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Abstract We consider a special Nonlinear Programming problem depending on integer parameters. For some values
of these parameters (the “right” ones), this problem satisfies certain properties used in study of differential properties of
optimal solutions in parametric Semi-Infinite Programming. We deduce the conditions guaranteing the existence of the
“right” parameters values, and propose an algorithm for their determination. The conditions and the algorithm are essentially
based on properties of a related linear-quadratic semi-infinite problem.
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1. Parametric NLP problem: statement and motivation

Suppose that the index sets
I = I1 ∪ I2, I1 ∩ I2 = ∅, |I1| ≤ n, J, |J | ≤ n, (1)

matrices, vectors, and numbers

Dj ∈ Rp×p, Aj ∈ Rn×p, Bj ∈ Rsj×p, cj ∈ Rp,mj ∈ R,mj > 0, j ∈ J, (2)
D ∈ Rn×n, c ∈ Rn, qi ∈ Rn, ωi ∈ R, i ∈ I,

are given and fixed.
Suppose also that

K(j) = {l ∈ Rp : Bj l ≤ 0}, j ∈ J, (3)

D = DT , xTDx ≥ 0 ∀x ∈ Rn, Dj = DT
j , t

TDjt ≥ 0 for all t ∈ K(j), j ∈ J, (4)

and

relations
∑
i∈I

qiηi = 0, ηi ≥ 0, i ∈ I2, imply the inequality −
∑
i∈I

ωiηi ≥ 0. (5)
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For a given set of integers pj ≥ 1, j ∈ J, consider the following problem:

min F (ξ) :=
1

2
xTDx+

∑
j∈J

pj∑
k=1

ykj

(1
2
tTkjDjtkj + cTj tkj

)
−
∑
i∈I

ωiyi,

s.t. F(ξ) := Dx+
∑
j∈J

Aj

pj∑
k=1

ykjtkj +
∑
i∈I

qiyi + c = 0, (6)

yi ≥ 0, i ∈ I2;

pj∑
k=1

ykj = mj , ykj ≥ 0, tkj ∈ K(j), k = 1, ..., pj ; j ∈ J,

where
ξ = ξ(pj , j ∈ J) = (x, tkj , ykj , k = 1, ..., pj , j ∈ J ; yi, i ∈ I) (7)

is a vector of decision variables. In what follows, we will denote problem (6) by P (pj , j ∈ J).
The origin of problem (6) and the importance of investigation of its properties are discussed in [8].
Notice that fulfillment of the implication (5) is a necessary condition for boundedness from below of the cost

function of the problem P (pj , j ∈ J). Moreover, due to this implication (see [8]), in problem (6), without loss of
generality we may consider that

rank(qi, i ∈ I1) = |I1|. (8)

The problem P (pj , j ∈ J) is a Nonlinear Programming problem (NLP) in a special form. With fixed values
ykj , k = 1, ..., pj , j ∈ J (in particular, when pj = 1, j ∈ J), the problem P (pj , j ∈ J) becomes a nonconvex
Quadratic Programming (QP) problem ([4]), hence it can be considered as a weighted QP problem that incorporates
additional nonlinearities.

It is well known that the majority of NLP problems arising in applications have special forms (see, for example
[1, 7]). A detailed study of such problems, taking into consideration their specific structures, permits one to
get more strong theoretical results and build efficient numerical methods ([5, 6]). Auxiliary problems in the
form P (pj , j ∈ J) with data as in (1), (2) arise, for example, in study of parametric SIP problems with finitely
representable index sets ([8]). In our subsequent paper dedicated to the parametric SIP, we will show that the
differential properties of solutions of the parametric SIP problems can be formulated in terms of solutions of the
problem P (pj , j ∈ J). Therefore it is important to provide a deep study of this problem and its properties w.r.t. the
values of the parameters pj , j ∈ J .

In [8], it is shown that we are interested in the values of parameters pj ≥ 1, j ∈ J , for which the corresponding
problem P (pj , j ∈ J) admits an optimal solution

ξ0 = ξ0(pj , j ∈ J) = (x0, t0kj , y
0
kj , k = 1, ..., pj , j ∈ J ; y0i , i ∈ I) (9)

possessing the following properties.

