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Abstract We present and study a mathematical model to simulate the calcium flux and contractile activity of the
cardiomyocyte, resorting on the Finite Element Method. This Model of cardiac cells provide the possibility to understand the
biochemistry and biomechanics of cardiac cells and cardiovascular diseases. Heart Failure is considered the ultimate cardiac
disease, a condition with no effective cure which is highly related with the function of cardiomyocytes and consequently
with the concentration of calcium, affecting the contractile activity of the cardiomyocyte.
In order to test our model’s performance, several tests were applied varying the local active cellular tension driven by the
intracellular calcium concentration and the localization of the main calcium influx. The results are expressed in the graphics
of calcium concentration over time, maximum cardiomyocyte contraction and the gradient of calcium diffusion.
Our results show that the behaviour of our models is faithful to what is known to be true with cell’s physiology and
pathological conditions.
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1. Introduction

The recent evolution in biotechnology and informatics has promoted the production of large amounts of information
and has accelerated the processes of investigation in biological systems and cellular-based studies. The use of
mathematical and geometric models enables the simulation of biological complex systems, and therefore, the
formulation of hypotheses and realisation of experiments that would normally require the use of live cells and
its lifetime conditions.

Models of cardiac cells are capable of facilitating insights into the mechanisms underlying cardiac dynamics and
its pathophysiology. They provide the possibility to understand the biochemistry and biomechanics of cardiac cells,
since the cardiovascular diseases have reached an enormous burden on contemporary society. In fact, Heart Failure,
the ultimate cardiac disease which has no effective cure, has been increasing in mortality and morbidity[1], and its
evolution always has a reserved prognosis. From this very negative trend, the need arises to create and test a new
tool that could be an added value in the study of the biomechanical mechanisms of the cardiomyocyte: numerical
modelling.[2]

In this work, the numerical modelling uses equations, discretized by the Finite Element Method, which model
the known cellular dynamics, as well as the possible dysfunctions. Thus, it becomes possible to create and to
experiment with other hypotheses, with unlimited resources, and without raising ethical questions.
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The main objective of this work is to simulate the calcium efflux and contractile activity of the cardiomyocyte,
resorting on the finite element method. When this becomes a successful and working model, there will be the
possibility to promote the reduction of in vivo/in vitro experimentation.

2. The Cardiomyocyte

The human heart is an essential organ with a highly organized tissue constituted of ventricular and atrial
cardiomyocytes, pacemaker cells, Purkinje cells, vasculature, and connective tissue. Cardiomyocytes are
mononuclear cells and form the striated muscle of the heart, with the shape of a tridimentional net. This
tridimentional structure allows the heart to contract and relax in the most efficient way. The ventricular
cardiomyocytes are columnar shaped cells of 20nm in diameter and 60− 140nm in length, while the atrial
cardiomyocytes are ellipsoidal shaped cells of 5nm in diameter and 10− 20nm in length. [3]

Figure 1. Morpholohy of Cardiac Muscle
[4]

The biggest part of the whole cell volume (75%) is made up of myofibrils and mitochondria. Myofibril is the
bundle that forms the contractile elements within the cell and it is composed of actin thin filament, myosin thick
filament and titin, which stabilizes myosin at the Z-line. The fundamental unit within the cardiomyocyte that allows
its contraction is the sarcomere (aggregation of myofibrils), which has a length of 1.8µm in the systole and 2.2µm
in the diastole.

Other than myofibrils, this contractile structure contains tropomyosin (troponin complex). Myosin has a
filamentous tail and a globular head region that contains the site for actin binding. Actin has F-actin, the backbone
of the thin filament, and G-actin, which works as a stabilizing protein.

The Sarcoplasmic Reticulum (SR), the nucleus, and the cytosol occupy the other 25% of the cell. Surrounding
these components, there is a specialized structure called the Sarcolemma, which is a coalescence of the plasma
membrane and the basement membrane, composed of a lipid bilayer. This wall contains hydrophilic heads and
hydrophobic tails, allowing the regulation of the interactions with the intracellular and extracellular environment.
In order to maximize the in and out interactions, there are transverse tubular systems (T-tubules) in the sarcolemma.

