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Abstract In this paper we study properties of stationary proper complex random process with stable correlation functions.
Estimates are obtained for distribution of supremum of modulus of these processes and normes in spaces Lp on finite and
infinite intervals.
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1. Introduction

This article deals with complex random processes which are one of the most important generalizations of the
concept of random process (see [2, 12]). The complex random processes are especially relevant when the narrow-
banded processes are investigated. These processes are exploited as models of complex amplitudes of quasi-
harmonic oscillations or waves in radiophysics and optics [1]. In this article we presented results of investigation
of properties of complex random processes which are useful when solving problems in the listed above areas.
Conditions for existence of proper complex random processes are described in [12, 2]. In this article we investigate
stationary proper complex random processes, stationary proper complex random processes with stable correlation
function. Some results for properties of stable correlation function are presented in paper[11]. In this article some
properties of square Gaussian random variables and process are presented (for more results see, for example,
[3, 7, 8]). Also, in this paper estimates of distributions of functionals from the module of stationary Gaussian
proper complex random processes are obtained (for more results see, for example, [13, 6, 10]). Theorems, which
describe behavior of the module of stationary proper complex random process at infinity are developed.

The content of the article is as follows. In Section 2 we introduce the basic definitions related to the complex
random processes. Stationary proper complex random processes are introduced and discussed in Section 3. In the
next Section 4, we deal with properties of square Gaussian random variables and processes. Section 5 is related
to estimates of distributions of some functions from the module of stationary Gaussian proper complex random
process. And in the last Section 6 behavior of the module of stationary proper complex random process at infinity
is studied.
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138 PROPER COMPLEX RANDOM PROCESSES

2. Proper Complex Random Process

Definition 2.1. A random process of the form X(t) = Xc(t) + iXs(t), t ∈ R, where Xc(t) and Xs(t) are real-
valued random processes (c – cosine, s – sine), is called complex random process (see book [2] and paper [12]).

Remark 2.1. In this paper we will consider centered random processes, that is

EX(t) = EXc(t) = EXs(t) = 0.

Definition 2.2. The function

r(τ, t) = EX(t+ τ)X(t) = EXc(t+ τ)Xc(t) + EXs(t+ τ)Xs(t)+
+i (EXs(t+ τ)Xc(t)− EXc(t+ τ)Xs(t))

is called correlation function of the process X(t).
The function

r̂(τ, t) = EX(t+ τ)X(t) =
= EXc(t+ τ)Xc(t)− EXs(t+ τ)Xs(t) + i (EXc(t+ τ)Xs(t) + EXs(t+ τ)Xc(t))

is called pseudo correlation function of the process X(t).

Definition 2.3. A complex random process X(t) is called proper complex random process (PCR process), if the
pseudo correlation function of this process is equal to zero, EX(t+ τ)X(t) = 0, that is when conditions

EXc(t+ τ)Xc(t) = EXs(t+ τ)Xs(t), (1)

EXc(t+ τ)Xs(t) = −EXs(t+ τ)Xc(t). (2)

hold true.

Remark 2.2. Conditions under which PCR processes exist are described in book [2] and paper [12].

Definition 2.4. [12] A proper complex random process is called (wide sense) stationary if for all τ, t ∈ R the
following relation holds true

r(τ, t) = EX(t+ τ)X(t) = r(τ).

Remark 2.3. In the case where PCR-process X(t) is stationary we can write the following relations

EXc(t+ τ)Xc(t) = EXs(t+ τ)Xs(t) =
1

2
Re r(τ), (3)

EXc(t+ τ)Xs(t) =
1

2
Im r(τ). (4)

Definition 2.5. A complex random process X(t) = Xc(t) + iXs(t) is called Gaussian if the real-valued random
processes Xc(t) and Xs(t) are jointly Gaussian processes.