Property 1: The components y0kj , k = 1, ..., pj , j ∈ J, of the optimal solution are strictly positive:

y0kj > 0, k = 1, ..., pj , j ∈ J. (10)

Property 2:

rank
(
Aj(t

0
kj − t01j), k = 2, ..., pj , j ∈ J∗, qi, i ∈ I1 ∪ Ia2

)
= |Ia2 |+

∑
j∈J

pj + γ∗, (11)

where J∗ = {j ∈ J : pj ≥ 2}, Ia2 = {i ∈ I2 : y0i > 0}, γ∗ := |I1| − |J |. Note that |Ia2 |+
∑
j∈J

pj + γ∗ = |Ia2 |+

|I1|+
∑
j∈J

(pj − 1), and it follows from (11) that

|Ia2 |+ |I1|+
∑
j∈J

(pj − 1) ≤ n.
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Property 3: For any j ∈ J, vectors

t0kj , k ∈ {s ∈ {1, ..., pj} : y0sj > 0} (12)

are global optimal solutions in the problem

min Ψj(t) :=
(1
2
tTDjt+ (cj −AT

j x
0)T t

)
, s.t. t ∈ K(j). (13)

Note that problem (13) is quadratic but not convex.

The aims of this paper are the following:

• to find new conditions that guarantee the existence of the values of the parameters pj ≥ 1, j ∈ J , such that
the corresponding problem P (pj , j ∈ J) possesses the Properties 1) - 3). We will call these values the right
ones;

• to formulate an associated SIP problem that is closely connected with the NLP problem P (pj , j ∈ J) with
the right values of the parameters pj ≥ 1, j ∈ J ;

• to develop an algorithm for finding such right values of the parameters.

2. Some additional properties of optimal solutions of the problem P (pj, j ∈ J)

In the previous sections, we have formulated the Properties 1) - 3) that are satisfied by the optimal solutions
of problem (6) when choosing the right values of parameters pj , j ∈ J . In this section, we present some results
connected with the optimality properties of this problem. These results were proved in [8] and will be used in the
next sections.

Theorem 1 (Sufficient optimality conditions)
Let vector ξ0 in the form (9) be a feasible solution of problem (6) and let the following conditions be fulfilled:

1. ξ0 satisfies the relations

qTi x
0 + ωi = 0, i ∈ I1; qTi x

0 + ωi ≤ 0, y0i (q
T
i x

0 + ωi) = 0, i ∈ I2; (14)

2. for j ∈ J, vectors (12) are global optimal solutions of problem (13).

Then the vector ξ0 is a global optimal solution of problem (6).

Lemma 1
Suppose that problem (6) has an optimal solution ξ0 in the form (9) such that y0k0j0

= 0 for some 1 ≤ k0 ≤ pj0 ,
j0 ∈ J. Then

val(P (p̄j , j ∈ J)) = val(P (pj , j ∈ J)),

where p̄j = pj , j ∈ J \ {j0}, p̄j0 = pj0 − 1.

Here and in what follows, val(P ) denotes the optimal value of the cost function in an optimization problem P .

Lemma 2
Let integers p̄j , pj , j ∈ J, satisfy the inequalities p̄j ≥ pj , j ∈ J. Then

val(P (p̄j , j ∈ J)) ≤ val(P (pj , j ∈ J)).

Lemma 3
Let a feasible solution (9) of problem P (pj , j ∈ J) satisfy conditions (14) and Property 3). Then for all integers
p̄j ≥ pj , j ∈ J, the equality

val(P (p̄j , j ∈ J)) = val(P (pj , j ∈ J))

takes the place.
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The following lemma was proved in our previous paper (see Lemma 4.6 in [8]). Since some steps of the proof of
this lemma will be used in a new algorithm for finding the “right” parameters’ values, we present here the proof.

Lemma 4
Suppose that the problem P (pj , j ∈ J) has an optimal solution satisfying Property 3). Then there exist integers
1 ≤ p̄j ≤ pj , j ∈ J, such that problem P (p̄j , j ∈ J) has an optimal solution satisfying Properties 1)- 3).

Proof. Suppose that the problem P (pj , j ∈ J) has an optimal solution satisfying Property 3). If this solution does
not satisfy Property 1), then applying Lemma 1, one can easily find numbers p̃j ≤ pj , j ∈ J, such that the problem
P (p̃j , j ∈ J) has an optimal solution

ξ0(p̃j , j ∈ J) = (x0, t0kj , y
0
kj , k = 1, ..., p̃j , j ∈ J ; y0i , i ∈ I) (15)

satisfying Property 1):
y0kj > 0, k = 1, ..., p̃j , j ∈ J. (16)

Evidently, Property 3) is also satisfied by ξ0(p̃j , j ∈ J).