The T-tubules are 150nm to 300nm wide deep invaginations of the sarcolemma into the cardiomyocyte, and they
form an extended barrier between the intracellular and extracellular space, turning them into important structural
components in the Excitation-Contraction Coupling (ECC) system.
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All of these cell organelle interactions are included in the ECC process and are fuelled by the flow of three
important ions: K+, Ca2+ and Na2+.

2.1. Structural details

The Ryanodine Receptor (RyRs) are ion channels that open in the presence of elevated Ca2+ and release calcium
from the junctional sarcoplasmic reticulum. The junctional sarcoplasmic reticulum makes such close contact with
the T-tubule membrane that RyRs channels on the sarcoplasmic reticulum are impending apposed (≈ 15nm) to
L-type Ca2+ channels on the T-tubule (≈ 14 in peripheral couplings to ≈< 100 in intracellular sites), this way
forming the cardiac dyad that is fundamental to the processes of Ca2+ flow. from the junctional sarcoplasmic
reticulum. When viewed on detail, T-tubules are seen to radiate throughout the cardiac cell. This close association
between the T-tubule and sarcoplasmic reticulum ensures the synchronous rise of [Ca2+], during systole, therefore,
the importance of the whole architecture of the cell. In addition to these basic requirements for ECC process, the
cardiac dyad may also be considered as containing additional structures that may contribute to or modulate Ca2+

release from the sarcoplasmic reticulum during systole. The most extensively studied is Na2+/Ca2+ eXchanger
(NCX), that has been argued via its reverse-mode action to contribute to Ca2+ influx early during the action
potential. The second protein of interest is SERCA2a: Sarco(Endo)plasmic Reticulum Calcium ATPase. Available
data on SERCA2a distribution in the heart is surprisingly sparse; however, confocal studies seem to suggest that a
significant proportion of SERCA is localized to the z-line as well as enveloping the myofilaments.[5] This cycle of
calcium triggering, release and uptake, takes place in the approximately 20, 000 diad spaces (also called calcium
release sites) that are distributed throughout the myocyte. [6]

Figure 2. Close look to cardiac diad
[7]

3. From Action Potential to Contraction

ECC characterizes the whole processes relating to electrical excitation through force generation and the power
of contraction in the heart. It occurs at multiple levels from the whole heart, to each single cardiomyocyte and
down to the sarcomere.[6] The propagation of the action potential through the entire cardiac muscle requires the
depolarization of a cardiomyocyte. This means that the cell will generate an action potential while arising from a
steady state to an excited state, and then pass it to the neighbour cell. In order to induce the process, an electric
charge will be propagated by the three cations already referred. These three ions are small enough to be widespread
through the cells membranes. The contraction of individual myocytes is coordinated by a propagation wave of
electrical depolarization of the sarcolemma.

The propagation from cell to cell of the action potential corresponds to the beginning of the action potential cycle
(phase 0) and requires a difference between cell voltages. The bigger the difference, the bigger the flow between
the cells. When the stimulus reaches a steady state cell, it becomes excited and some of the Na2+ channels open.
The Na2+ moves in the cell, becoming less negative. When the cell voltage reaches −70mV , every Na2+ channels
open and more Na2+ ions get in the cell. The cell becomes positive. The Na2+ channels close, making the cell
more negative again.
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3.1. Chemical aspects

In the beginning of the contraction stimulus, the K+ channels open and K+ ions move out of the cell. This K+

extraction, decreases the cell potential from 20mV to 0mV (phase 1). Ion Ca2+ is fundamental for evoking the
ECC complex. Upon the wave of depolarization, when electrical action potential reaches T-tubules, the wave of
depolarization induces Ca2+ influx into the cardiomyocyte through the voltage-sensitive L-type Ca2+ channel
of the T-tubules. This rapid but small Ca2+ influx causes activation of large amounts of Ca2+ release from the
RyR2 on the sarcoplasmic reticulum. Finally, cytosolic Ca2+ level changes from 100nmol/L to 10µmol/L in
concentration. The 10µmol/L of Ca2+ binds to the troponin C, leading to the actin-myosin interaction resulting in
initiating crossbridge formation and, therefore, contraction movement (phase 2).