3. Stationary PCR-processes with stable correlation functions

Definition 3.1. The correlation function r(τ), τ ∈ R of stationary proper complex random process is called stable
correlation function if it can be represented in the form

r(τ) = σ2 exp

{
−c|τ |α

(
1 + iβ

τ

|τ |
ω (τ, α)

)}
(5)

where σ2, c, β, α are real-valued constants, such that σ2 > 0, c > 0, |β| ≤ 1, 0 ≤ α ≤ 2,

ω (τ, α) =

{
tg πα

2 , 0 ≤ α ≤ 2, α ̸= 1,
2
π log |τ | , α = 1.
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Remark 3.1. The function r(τ) is non-negative definite, since r(τ) is the characteristic function of a stable random
variable ξ, Eξ = 0, in the case where σ2 = 1 (see [11, p.169]).

Definition 3.2. A stationary PCR process is called proper stationary random complex process with stable
covariance function (stationary SPCR process) if

EX(t+ τ)X(t) = r(τ)

where the function r(τ) is given by formula (5).

Remark 3.2. For the proper stationary random complex process X(t) = Xc(t) + iXs(t), EX(t) = 0, with stable
covariance functions the following relations hold true

EXc(t+ τ)Xc(t) =
1
2 Re r(τ) =

= σ2

2 exp {−c|τ |α} cos
(
c|τ |αβ τ

|τ |ω (τ, α)
)
=

= EXs(t+ τ)Xs(t),

(6)

EXc(t+ τ)Xs(t) =
1
2 Im r(τ) =

= −σ2

2 exp {−c|τ |α} sin
(
c|τ |αβ τ

|τ |ω (τ, α)
)
,

(7)

Re r(−τ) = Re r(τ). (8)

4. Square Gaussian random variables and processes

In this section we propose definitions and some properties of square Gaussian random variables and processes.

Definition 4.1. [3, 7] Let (T, ρ) be a metric space and let Θ = {ξ(t), t ∈ T}, Eξ(t) = 0, be a family of jointly
Gaussian random variables (e.g. ξ = {ξ(t), t ∈ T} is a Gaussian random process). The space of square Gaussian
random variable (SGΘ(Ω)) is such a space that any element η ∈ SGΘ(Ω) can be presented in the form

η = ξ⃗⊤A ξ⃗ − E(ξ⃗⊤A ξ⃗), (9)

where ξ⃗⊤ = (ξ1, ξ2, ..., ξn) , ξk ∈ Θ, k = 1, 2, ..., n and A is a real-valued matrix, or the element η ∈ SGΘ(Ω) is the
mean square limit of a sequence of random variables of the form (9):

η = l.i.m.
(
ξ⃗⊤n An ξ⃗n − E(ξ⃗⊤n A ξ⃗n)

)
.

Definition 4.2. A random process η = {η(t), t ∈ T} is called square Gaussian process if the family of random
variables η = {η(t), t ∈ T} forms the space of square Gaussian random variables.

The next theorem is a modification of Theorem 3.2 from the book [7].

Theorem 4.1
Let X = {X(t), t ∈ [a, b]} be a separable square Gaussian random process and let the condition

sup
|t−s|≤h

(V ar (X(t)−X(s)))
1/2 ≤ Chβ (10)

holds true for β ∈ (0, 1], C > 0. Then for all integer M > 1 and all

x >

√
2γ0M

β
max

(
1,

(
b− a

2

)β
C

γ0

) 1
M−1

,
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140 PROPER COMPLEX RANDOM PROCESSES

where γ0 = sup
a≤t≤b

(V arX(t))
1/2, the tail of distribution of the process |X(t)| can be estimated in the following

way

P

{
sup

t∈[a,b]

|X(t)| > x

}
≤ 4e

M+1
β · exp

{
− x√

2γ0

}(
β · x√
2γ0M

)M
β
(
1 +

√
2x

γ0

)1/2

. (11)

Theorem 4.2
[9] Let X = {X(t), t ∈ [a, b]}, where −∞ ≤ a < b ≤ ∞, be a measurable square-Gaussian random process. Let
the Lebesgue integral

b∫
a

(
E(X(t))