Denote J∗ := {j ∈ J : p̃j ≥ 2}. Suppose that Property 2) is not satisfied for ξ0(p̃j , j ∈ J), i.e.

m(ξ0(p̃j , j ∈ J)) < |Ia2 |+
∑
j∈J

p̃j + γ∗, (17)

where m(ξ0(p̃j , j ∈ J)) := rank
(
Aj(t

0
kj − t01j), k = 2, ..., p̃j , j ∈ J∗, qi, i ∈ I1 ∪ Ia2

)
. Hence vectors(

Ajt
0
kj

ej

)
, k = 1, ..., p̃j , j ∈ J∗, and

(
qi
0

)
, i ∈ I1 ∪ Ia2 ,

where
ej = (eij , i ∈ J)T , eij = 0 if i ̸= j, eij = 1 if i = j, i ∈ J, j ∈ J, 0 = (0, 0, ..., 0)T ∈ R|J|,

are linearly dependent. Consequently, there exists a vector

(ηkj , k = 1, ..., p̃j , j ∈ J∗, ηi, i ∈ I1 ∪ Ia2 ) ̸= 0

such that ∑
j∈J∗

p̃j∑
k=1

ηkjAjt
0
kj +

∑
i∈I1∪Ia

2

qiηi = 0,

p̃j∑
k=1

ηkj = 0, j ∈ J∗. (18)

Set η1j := 0, j ∈ J \ J∗, and

λkj = ∞ if ηkj ≥ 0, λkj = −y0kj/ηkj if ηkj < 0, k = 1, ..., p̃j , j ∈ J ;

λi = ∞ if ηi ≥ 0, λi = −y0i /ηi if ηi < 0, i ∈ Ia2 .
(19)

Then, evidently,
λ := min{λkj , k = 1, ..., p̃j , j ∈ J ;λi, i ∈ Ia2 } > 0. (20)

Consider the numbers

ȳ0kj := y0kj + ληkj , k = 1, ..., p̃j , j ∈ J ; ȳ0i := y0i + ληi, i ∈ I1 ∪ Ia2 , ȳ
0
i := y0i , i ∈ I \ (I1 ∪ Ia2 ).

By construction, we have

p̃j∑
k=1

ȳ0kj = mj , ȳ
0
kj ≥ 0, k = 1, ..., p̃j , j ∈ J ; ȳ0i ≥ 0, i ∈ I2.
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Due to Property 3) and taking into account inequalities (16), it is easy to show that for all j ∈ J, the following
relations take place:

−
p̃j∑
k=1

y0kj(
1

2
t0Tkj Djt

0
kj + cTj t

0
kj) =

p̃j∑
k=1

y0kj(x
0TAjt

0
kj − λ(j)) =

p̃j∑
k=1

y0kjx
0TAjt

0
kj − λ(j)mj .

Hence

−
p̃j∑
k=1

y0kj(
1

2
t0Tkj Djt

0
kj + cTj t

0
kj) =

p̃j∑
k=1

y0kjx
0TAjt

0
kj − λ(j)mj ,

−
p̃j∑
k=1

ȳ0kj(
1

2
t0Tkj Djt

0
kj + cTj t

0
kj) =

p̃j∑
k=1

ȳ0kjx
0TAjt

0
kj − λ(j)mj

= −
p̃j∑
k=1

y0kj(
1

2
t0Tkj Djt

0
kj + cTj t

0
kj) +

p̃j∑
k=1

ηkjx
0TAjt

0
kj .

Taking into account the last relations and (18), it is easy to show one can conclude that

F (ξ0(p̃j , j ∈ J)) = F (ξ̄0(p̃j , j ∈ J)),

where ξ0(p̃j , j ∈ J) is defined in (15) and

ξ̄0(p̃j , j ∈ J) := (x0, t0kj , ȳ
0
kj , k = 1, ..., p̃j , j ∈ J ; ȳ0i , i ∈ I).

From the considerations above, it follows that ξ̄0(p̃j , j ∈ J) is an optimal solution of the problem P (p̃j , j ∈ J).
Notice that, by construction,

min{ȳ0kj , k = 1, ..., p̃j , j ∈ J ; ȳ0i , i ∈ Ia2 } = 0.

