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Abstract In order to compare and benchmark the mathematical software, the performance profiles have been introduced
[1]. However, it has been proved that the algorithm is not flawless. The main issue with the performance profile is that it may
rank the solvers with respect to the best solver and so by excluding the best one and running the algorithm on the remaining
set of the solvers, the method may rank the solvers in a different way. We characterize such systems of problems-solvers
and propose an efficient and reliable algorithm to overcome this negative side effect. The proposed method is unbiased in
comparing the solvers and is successful in detecting the top ones.
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1. Introduction

For a set of mathematical software (such as optimization packages), there are several available solvers. Each
solver shows superior performance on some of the problems and inferior performance on other problems. This
makes it difficult to determine which one is better. The interpretation and analysis of the data generated by the
benchmarking process have been discussed by Dolan and More [1]. Many benchmarking efforts involve tables
displaying the performance of each solver on each problem for a set of metrics such as CPU time, the number
of function evaluations and iteration counts for algorithms. The solver’s average or cumulative total for each
performance metric over all the problems is sometimes used to evaluate performance [2, 3, 4]. As a result, a
small number of difficult problems can influence overall performance.

In the 1990s, some researchers ranked the solvers [3, 4, 5]. They counted the number of times that a solver
comes in kth place, for k = 1, 2, 3. Ranking the solvers’ performance for each problem helped prevent a minority
of problems from influencing the results. Information on the size of the improvement, however, was lost [1].
Comparing the medians and quartiles of some performance metric has its own disadvantages. Comparing solvers
by the ratio of one solver’s performance to the best performance [6] was also not a flawless approach (see [1] for
detail).

Dolan and More introduced performance profiles (cumulative distribution function of a performance metric)
as a tool for evaluating and comparing the performance of mathematical software. They used the ratio of the
computing time of the solver versus the best time of all of the solvers as the performance metric. They showed that
performance profiles eliminate the influence of a few of problems on the benchmarking process and the sensitivity
of results associated with the ranking of solvers [1]. A negative aspect of performance profiles has been discussed
in [7]. Gould and Scott showed that if performance profiles are used to compare more than two solvers, we can
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determine which solver has the highest probability of ρi(τ) of being within a factor τ of the best solver, but we
cannot necessarily determine the performance of one solver relative to another that is not the best. So if we eliminate
the best solver and re-do the calculations we may end up with a different answer on the new set of solvers. In some
cases, we need to partially rank the solvers. For example, a user might not have access to the best solver and so
might want to know which one is the second best solver. Another example is that they might want to identify several
top solvers.

To overcome this problem, Gould and Scott suggested one option would be to produce a series of performance
profiles, excluding the best solver over the range from successive profiles and repeat this procedure until only two
remains. This method works if we have a small number of solvers whereas for a large number of solvers this
method is not practical (e.g., the problem of selecting the optimal parameter or doing a fine tuning, here each
parameter defines a new solver). In this paper, we introduce the Nested Performance Profile that combines all the
relative features of solvers and gives a single graph to rank the solvers. It uses consecutive performance profiles
achieved by eliminating the best solver, the elimination that defines a new reduced system of solvers-problems
(which naturally generates nested systems). The nested performance profile is the mean performance over all the
reduced systems.

2. The Method

Consider a set of solvers S on a test set P . Let ns be the number of solvers and np the number of problems. We
use computing time as a performance measure. For each problem p and solver s,

tp,s := computing time required to solve problem p by solver s

Dolan and More compared the performance on problem p by solver s with the best performance by any solver on
this problem, i.e., they used the performance ratio:

rp,s =
tp,s

min{tp,s : s ∈ S}
. (1)

Assume that a parameter rM ≥ rp,s for all p, s is chosen, and rp,s = rM if and only if solver s does not solve
problem p. It has been shown that the choice of rM does not affect the performance evaluation [1].

