = Fχ2
2rs

(
2 ln (kτ sr)

τ − 1

)
− Fχ2

2rs

(
2 ln (τsr/k)

τ − 1

)
, (17)

and

W2 = Fχ2
2rs

(
2 ln (kτ sr)

1− τ−1

)
− Fχ2

2rs

(
2 ln (τsr/k)

1− τ−1

)
. (18)

In particular, the probabilities in Equations (15)-(18) are free of the sample size n and the parameter vector
α= (α1, · · · , αr) of the assumed CPHR model.

An interesting topic in statistical evidence is determination of the global maximum of the misleading evidences.
Here, the maximization M1 in Equation (15) is equivalent to minimization h(τ) = ln (τsr/k)/(1− τ−1) with
respect to τ ≥ 1. After some algebraic manipulations, one can see that the global minimum of h(τ) is derived by
solving the non-linear equation ∂h(τ)/∂τ = 0, or equivalently ln (τ) + 1/τ = 1− ln(k)/sr. Note that the function
h(τ) is convex and therefore the solution of the mentioned equation is unique. Similar arguments for the misleading
M2 in Equation (16) imply the next proposition.

Corollary 2
Let u(t) = 1/t+ ln(t) + ln(k)/(sr)− 1, for t ≥ 1. The points of global maximum of M1 and M2, as a function of
τ , are derived as the unique solutions of the non- linear equations u(τ) = 0 and u(1/τ) = 0, respectively.
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Applying the well-known L’ Hopital rule, one can prove that limτ→+∞ Mi = limτ→+∞ Wi = 0. Notice
that when σ2 tends to infinity, the distance between the means of two populations will increase or will be
increasing as much as possible. Thus, the probabilities of misleading and weak evidences tend to zero. So,
even with inadequate(lack of data) one can make the decision about true hypothesis. Moreover, limτ→1+ Wi =
limτ→1+ (1−Mi) = 0. Thus when σ2 tends to σ1, the distance between the means of two populations will
decreasing as much as possible. So, M1 and M2 vanish and W1 and W2 tend to one. Hence, a decision cannot
be taken based on the available data and one needs more SOS samples.

Consequently , we considered a general family of lifetime distributions. Al-Hussaini [1] proposed a general
family of lifetime distributions of the form

F (t; θ) = 1− exp {−S(t; θ)} , t > 0, (19)

where the function S(t; θ) is an increasing function in t for all θ ∈ Θ and S(0; θ) ≡ 0.
Under the CPHR model and assuming that the baseline CDF of the baseline population belongs to the Al-

Hussaini’s family with the CDF (19), the LF in (7) simplifies to

L(θ,α;x) = As

(
r∏

j=1

αj

)s( s∏
i=1

r∏
j=1

∂S(xij ; θ)

∂xij

)
exp

{
−

s∑
i=1

r∑
j=1

mjS(xij ; θ)
}
, (20)

Now, we restrict ourselves to a subclass of the AL-Hussaini’s family in which one may obtain explicit expressions
for the MLE of the parameter vector θ. More precisely, assume that

F (t; θ) = 1− exp {−w(θ)h(t)} , t > 0, (21)

where w(.) is a non-negative function and h(t) is an increasing function and h(0) = 0 and h(t) → +∞ as t goes to
infinity.

Applying (21), the LF (20) is reduced as

L(θ,α;x) = η(x;α)w(θ)sr exp {−w(θ)ξ(x;α)} , (22)

where ξ(x;α) =
∑s

i=1

∑r
j=1 mjh(xij) and

η(x;α) = Bs

(
r∏

j=1

αj

)s( s∏
i=1

r∏
j=1

∂h(xij)

∂xij

)
.

One can see from (22) that
2w(θ)ξ(x;α) ∼ χ2

2rs
, (23)

where χ2
ν

calls for the chi-square distribution with ν degrees of freedom. Therefore, an equi-tail 100(1− γ)%
confidence interval for w(θ), with known parameter vector α, is α is known, is(

χ2
2rs,γ/2

2ξ(x;α)
,

χ2
2rs,1−γ/2

2ξ(x;α)

)
, (24)

where χ2
ν,γ

stands for the γ-th percentile of the χ2
ν
-distribution.