Following Lemma 1, let us find numbers ¯̃pj ≤ p̃j , j ∈ J, such that the vector

ξ̄0(¯̃pj , j ∈ J) := (x0, t0kj , ȳ
0
kj , k = 1, ..., ¯̃pj , j ∈ J ; ȳ0i , i ∈ I)

is optimal for the problem P (¯̃pj , j ∈ J) and ȳ0kj > 0, k = 1, ..., ¯̃pj , j ∈ J.
It is easy to check that

m(ξ̄0(¯̃pj , j ∈ J)) = m(ξ0(p̃j , j ∈ J)), |Ia2 |+
∑
j∈J

p̃j > |Īa2 |+
∑
j∈J

¯̃pj , (21)

where
m(ξ̄0(¯̃pj , j ∈ J)) := rank

(
Aj(t

0
kj − t01j), k = 2, ..., ¯̃pj , j ∈ J̄∗, qi, i ∈ I1 ∪ Īa2

)
,

Īa2 := {i ∈ I2 : ȳ0i > 0}, J̄∗ := {j ∈ J : ¯̃pj ≥ 2}.

It follows from (17) and (21) that in a finite number of iterations, we will find numbers p̄j ≤ pj , j ∈ J, and an
optimal solution of the problem P (p̄j , j ∈ J) such that Properties 1)-3) are satisfied for this solution. The lemma
is proved.
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3. A related SIP problem

In this section, we consider a SIP problem of a special form possessing some special properties. We will show
how an optimal solution of this problem permits to find parameters pj , j ∈ J, such that the optimal solution of
the corresponding NLP problem P (pj , j ∈ J) satisfies Properties 1)-3). The results of this section are useful for
different applications and will be used in the future work dedicated to parametric SIP.

Using the source data (1)-(4), let us formulate the following SIP problem:

min
x∈Rn, ρj∈R,j∈J

1

2
xTDx+ cTx−

∑
j∈J

mjρj

s.t. qTi x+ ωi = 0, i ∈ I1; q
T
i x+ ωi ≤ 0, i ∈ I2; (22)

−1

2
tTj Djtj − (cj −AT

j x)
T tj + ρj ≤ 0, ∀ tj ∈ K(j), j ∈ J.

Let us make some observations concerning this problem.

• Problem (22) is not parametric.
• In problem (22), the constraints are linear and the cost function is linear-quadratic w.r.t. decision variables
x ∈ Rn, ρj ∈ R, j ∈ J. Hence it is evident that this problem is convex, and any of its local optimal solution
is a global one.

• If problem (22) is consistent, then the (infinite) constraints −1
2 t

T
j Djtj − (cj −AT

j x)
T tj + ρj ≤ 0, ∀ tj ∈

K(j), j ∈ J, satisfy the Slater condition.
• Since tj = 0 ∈ K(j) then it is evident that ρj ≤ 0, j ∈ J.
• For any feasible solution (x, ρj , j ∈ J) of problem (22) the following inequalities are fulfilled:

(cTj − xTAj)τj ≥ 0 ∀ τj ∈ ∆K(j) := {τ ∈ K(j) : τTDjτ = 0}, j ∈ J. (23)

Theorem 2
Suppose that the convex SIP problem (22) has an optimal solution (x0 ∈ Rn, ρ0j ∈ R, j ∈ J) such that inequalities
(23) are fulfilled in the strong form:

(cTj − x0TAj)τj > 0 ∀ τj ∈ ∆K(j), j ∈ J. (24)

Then there exist numbers pj ≥ 1, j ∈ J,
∑
j∈J

pj ≤ n, such that the NLP problem P (pj , j ∈ J) has an optimal

solution satisfying Properties 1)-3).

Proof. It follows from optimality of (x0 ∈ Rn, ρ0j ∈ R, j ∈ J) in the SIP problem (22) that

ρ0j = ρj(x
0), ρj(x) := min

tj∈K(j)

(
1

2
tTj Djtj + (cj −AT

j x)
T tj

)
, j ∈ J.