The probability for solver s ∈ S that a performance ratio rp,s is within a factor τ ∈ R of the best possible ratio
is defined as

ρs(τ) =
1

np
|{p ∈ P : rp,s ≤ τ}|. (2)

The function ρs is the cumulative distribution function for the performance ratio. A plot of the performance profile
shows the major performance characteristics. We prefer the solvers with large probability ρs(τ). If we are interested
only in the number of wins, we need only to compare the values of ρs(1) for all of the solvers ( ρs(0) when a log
scaled performance profile has been used ). While ρ∗i = limτ→∞ ρi(τ) gives the fraction for which solver i is
successful without considering the speed of convergence. However, if we are interested in solvers with a high
probability of success, we should choose those for which ρ∗i is largest. Performance profiles are insensitive to the
results on a small number of problems, they are also largely unaffected by small changes in results over many
problems [1].

In Nested Performance Profiles, in order to rank the top k solvers we have k waves of the performance profiles
where k < ns. In each wave, the best solver is detected and the corresponding performance ratios are saved. Then
after eliminating the best solver, the next wave on the reduced set of solvers is started and the performance ratios
for the eliminated solver(s) are repeated. This defines k performance profiles on k nested sets of solvers. The final
performance profile is the mean of the nested profiles. This naturally mitigates the negative side effect of the regular
performance profiles, and the achieved graph benchmarks the top k solvers. In this paper, we use the upper index
to specify the wave number, e.g., the performance ratios for the kth wave is rkp,s.
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At the first wave, for simplicity lets set rp,s = r1p,s for p ∈ P, s ∈ S and ρs = ρ1s for s ∈ S. The set of current
solvers is S′ = S and the set of eliminated solvers is S∗ = ∅. The best solver s∗ is identified by

s∗ = argmax
s

{|p ∈ P : rp,s = 1|},

or by
s∗ = argmin

s
{
∑
p∈P

rp,s}.

The first choice gives the solver with most wins, i.e., the number of problems for which the solver works best,
and the second one gives the solver with best overall mean performance i.e., the mean of ratios. If there is more
than one solver with this property then we pick one at random.

Now in order to start the second wave, we have to exclude s∗ from the set of solvers:

S′ = S′ \ {s∗}.

The updated set of best solvers is S∗ = S∗ ∪ s∗. This naturally defines a new system of solvers and problems (on
S′), the second wave of performance ratios on the new system launches similar to the first wave:

r2p,s =
tp,s

min{tp,s : s ∈ S}
and ρ2s(τ) =

1

pn
size{p ∈ P : r2p,s ≤ τ}.

Now for the eliminated solver s∗ and for a specific problem p, if it still shows the best performance (if r1p,s∗ = 1)
we repeat the previous performance ratios:

r2p,s∗ = r1p,s∗ , s∗ ∈ S∗.

If the eliminated solver is not the best solver for a specific problem (if r1p,s ̸= 1) then the algorithm deals with it
like a non-eliminated solver. We have to repeat this procedure k times if the top k solvers are what we are going to
specify. Clearly, k = size(S)− 1. The overall performance profile is the mean of nested performance profiles:

ρOverall
s =

∑k
i=1 ρ

i
s(τ)

k
, i = 1, ..., k (3)

In this way, the comparison is not based on the best solver but it is based on the top k solvers.

Nested Performance Profile Algorithm:
Step 0. Set: the set of best solvers S∗ = ∅, the set of remaining solvers S′ = S
Step 1. Calculate r1p,s using (2.1)
Step 2. Calculate ρ1s using (2.2)
Step 3. For i = 2, ..., k

3.1 Find the best solver s∗ and update S∗ = S∗ ∪ s∗ and S′ = S′ \ {s∗}
3.2 For p ∈ P and s ∈ S, repeat

{
if s ∈ S′, calculate:

rip,s =
tp,s

min{tp,s:s∈S} and ρis(τ) =
1
np

size{p ∈ P : rip,s ≤ τ}
else ( if s ∈ S∗):

if ri−1
p,s ̸= 1:
rip,s =

tp,s
min{tp,s:s∈S} and ρis(τ) =

1
np

size{p ∈ P : rip,s ≤ τ}
else ( if ri−1

p,s = 1):
set rip,s = 1

}
Step 4. Calculate the overall performance profile using (2.3).
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Theorem 1
The nested performance profiles are insensitive to the results on a small number of problems i.e., if np is reasonably
large, then the result on a particular problem q does not greatly affect the nested performance profiles.