In the sequel, we consider evidences in the available data (2) for the problem of hypotheses testing

H1 : w(θ) = w(θ1) v.s H2 : w(θ) = w(θ2) (25)

where θ1 and θ2 are known constants and 0 < w(θ1) < w(θ2). To do this, Equations (13) and (22) yield the evidence
for the hypothesis H1 in favor of H2 as

λw =
L(θ1,α;x)

L(θ2,α;x)
=

(
w(θ1)

w(θ2)

)sr

exp

{
(w(θ2)− w(θ1)) ξ(x;α)

}
. (26)
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Corollary 3
The probabilities of misleading and weak evidences on the basis of s independent SOS samples under the CPHR
model with the baseline CDF (21) are

M1,w = Fχ2
2rs

 2w(θ1)

(w(θ2)− w(θ1))
ln


(

w(θ2)
w(θ1)

)sr
k

 , (27)

M2,w = 1− Fχ2
2rs

(
2w(θ2)

(w(θ2)− w(θ1))
ln

(
k

(
w(θ2)

w(θ1)

)sr))
, (28)

W1,w = Fχ2
2rs

(
2w(θ1)

(w(θ2)− w(θ1))
ln

(
k

(
w(θ2)

w(θ1)

)sr))

−Fχ2
2rs

 2w(θ1)

(w(θ2)− w(θ1))
ln


(

w(θ2)
w(θ1)

)sr
k

 , (29)

W2,w = Fχ2
2rs

(
2w(θ2)

(w(θ2)− w(θ1))
ln

(
k

(
w(θ2)

w(θ1)

)sr))

−Fχ2
2rs

 2w(θ2)

(w(θ2)− w(θ1))
ln


(

w(θ2)
w(θ1)

)sr
k

 . (30)

Proof

M1,w = P

((
w(θ1)

w(θ2)

)sr

exp

{
(w(θ2)− w(θ1)) ξ(x;α)

}
<

1

k

∣∣∣∣∣w(θ) = w(θ1)

)

= P

exp

{
(w(θ2)− w(θ1)) ξ(x;α)

}
<

(
w(θ2)
w(θ1)

)sr
k

∣∣∣∣∣∣w(θ) = w(θ1)



= P

ξ(x;α) <

ln

((
w(θ2)

w(θ1)

)sr

k

)
(w(θ2)− w(θ1))

∣∣∣∣∣∣∣∣∣w(θ) = w(θ1)


= P

2w(θ1)ξ(x;α) <
2w(θ1)

(w(θ2)− w(θ1))
ln


(

w(θ2)
w(θ1)

)sr
k

∣∣∣∣∣∣w(θ) = w(θ1)


= P

χ2
2sr

<
2w(θ1)

(w(θ2)− w(θ1))
ln


(

w(θ2)
w(θ1)

)sr
k


= Fχ2

2rs

 2w(θ1)

(w(θ2)− w(θ1))
ln


(

w(θ2)
w(θ1)

)sr
k

 .

The decisive and correct evidences are, respectively, given by

D1,w = 1− Fχ2
2rs

(
2w(θ1)

(w(θ2)− w(θ1))
ln

(
k

(
w(θ2)

w(θ1)

)sr))
, (31)
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and

D2,w = Fχ2
2rs

 2w(θ2)

(w(θ2)− w(θ1))
ln


(

w(θ2)
w(θ1)

)sr
k

 . (32)

3. The optimal sample size

Here, an optimal value for s is obtained by minimizing P ⋆ = max{M1,M2} with a constraint on the PD =
min{D1, D2}, where D1 and D2 are called decisive and correct evidences, and are defined by D1 = P (λ >
k|H1 is correct) and D2 = P (λ < 1/k|H2 is correct), respectively.
Notice that Di +Mi +Wi = 1, for i = 1, 2. Based on the available data in (2) and under the CPHR model, the
decisive and correct evidences are given by

D1 = 1− Fχ2
2rs

(
2 ln (kτ sr)

τ − 1

)
= 1− Fχ2

2rs

(
2θ1

(θ2 − θ1)
ln

(
k

(
θ2
θ1

)sr))
, (33)

and

D2 = Fχ2
2rs

(
2 ln (τ sr/k)

1− τ−1

)
= Fχ2

2rs

 2θ2
(θ2 − θ1)

ln


(

θ2
θ1

)sr
k

 , (34)

respectively.