Hence all the active index sets

Ka(j) := {tj ∈ K(j) :
1

2
tTj Djtj + (cj −AT

j x
0)T tj = ρ0j}, j ∈ J,

are nonempty. Taking into account the Slater condition, relations (24), and Theorem 1 from [9], it is easy to show
that there exist vectors

t0kj ∈ Ka(j), k = 1, ..., p̄j , j ∈ J ; where 1 ≤ p̄j , j ∈ J,
∑
j∈J

p̄j ≤ n, (25)

and numbers y0kj , k = 1, ..., p̄j , j ∈ J ; y0i , i ∈ I, such that the following conditions take place:

Dx0 +
∑
j∈J

Aj

p̄j∑
k=1

y0kjt
0
kj +

∑
i∈I

qiy
0
i + c = 0,

y0i ≥ 0, y0i (q
T
i x

0 + ωi) = 0, i ∈ I2;
p̄j∑
k=1

y0kj = mj , y
0
kj ≥ 0, k = 1, ..., p̄j ; j ∈ J.

(26)
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It follows from (22), (25) and (26) that the vector ξ∗ = (x0, t0kj , y
0
kj , k = 1, ..., p̄j , j ∈ J ; y0i , i ∈ I) is a feasible

solution of the problem P (p̄j , j ∈ J) and satisfies Property 3). Moreover for ξ∗, the sufficient optimality conditions
formulated in Theorem 1 are satisfied.

Therefore we have shown that the problem P (p̄j , j ∈ J) has an optimal solution satisfying Property 3). Applying
Lemma 4, we complete the proof of the theorem.

The following theorem states sufficient optimality conditions for a given feasible solution of problem (22).

Theorem 3
Let (x0, ρ0j , j ∈ J) be a feasible solution in the convex SIP problem (22). Suppose that there exist vectors (25), and
numbers y0kj , k = 1, ..., p̄j , j ∈ J ; y0i , i ∈ I, such that the conditions (26) take place. Then the vector (x0, ρ0j , j ∈ J)
is an optimal solution of problem (22).

Proof. From the statement of the theorem, it follows that the vector (x0, ρ0j , j ∈ J) is an optimal solution of the
following convex QP problem:

min
x∈Rn, ρj∈R,j∈J

1

2
xTDx+ cTx−

∑
j∈J

mjρj

s.t. qTi x+ ωi = 0, i ∈ I1; q
T
i x+ ωi ≤ 0, i ∈ I2; (27)

−1

2
t0Tkj Djt

0
kj − (cj −AT

j x)
T t0kj + ρj ≤ 0, k = 1, ..., p̄j ; j ∈ J.

Evidently, the feasible set of problem (22) is contained in the feasible set of problem (27). Hence, if a feasible
solution (x0, ρ0j , j ∈ J) of problem (22) is optimal in problem (27), then it will be optimal in problem (22). The
theorem is proved.

Finally, we will show that the existence of an optimal solution in the convex SIP problem (22) is necessary for
the existence of an optimal solution of problem P (pj , j ∈ J) possessing Properties 1)-3).

Theorem 4
Let problem P (pj , j ∈ J) has an optimal solution satisfying Properties 1)-3). Then problem (22) has an optimal
solution.

Proof. Let problem P (pj , j ∈ J) has an optimal solution satisfying Properties 1)-3). Then one can show that
problem P (pj , j ∈ J) has a solution

ξ0 = (x0, t0kj , y
0
kj , k = 1, ..., pj , j ∈ J ; y0i , i ∈ I)

satisfying conditions 1. and 2. of Theorem 1. Hence, the vector (x0, ρ0j = ρj(x
0), j ∈ J) is a feasible solution

of problem (22) and satisfies conditions (26) with p̄j = pj , j ∈ J. According to Theorem 3, vector (x0, ρ0j =

ρj(x
0), j ∈ J) is an optimal solution of problem (22) that proves the theorem.

It is evident that the implication
∆x ∈ ∆X ⇒ cT∆x ≥ 0, (28)

with

∆X = {∆x ∈ Rn : qTi ∆x = 0, i ∈ I1; qTi ∆x ≤ 0, i ∈ I2; D∆x = 0;

∃µ∗(j) = µ∗(∆x, j) ≥ 0 such that ∆xTAj = µ∗T (j)Bj , j ∈ J}, (29)

is a necessary condition for boundedness from below of the cost function in problem (22).
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106 SPECIAL NLP AND SIP PROBLEMS

Moreover, let us show (see Lemma 5) that the implication (28) is a necessary condition for feasibility of problem
P (pj , j ∈ J).

Lemma 5
Suppose that the set of feasible solutions in problem P (pj , j ∈ J) is nonempty, then implication (28) takes place.