2
)p/2

dt

be well defined for p ≥ 1. Then the integral
b∫

a

|X(t)|pdt

exists with probability 1 and for all

ε ≥
(

p√
2
+

√(p
2
+ 1
)
p

)p

Cp,

where

Cp =

b∫
a

(
E(X(t))

2
)p/2

dt,

the following inequality holds true

P


b∫

a

|X(t)|pdt > ε

 ≤ 2

√
1 +

ε1/p
√
2

Cp
1/p

exp

{
− ε1/p
√
2Cp

1/p

}
. (12)

Corollary 4.1
Let assumptions of Theorem 4.2 be satisfied. Then for

u ≥
(

p√
2
+

√(p
2
+ 1
)
p

)
Cp

1/p

the following inequality holds true

P
{
∥X(t)∥Lp(a,b)

> u
}
≤ 2

√
1 +

u
√
2

Cp
1/p

· exp

{
− u
√
2Cp

1/p

}
. (13)

5. Estimation of distribution of some functionals from module of stationary Gaussian PCR-processes

Theorem 5.1
Let X = {X(t), t ∈ [a, b]} be a Gaussian SPCR process and let |X(t)| =

(
X2

c (t) +X2
s (t)

)1/2
. Then for

u ≥
(

p√
2
+

√(p
2
+ 1
)
p

)
σ2(b− a)

1/p
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the following inequality holds

P

{∥∥∥X(t)
2 − σ2

∥∥∥
Lp([a,b])

> u

}
≤ 2

√
1 +

u
√
2

(b− a)
1/p

σ2
· exp

{
− u
√
2(b− a)

1/p
σ2

}
. (14)

Proof
The proof of this theorem follows from inequality (13). Indeed it follows from (6), that

EX2
c (t) = E(Xs(t))

2
=

1

2
R(r(0)) =

σ2

2
.

Therefore E|X(t)|2 = σ2 and

E
(
|X(t)|2 − σ2

)2
= E

(
|X(t)|2 − E|X(t)|2

)2
= E|X(t)|4 −

(
E|X(t)|2

)2
= E|X(t)|4 − σ4. (15)

Suppose that (X1, X2, X3, X4) is a zero-mean Gaussian vector. Then we have:

E(X1X2X3X4) = E(X1X2)E(X3X4) + E(X1X3)E(X2X4) + E(X1X4)E(X2X3).

This equality is called Isserlis formula (see, for example [3, p.228]. Making use of this formula and relations (3),
(4) we can write

E|X(t)|4 = E
(
|Xc(t)|2 + |Xs(t)|2

)2
= E|Xc(t)|4 + E|Xs(t)|4 + 2E|Xc(t)|2|Xs(t)|2,

E|Xc(t)|4 = 3
(
E|Xc(t)|2

)2
= 3

σ4

4
= E|Xs(t)|4,

E(|Xc(t)|2|Xs(t)|2) = E|Xc(t)|2E|Xs(t)|2 + 2(EXc(t)Xs(t))
2
.

Since
E(Xc(t)Xs(t)) =

1

2
Im(r(0)) = 0

we have
E|X(t)|4 = 2σ4.

It follows from (15) that

E
(
(X(t))

2 − σ2
)2

= σ4

and
b∫

a

E
(
|X(t)|2 − σ2

) p
2

dt = σ2p(b− a).

Now (14) follows from (13).

Theorem 5.2
Let X = {X(t), t ∈ [a, b]} be a Gaussian SPCR process and let

|X(t)| =
(
X2

c (t) +X2
s (t)

)1/2
.

If X(t) is a separable process, then for all integer M > 1 and all

u >
2
√
2σ2M

α

max

(
1,

(
b− a

2

)α/2

2
√
c

) 1
M−1
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we have

P

{
sup

a≤t≤b

∣∣∣(X(t))
2 − σ2

∣∣∣ > x

}
≤ 4e

2(M+1)
α exp

{
− x√

2σ2

}(
αx

2
√
2σ2M

) 2M
α
(
1 +

√
2x

σ2

)1/2

(16)

Proof
The statement of this Theorem follows from Theorem 4.1. In our case γ0 = σ2.