Proof. As in [1], if the observed time sets are tp,s and t̂p,s, where

t̂p,s = tp,s, p ∈ P \ {q},

for some problem q ∈ P , then r̂p,s = rp,s for p ∈ P \ {q} and for s ∈ S we have:

|ρis(τ)− ρ̂s
i(τ)| ≤ 1

np
i = 1, ..., k, τ ∈ R.

For the overall performance profile:

|ρOverall
s (τ)− ρ̂s

Overall(τ)| = 1

k
|

k∑
i=1

ρis(τ)−
k∑

i=1

ρ̂s
i(τ)| ≤ k

knp
=

1

np
,

moreover ρ̂sOverall(τ) = ρOverall
s (τ) for τ < min{riq,s, r̂iq,s} or τ > max{riq,s, r̂iq,s}. Thus, if np is large enough,

then the result on a particular problem q does not affect the nested performance profiles.
Let’s define RankS to be the sequence showing the index of the ranked solvers in S. Here, si is the solver number

i and
tP,Si,j := tp,s for p ∈ P , s ∈ {si, sj}.

Theorem 2
The performance profiles are sensitive to the elimination of the best solver i.e., if s∗ ∈ S is the best solver then
RankS\{s∗} is not necessarily equal to s∗ ∪RankS \ {s∗}. The nested performance profils are not.

Proof. Assume that ns = 3 and P1, P2 and P3 are partitions of P, so that P1 ∪ P2 ∪ P3 = P , |P1| > np/2,
|P2| > n/4 such that tp,s1 < tp1,s2,3 , tp3,s3 < tp3,s1,2 and tp2,s2 < tp2,s1,3 with the extra condition that tp1,s3 <
tp1,s2 . Clearly rPi,si = 1 for i = 1, 2, 3 considering the size of each partition ρp,si(1) = |Pi|, i = 1, 2, 3 i.e., s1

is better than s2 and s2 better than s3 (or RankS = [1, 2, 3]). After eliminating the best solver s1, we have
the new system with 2 solvers. We have ρp,s3 = |P1|+ |P3| while ρp,s2 = |P2| thus s3 is better than s2 i.e.,
RankS\{s∗} = [3, 2]. The defined system of solvers and problems proves the theorem. For nested performance
profile we have: ρ1si(1) = |Pi| and ρ2s2 = |p2|, ρ2s1 = |p1|, ρ2s3 = |p1|+ |p3| so ρOverall

s1 (1) = |P1|, ρOverall
s2 (1) = |p2|

and ρOverall
s3 (1) = |p3|+ |p1|

2 . Since |p1| >= 2|p2| so s1 is better than s3 and s3 better than s2.
For the general case with n partitions and n solvers let P =

∪n
i=1 Pi and |Pi| > np/(2

n) and tpi,si <
tpi,S1,...,n\{i} with the extra condition that tpi,si+2 < tpi,si+1 , i = 1, ..., n− 2 by a similar discussion we can build
a system of problems such that the performance profile may rank the solvers in a wrong way. So the performance
profiles are insensitive to changes in results on a small number of problems and sensitive to changes in the set of
solvers. They are also largely unaffected by small changes in results over many problems.

Theorem 3
Let ri and r̂i for 1 ≤ i ≤ np be performance ratios for some solver. Let ρ and ρ̂ be, respectively, the nested
performance profiles defined by these ratios. If |ri − r̂i| ≤ ϵ for some ϵ > 0, then∫ ∞

1

|ρOverall(t)− ρ̂Overall(t)|dt ≤ ϵ.

Proof. More and Dolan in [1] proved that the theorem holds for performance profiles, i.e., for each single
performance profile: ∫ ∞

1

|ρi(t)− ρ̂i(t)|dt ≤ ϵ, i = 1, ..., k.
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So, ∫ ∞

1

|ρOverall(t)− ρ̂Overall(t)|dt = 1

k

∫ ∞

1

|
k∑

i=1

(ρi(t)− ρ̂i(t))|dt ≤ 1

k

∫ ∞

1

k∑
i=1

|ρi(t)− ρ̂i(t)|dt

=
1

k

k∑
i=1

∫ ∞

1

|ρi(t)− ρ̂i(t)|dt ≤ 1

k
kϵ = ϵ.