Proof.
It is evident that for all values of integers pj ≥ 1, j ∈ J, the set of feasible solutions in problem P (pj , j ∈ J) is

nonempty if and only if the set of feasible solutions in problem P (pj = 1, j ∈ J) is nonempty.
Suppose that the set of feasible solutions in problem P (pj = 1, j ∈ J) is nonempty, i. e. there exists a vector

(x∗, t∗j , j ∈ J ; y∗i , i ∈ I)

such that
Dx∗ + c+

∑
j∈J

mjAjt
∗
j +

∑
i∈I

qiy
∗
i = 0, (30)

y∗i ≥ 0, i ∈ I2; t∗j ∈ K(j), j ∈ J,

but implication (28) does not take place, i.e. ∃ ∆x∗ ∈ ∆X such that cT∆x∗ < 0. Let us multiply (30) by ∆x∗T

taking into account the last relations. As a result we obtain

0 = ∆x∗T c+
∑
j∈J

mj∆x∗TAjt
∗
j +

∑
i∈I2

∆x∗T qiy
∗
i ≤ ∆x∗T c < 0.

The obtained contradiction proves that implication (28) takes place. The lemma is proved.
One can prove the following theorem that gives sufficient optimality conditions for the existence of an optimal

solution in problem (22).

Theorem 5
Suppose that the following conditions are satisfied:

A) the implication (5) is true and there exists

x̄ ∈ {x ∈ Rn : qTi x+ ωi = 0, i ∈ I1; qTi x+ ωi ≤ 0, i ∈ I2}

such that
(cTj − x̄TAj)τj ≥ 0 ∀ τj ∈ ∆K(j) := {τ ∈ K(j) : τTDjτ = 0}, j ∈ J ; (31)

B) given the set ∆X defined in (29), either ∆X \ {0} is empty or the following implication takes place:

∆x ∈ ∆X \ {0} ⇒ cT∆x > 0. (32)

Then SIP problem (22) has an optimal solution.

4. Determination of the “right” values of the parameters pj, j ∈ J, in the problem P (pj, j ∈ J)

In this section we use the results of the section 3 to develop an algorithm that finds the values of parameters
pj , j ∈ J, for which problem P (pj , j ∈ J) satisfies Properties 1) – 3). Notice that this algorithm differs from the
one presented in [8] and works under less strict assumptions.

Algorithm 1
Step 1. Using the data given in (1)-(4), construct a SIP problem in the form (22) and solve it. If problem (22) has
no optimal solutions, STOP: according to Theorem 4 there do not exist parameters pj , j ∈ J, such that problem
P (pj , j ∈ J) has an optimal solution satisfying Properties 1)-3). Otherwise go to Step 2.
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Step 2. Let (x0, ρ0j , j ∈ J) be an optimal solution of the SIP problem (22).
Suppose that relations (24) take place.
Find vectors t0kj ∈ Ka(j), k = 1, ..., p̄j , j ∈ J, (see (25)) and numbers y0kj , k = 1, ..., p̄j , j ∈ J ; y0i , i ∈ I, such

that conditions (26) take place. (According to Theorem 2, such vectors and numbers exist and the vector
ξ∗ = (x0, t0kj , y

0
kj , k = 1, ..., p̄j , j ∈ J ; y0i , i ∈ I) is a feasible solution of the problem P (p̄j , j ∈ J) satisfying

Property 3).)
Set s := 1, t0kj(s) := t0kj , y

0
kj(s) := y0kj , k = 1, ..., p̄j , pj(s) := p̄j , j ∈ J ; y0i (s) := y0i , i ∈ I. Go to Step 3.

Step 3. Let
ξ(s) := (x0; t0kj(s), y

0
kj(s), k = 1, . . . , pj(s), j ∈ J ; y0i (s), i ∈ I) (33)

be an optimal solution of problem P (pj(s), j ∈ J) satisfying Property 3).
If, additionally, ξ(s) satisfies Property 1: y0kj(s) > 0 for all k = 1, . . . , pj(s), j ∈ J , then go to Step 4.
Suppose that for some j∗ ∈ J there exists k∗ := k(j∗) such that y0k∗j∗(s) = 0.
Then set:

pj(s+ 1) := pj(s) for all j ∈ J \ {j∗} and pj∗(s+ 1) := pj∗(s)− 1;

t0kj(s+ 1) := t0kj(s), y
0
kj(s+ 1) := y0kj(s), k = 1, ..., pj(s+ 1), j ∈ J \ {j∗};

t0kj∗(s+ 1) := t0kj∗(s), y
0
kj∗(s+ 1) := y0kj(s), k = 1, ..., k∗ − 1,

t0kj∗(s+ 1) := t0k+1 j∗(s), y
0
kj∗(s+ 1) := y0k+1 j∗(s), k = k∗, ..., pj∗(s+ 1),

y0i (s+ 1) := y0i (s), i ∈ I.