In order to to apply Theorem 4.1 to the process |X(t)|2 =
(
X2

c (t) +X2
s (t)

)2
we have to astimate

E(Y (t)− Y (s))
2, where Y (t) = |X(t)|2 − σ2.

It is easy to see that

E(Y (t)− Y (s))
2
= E

(
X2

c (t) +X2
s (t)−X2

c (s)−X2
s (s)

)2
=

= E
(
X2

c (t)−X2
c (s) +X2

s (t)−X2
s (s)

)2
=

= E
(
X2

c (t)−X2
c (s)

)2
+ E

(
X2

s (t)−X2
s (s)

)2
+ 2E

(
X2

c (t)−X2
c (s)

)
E
(
X2

s (t)−X2
s (s)

)
=

w1 + w2 + w3,

w1 = E(Xc(t))
4
+ E(Xc(s))

4 − 2E(X2
c (t)X

2
c (s)),

E(Xc(t))
4
= E(Xc(s))

4
=

3

4
σ4,

E(X2
c (t)X

2
c (s)) = E(Xc(t))

2
E(Xc(s))

2
+ 2(EXc(t)Xc(s))

2
=

= σ4

4 + 2
(
1
2 Re (r(t− s)

)2 .

Therefore
w1 = σ4 − (Re (r(t− s)))

2
.

Next¡ we have
w1 = w2

w1 + w2 = 2
(
σ4 − (Re (r(t− s)))

2
)
,

w3

2
= E(X2

c (t)X
2
s (t)) + E(X2

c (s)X
2
s (s))− E(X2

c (s)X
2
s (t))− E(X2

c (t)X
2
s (s)).

Since Im (r(0)) = 0, then

E(X2
c (t)X

2
s (t)) = EX2

c (t)EX2
s (t) + 2(EXc(t)Xs(t))

2
=

σ4

4
+ 2

(
1

2
Im (r(0))

)2

=
σ4

4
.

In the same way we can obtaine that

E(X2
c (s)X

2
s (s)) =

σ4

4
,

E(X2
c (t)X

2
s (s)) =

σ4

4
+

1

2
(Im (r(t− s)))

2
.

Consequently
w3 = −

(
(Im (r(s− t)))

2
+ (Im (r(t− s)))

2
)
.

Since
(Im (r(s− t)))

2
= (Im (r(t− s)))

2
,

we have
w3 = −2(Im (r(t− s)))

2
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and
E(Y (t)− Y (s))

2
= 2

(
σ4 −

(
(Re (r(t− s)))

2
+ (Im (r(t− s)))

2
))

.

Since
(Re (r(t− s)))

2
+ (Im (r(t− s)))

2
= |r(t− s)|2 = σ4 exp {−2c(t− s)} ·

=
∣∣∣cos(−c |τα| iβ (t−s)

|t−s|w (t, α)
)
+ i sin

(
−c |τα| iβ (t−s)

|t−s|w (t, α)
)∣∣∣2 =

= σ2 exp {−|t− s|αc}
we get the following estimate

E(Y (t)− Y (s))
2
= 2σ4 (1− exp {−2c|t|α}) ≤ 4σ4c|t|α.

Consequently β = α
2 and C = 2σ2

√
c. Therefore (16) follows from (11).

6. Behavior of the module of stationary PCR-process at infinity

Theorem 6.1
Let X = {X(t), t ∈ (−∞,∞)} be a measurable Gaussian SPCR process, let |X(t)| =

(
X2

c (t) +X2
s (t)

)1/2 and let
Y (t) = |X(t)|2 − E(X(t))

2
= |X(t)|2 − σ2. Let c(t), t ∈ R be a function such that

∞∫
−∞

|c(t)|−p
dt < ∞, p ≥ 1.