3. Numerical Experiments

The artificial sample data proposed in [7] is given in Table 1. Using this data for five test problems and three
solvers and the corresponding logarithmic scaled performance profiles given in Figure 1, we can see the weakness
of this method. This system of problems and solvers is what we characterized in the proof of theorem 2. With S1

Table 1. The Artificial test set, the smaller the statistics, the better the solver performance

Problem Solver A Solver B Solver C
1 2 1.5 1
2 1 1.2 2
3 1 4 2
4 1 5 20
5 2 5 20

= {Solver A, Solver B, Solver C}, Solver A is the best on 80% of the problems, Solver B is not the winner in
τ ∈ [0, 2], If we are interested in having a solver that can solve at least 60% of the test problems with the greatest
efficiency, then we should choose solver A or C. However, if S2 = {Solver B, Solver C} (i.e., Solver A is removed),
Solver B, which was the second best solver in S1 on 60% of the test set, is the best solver in S2 [7]. The Matlab
solver ([8]) which we used is a modification of the regular performance profile solver written by Dolan and More
[9]. After running the nested performance profile on the sample data (Figure 2), we successfully ranked the solvers.
Solver A is the best solver, solver B is the second one and finally solver C is the last choice. Clearly, solver B is
superior to Solver C and we don’t need to eliminate Solver A to investigate this issue and the nested performance
profile could eliminate the relative comparing the effect of the regular performance profile on the artificial data.

As a real example, we used table V in [10] which demonstrates the Total Time Required for Subset CUTEst
problems by each method. The winner is MA87 and the probability that MA87 is the winner on a given problem
is about 61%. It is noteworthy that we scaled the x-axis and took 0 < τ < 0.6 ∗ (max Ratio) as the nested
performance profile has a bigger maximum ratio comparing to the regular performance profile. If we choose to
be within a factor of 4 of the best solver, then MA87 is still the best choice, but the performance profile shows that
the probability that this solver can solve the problems within a factor ¿5 of the best solver is only about 80%. Solver
”diagonal” has a lower number of wins than ”MA87”, but its performance becomes much more competitive if we
extend the τ of interest to more than 5. ”MI35” is the next appropriate solver. The question is: what will happen
if we discard the best solver ”MA87”? is the solver ”diagonal” better than the solver ”MI35”? By looking at the
nested performance profile (Figure 3. Right) clearly ”diagonal” is better than ”MI35”, something that can not be
declared directly by looking at the performance profiles especially for 2 < τ < 6.

Also by looking at the regular performance profile, we may wrongly conclude that ”MI35” is better than ”None”
in solving the problems in a high τ or we may wrongly conclude that MA87 has the same performance as MIQR,
while the regular performance profile ONLY says something about the best solver and no conclusion can be made
on the next best solvers. Clearly, we can rank the solvers by using the nested performance profile. For τ > 8, we
can observe that the results in nested performance profile are reliable and we don’t need to eliminate the best solver
and run a sequence of performance profiles to figure out the top solvers.
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Figure 1. Performance Profile for the artificial test set
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Figure 2. Regular and Nested Performance Profile
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4. Conclusion

Performance profile provides a measure to compare multiple solvers. For a binary comparison, it is a strong tool
for a selected range of τ . However, if performance profile is used to compare multiple solvers we can determine
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Figure 3. Time for Subset CUTEst Problems
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which one has a higher probability of being within a factor τ of the best solver, but we can not evaluate the
performance of one solver relative to another one that is not the best. To address this problem we introduced the
nested performance profile that uses consecutive performance profiles achieved by eliminating the best solver and
calculates the mean performance over all of the runs. This algorithm combines the relative features of the solvers
and gives reliable criteria to compare all the solvers together. This can be useful if we don’t have access to the first
solver or if we are interested in determining second or third best solvers out of a large set of solvers. The proposed
method is a practical approach to deal with the fine tuning problem which can be seen as a benchmarking problem.
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