Set s := s+ 1 and repeat Step 3.

Step 4. At this step we have a set of parameters pj(s), j ∈ J , for which the optimal solution ξ(s) of the problem
P (pj(s), j ∈ J) in the form (33) satisfies Properties 1) and 3).

If ξ(s) satisfies Property 2), then STOP; the set of parameters pj := pj(s), j ∈ J , is the desired one.
Otherwise, following the algorithmic proof of Lemma 4, set

J∗ := {j ∈ J : pj(s) ≥ 2}, Ia2 := {i ∈ I2 : y0i (s) > 0}.

Solve the system ∑
j∈J∗

pj(s)∑
k=1

ηkjAjt
0
kj +

∑
i∈I1∪Ia

2

qiηi = 0,

pj(s)∑
k=1

ηkj = 0, j ∈ J∗.

Let (ηkj , k = 1, . . . , pj(s), j ∈ J∗; ηi, i ∈ I1 ∪ Ia2 ) be its nontrivial solution (that exists since Property 2) is not
satisfied). Set η1j := 0, j ∈ J \ J∗. Using the found values ηkj , k = 1, . . . , pj(s), j ∈ J ; ηi, i ∈ I1 ∪ Ia2 , calculate
the number λ > 0 by formulas (19) and (20) where p̃j , j ∈ J, are replaced by pj(s), j ∈ J.

Set pj(s+ 1) := pj(s), j ∈ J, and

ξ(s+ 1) := (x0; t0kj(s), y
0
kj(s+ 1), k = 1, . . . , pj(s+ 1), j ∈ J ; y0i (s+ 1), i ∈ I),

where
y0kj(s+ 1) = y0kj(s) + ληkj , k = 1, ..., pj(s+ 1), j ∈ J ;

y0i (s+ 1) = y0i (s) + ληi, i ∈ I1 ∪ Ia2 , y
0
i (s+ 1) = y0i (s), i ∈ I \ (I1 ∪ Ia2 ).

Notice that according to Lemma 4, it holds: F (ξ0(s) = F (ξ0(s+ 1), and

min{y0kj(s+ 1), k = 1, ..., pj(s+ 1), j ∈ J ; y0i (s+ 1), i ∈ Ia2 } = 0.

Set s := s+ 1 and repeat Step 3 of the algorithm.

The algorithm is described. It follows from Lemma 4 that the algorithm is finite.
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5. Conclusions

In this paper, we have considered a class of parametric NLP problems P (pj , j ∈ J) in the special form (6). We
are especially interested in the values of parameters pj ≥ 1, j ∈ J , for which problem P (pj , j ∈ J) has an optimal
solution possessing Properties 1) - 3).

Using the specific structure of problems P (pj , j ∈ J) and in-depth analysis of their properties we have obtained
the following results.

• We have formulated the first order sufficient optimality conditions and studied in details how the change of
the parameters in a problem P (pj , j ∈ J) affects the optimal value of its cost function.

• Given data (1) and (2), we have formulated a convex SIP problem in a special form (22) and showed how
this SIP problem is connected with the original NLP problem P (pj , j ∈ J). In particular,

– we proved that if there exists an optimal solution of the SIP problem such that relations (24) take place,
then there exist parameters’ values pj , j ∈ J, such that the optimal solution of the problem P (pj , j ∈ J)
satisfies the Properties 1)-3);

– we proved that if an optimal solution of the problem P (pj , j ∈ J) satisfies the Properties 1)-3) then the
SIP problem (22) admits an optimal solutions;

• Finally, we have constructed an algorithm which in a finite number of iterations either finds the values of the
parameters for which the corresponding problem P (pj , j ∈ J) has optimal solutions satisfying the Properties
1) - 3) or states that such parameters do not exist.

The results of the paper are interesting since they can be used in study of the parametric SIP problems with
finitely representable index sets. Our future paper will be dedicated to such a study and will actively use the results
obtained here.
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