Then for

u ≥
(

p√
2
+

√(p
2
+ 1
)
p

)
· σ2

 ∞∫
−∞

|c(t)|−p
dt

1/p

the following inequality holds true

P


∥∥∥∥∥ (X(t))

2 − σ2

c(t)

∥∥∥∥∥
Lp(−∞,∞)

> u

 ≤ 2

√√√√√√√1 +

√
2u(

∞∫
−∞

|c(t)|−p
dt

)1/p

σ2

· exp


− u

√
2

(
∞∫

−∞
|c(t)|−p

dt

)1/p

σ2


.

Proof
The statement of this Theorem follows from Theorem 4.2 (see Corollary 4.1) if we take

Cp = 2−
p
2 σ2p ·

∞∫
−∞

|c(t)|−p
dt.

Corollary 6.1
Let c(t) > 0 be an even monotone increasing function for which conditions of Theorem 6.1 are satisfied. Then for
all t ≥ 0 the following inequality holds true with probability one: t∫

−t

∣∣∣(X(u))
2 − σ2

∣∣∣p du
1/p

≤ c(t) · ξ
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where ξ > 0 is a random variable such that

P {ξ > u} ≤ 2

√√√√√√√1 +

√
2u(

∞∫
−∞

|c(t)|−p
dt

)1/p

· σ2

· exp


− u(

√
2

∞∫
−∞

|c(t)|−p
dt

)1/p

· σ2


,

for

u ≥
(

p√
2
+

√(p
2
+ 1
)
p

)
· σ2

 ∞∫
−∞

|c(t)|−p
dt

1/p

Proof
The statement of Corollary 6.1 follows from inequalities: t ≥ 0,(

t∫
−t

∣∣∣(X(u))
2 − σ2

∣∣∣pdu)1/p

≤ c(t) ·

(
t∫

−t

|(X(u))2−σ2|
c(u)p

p

du

)1/p

≤

≤ c(t) ·
∥∥∥∥ |(X(t))2−σ2|

c(t)

∥∥∥∥
Lp(−∞,∞)

.

Remark 6.1. The statement of Corollary 6.1 holds true, for example, for function c (t) = (1 + |t|γ) , γ > p.

Theorem 6.2
Let X = {X(t), t ∈ [a, b]} be a separable Gaussian stationary PCR process. Let there exist a sequence ak, k =
0, 1, 2, ... such that ak < ak+1, ak → ∞, as k → ∞, a0 = 0 and a function c(t), t ∈ [0,∞) such that c(t) ≥ 1, c(t)
be an even monotone increasing continuous and c(t) → ∞ if t → ∞, Y (t) = |X(t)|2 − E(X(t))

2
= |X(t)|2 − σ2.

Let the condition

ε∗ =
2
√
2σ2M

α
sup

0≤k≤∞

1

c(ak)
max

(
1,

((ak+1 − ak
2

)α/2
2
√
c

)1/M−1
)

≤ ∞

be satisfied. If for some ε̂, ε̂ ≥ ε∗, the following series

∞∑
k=0

exp

{
− (c (ak)− c (a0)) ε̂√

2σ2

}(
1 +

√
2c (ak) ε̂

σ2

)1/2

< ∞, (17)

then for all ε > ε̂

P

 sup
0≤t≤∞

∣∣∣|X(t)|2 − σ2
∣∣∣

c(t)
> ε

 ≤ exp

{
−
√
2c (a0) ε

σ2

}
· ẑ = Z(ε), (18)

where

ẑ = 4e
M+1

α ·
(

2

M

) 2M
α

∞∑
k=0

exp

{
− (c (ak)− c (a0)) ε̂√

2σ2

}(
1 +

√
2c (ak) ε̂

σ2

)1/2

.

Proof
For Y (t) = |X(t)|2 − σ2 we have that V ar (Y (t)− Y (s)) ≤ 2σ2|t− s|

α
2 (see proof of Theorem 5.2). It follows
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from Theorem 5.2 that for M > 1 and

u >
2
√
2σ2M

α

(
max

(
1,

((ak+1 − ak
2

)α
2

2
√
c

) 1
M−1

))
(19)

we have

P

{
sup

ak≤t≤ak+1

|Y (t)| > u

}
≤ 4e

M+1
α exp

{
− u√

2σ2

}(
αu

2
√
2σ2M

) 2M
α
(
1 +

√
2u

σ2

)1/2

(20)

The following inequality is obvious.