Proof

D1 = P

((
θ1
θ2

)sr s∏
i=1

r∏
j=1

(
1 + xc

ij

)(θ2−θ1)mj
> k

∣∣∣∣∣ θ = θ1

)

= P

 s∑
i=1

r∑
j=1

mj ln
(
1 + xc

ij

)
>

ln
(
k
(

θ2
θ1

)sr)
(θ2 − θ1)

∣∣∣∣∣∣ θ = θ1


= P

(
2θ1

s∑
i=1

r∑
j=1

mj ln
(
1 + xc

ij

)
>

2θ1
(θ2 − θ1)

ln

(
k

(
θ2
θ1

)sr)∣∣∣∣∣ θ = θ1

)

= 1− Fχ2
2rs

(
2θ1

(θ2 − θ1)
ln

(
k

(
θ2
θ1

)sr))
= 1− Fχ2

2rs

(
2 ln (kτ sr)

τ − 1

)
,
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and

D2 = P

((
θ1
θ2

)sr s∏
i=1

r∏
j=1

(
1 + xc

ij

)(θ2−θ1)mj
<

1

k

∣∣∣∣∣ θ = θ2

)

= P


s∑

i=1

r∑
j=1

mj ln
(
1 + xc

ij

)
<

ln

((
θ2
θ1

)sr

k

)
(θ2 − θ1)

∣∣∣∣∣∣∣∣∣ θ = θ2


= P

2θ2

s∑
i=1

r∑
j=1

mj ln
(
1 + xc

ij

)
<

2θ2
(θ2 − θ1)

ln


(

θ2
θ1

)sr
k

∣∣∣∣∣∣ θ = θ2


= Fχ2

2rs

 2θ2
(θ2 − θ1)

ln


(

θ2
θ1

)sr
k

 = Fχ2
2rs

(
2 ln

(
τsr

k

)
1− 1

τ

)
. (35)

Then the proof is complete.

Table 1. Optimal sample sizes for some selected values of r, k, τ and ξ.

ξ
r k τ 0.7 0.8 0.9 0.95 0.99
3 3 2 4 5 8 11 19

5 1 1 2 3 4
8 1 1 1 2 3

8 2 6 7 10 13 21
5 2 2 2 3 4
8 1 1 2 2 3

5 3 2 2 3 5 7 11
5 1 1 1 2 3
8 1 1 1 1 2

8 2 4 5 6 8 13
5 1 1 2 2 3
8 1 1 1 1 2

15 3 2 1 1 2 3 4
5 1 1 1 1 1
8 1 1 1 1 1

8 2 2 2 2 3 5
5 1 1 1 1 1
8 1 1 1 1 1

One can see that

• PD is increasing in s;
• PD is decreasing in r;
• PD is free of the sample size (n).

As mentioned by De Santis [10], a sample size that guarantees PD reaches a desired level ξ, is often enough to
bound the probabilities of weak and misleading evidences. Also, for chosen ξ ∈ (0, 1) and k, one then needs to
derive

s⋆ = min{s ≥ 1 : PD ≥ ξ}. (36)
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Table 1 presents the values of the optimal sample size s⋆ given by (36) for some selected values of n, r, k, τ and
ξ. According to Table 1, one can empirically see that the optimal value s⋆ is non-decreasing (non-increasing) in ξ
and k (in τ and r), as we expected.

4. Conclusions

This paper considered statistical evidences in independent SOS arising from Burr XII populations. Weak and
misleading evidences for simple hypotheses about the population parameter were derived in explicit expressions
under the CPHR model. It was noticed that when σ2 tends to infinity, the distance between the means of two
populations would be increasing as much as possible. Thus, the probabilities of misleading and weak evidences
tended to zero. So, even with restricted number of data we could make decision about true hypothesis. Also, when
σ2 was tending to σ1, the distance between the means of two populations would be decreasing as much as possible.
So, M1 and M2 would vanish and W1 and W2 would be tending one. Hence, one could not make decision based
on the available data and needed more SOS samples. The probabilities in Equations (27)-(30) were free of the size
n of the system.

One can see that the optimal value s⋆ is non-decreasing in ξ and k, and non-increasing in τ and r. The findings
in the preceding sections hold for the cases when the vector α in the CPHR model is unknown. Also, one can show
that the optimal sample size s⋆ given by (36) is free of the vector α and the sample size n. The results of this paper
may be extended in some directions. For example, one may study statistical evidences for composite hypotheses.
To do this, new measures of supports needs to be developed. Also, one may consider other lifetime distributions
such as Pareto and log-normal distributions.
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A. Appendix

Proof of Proposition 1: By Remark 1 and Equations (4), (5) and (13), we have

M2 = P
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)sr s∏
i=1
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ij

)(θ2−θ1)mj
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Similarly
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and
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.

Then the proof is completed.
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