P

{
sup

t∈[0,∞)

|Y (t)|
c(t)

> ε

}
≤

∞∑
k=0

P

{
sup

ak≤t≤ak+1

|Y (t)| > c(ak) · ε

}
. (21)

It follows from (19) and (20) that for

ε >
2σM

αc(ak)
·

(
max

(
1,

((ak+1 − ak
2

)α
2

2
√
c

) 1
M−1

))
, (22)

we have the following estimate

P

{
sup

ak≤t≤ak+1

|Y (t)| > c (ak) ε

}
≤ 4e

M+1
α exp

{
−c (ak) ε√

2σ2

}(
αc (ak) ε

2
√
2σ2M

) 2M
α
(
1 +

√
2c (ak) ε

σ2

)1/2

. (23)

From this inequality (23) and inequality (21) it follows that under condition (22) we have the following estimate

P

{
sup

ak≤t≤ak+1

|Y (t)|
c(t)

> ε

}
≤ 4e

M+1
α

∞∑
k=0

exp

{
−c (ak) ε√

2σ2

}(
αc (ak) ε

2
√
2σ2M

) 2M
α
(
1 +

√
2c (ak) ε

σ2

)1/2

=

= 4e
M+1

α exp

{
−c (a0) ε√

2σ2

} ∞∑
k=0

exp

{
− (c (ak)− c (a0)) ε√

2σ2

}(
αc (ak) ε

2
√
2σ2M

) 2M
α
(
1 +

√
2c (ak) ε

σ2

)1/2

(24)

It follows from (22) that ε > 2σM
αc(ak)

and αc(ak)
2σ ε > M ≥ 2.

From inequality (24) under condition (22) we have the following estimate

P

{
sup

t∈[0,∞)

|Y (t)|
c(t)

> ε

}
≤ 4e

M+1
α

(
2

M

) 2M
α

exp

{
−c (a0) ε

√
2σ

2

}
×

×
∞∑
k=0

exp

{
− (c (ak)− c (a0)) ε√

2σ2

}(
1 +

√
2c (ak) ε

σ2

)1/2

. (25)

The function f(ε) = exp
{
− (c(ak)−c(a0))ε

σ

}(
1 + c(ak)ε

σ

)1/2
monotonically decreases for ε > 0. For this reason

under the condition
ε̂ ≥ ε∗ (26)

we have that ∀ε > ε̂

P

{
sup

t∈[0,∞)

|Y (t)|
c(t)

> ε

}
≤ 4e

M+1
α

(
2

M

) 2M
α

×

× exp

{
−c (a0) ε√

2σ2

} ∞∑
k=0

exp

{
− (c (ak)− c (a0)) ε̂√

2σ2

}(
1 +

√
2c (ak) ε̂

σ2

)1/2

. (27)
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Corollary 6.2
Let a function c(t) satisfies conditions of Theorem 6.2. Then with probability one for all t ∈ R the following
inequality is satisfied

|Y (t)| ≤ η · c(t),
where η > 0 is a random variable such that for ε > ε̂ the inequality

P {η > ε} ≤ Z (ε)

holds true. For definition of the function Z (ε) see (18).

Remark 6.2. Condition (17) is satisfied if the series
∞∑
k=0

exp

{
−c (ak) ε̂√

2σ2

}
(c (ak))

2M
α + 1

2

converges. This series converges, for example, in the case where c (ak) = ln
(
kd
)
, k > 1, where dε̂√

2σ2
> 1. A

special case is ak = k, that is c(t) = d ln (t) , d >
√
2σ2

ε̂ and t > e.

7. Conclusions

In the article analysis of properties of proper complex random process is presented. Definitions and some properties
of proper stationary random complex process with stable covariance function are given. Estimates of distribution of
some functionals from module of stationary Gaussian proper complex random processes are obtained. Behaviour
of the module of stationary proper complex random processes at infinity is analysed.
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