Using Adenosine Tri-Phosphate (ATP), the G-actin interacts with the myosin globular head leading to the
crossbridge formation and sarcomere shorting (contraction). Tropomyosin lies on the side of actin for rigidity
to thin filament. The troponin complex, also present in the thin filament, is composed of troponin C, I and T. These
proteins are responsabile for the regulation of the crossbridge formation.

Active relaxation (phase 3) of the cardiomyocyte is dependent on the function of the SERCA2a. For each 1mol
of ATP hydrolysed, 2mol of Ca2+ is transported back into the sarcoplasmic reticulum. Phospholamban (PLB)
regulates the function of SERCA2a. Additionally, the NCX on the plasma membrane removes Ca2 from cytosol,
until the cell reaches a voltage of −90mV , changing Ca2+ for Na2+. In summary, the process of ECC links the
electric excitation of the surface membrane, i. e. action potential, to contraction, with the concentration of ion Ca2+

being the major factor for the magnitude and duration of the contraction.

Figure 3. Action Potential in Cardiomyocytes
[9]

In the end, the purpose of cardiomyocytes is to generate a controlled contraction in response to repetitive
electrical depolarization signals — a function that is fully controlled by Ca2+.

The importance of ion Ca2+ will be shown throughout this work, as the ion’s flow will be used as an effective
tool to understand the complex dynamics of the processes involved in excitation–contraction coupling and in its
computational simulation.

3.2. Mathematical model aspects

We consider for a seek of simplicity the quite well established two variable model of Goldbeter et al. [11] as the
core for self-sustained calcium oscillations (phases 2 and 3). In this model, the calcium-induced calcium release
mechanism is described by nonlinear kinetics between cytosolic c = c(t, x, y) and sarcoplasmic s = s(t, x, y)
calcium concentrations at instant t and position (x, y), with rates of variation given by the differential system:

ds

dt
= F (c, s) (1)

dc

dt
= v0 − v1β − kcc− F (c, s)−∇ · (D∇c) (2)
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With

F (c, s) = v2 − v3 − kss (3)

v2 = M1
cn

Kn
2 + cn

(4)

v3 = M2
sn

Kn
R + sn

cp

Kp
A + cp

(5)

The intracellular propagation of free calcium is taken into account in the model by considering the anisotropic
diffusion of calcium observed experimentally at [13] with D = (D1, D2).

In this model, v1β is the constant flow of calcium into the cytosol, controlled by the sarcoplasmic reticulum.
The concentration of free cytosolic calcium c oscillates between low levels, during which c is pumped by the
sarcoplasmic reticulum (v2 flux), and high levels, characterised by the autocatalytic release of calcium v3 from the
sarcoplasmic reticulum. The flux kss is a basal leak of calcium into the sarcoplasmic reticulum, while the input
flux v0 and efflux kcc refer to the Ca2+ fluxes into and out of the cell, respectively, finally D is the diffusion tensor
with components Dij .

Equations (1) and (2) describe an entire family of models dependent on the particular choice of the exchange
function F (c, s) that describes the dynamics of Ca2+ exchange between the cytosol and the internal Ca2+ pool. It
should, therefore, be kept in mind that, although we present results here for a particular choice of F , similar results
can be obtained from exchange functions with similar qualitative properties.

For the contraction movement (phase 2) we assume that the total stress σ = σij within the cardiac cell is
generated by the contraction of actin-myosine fibers. Since the sarcomeres are oriented along the cell principal
axis (x axis), we consider an isotropic linear elastic motion governed by:{

∂σ11

∂x + ∂σ12

∂y = −γ (c)Tu

∂σ21

∂x + ∂σ22

∂y = 0
(6)

where γ (c)Tu is the local active cellular tension driven by the intracellular calcium concentration c = c(t, x, y).
We assume that the analytical expression of γ is given by a Hill function of the form [14]:

γ (c) =
c4

η4 + c4
(7)

4. Finite element discretization

Using Finite Element Method like in Biomedical Engineering Handbook Vol 1, Sec 12.3 [15] and Claes Johnson
[16] equations (1) ,(2) and (6) assume respectively the integral form:

∫
Ω

ds

dt
w dΩ =

∫
Ω

F (c, s)w dΩ (8)

∫
Ω

dc

dt
w dΩ =

∫
Ω

(v0 − v1β − kcc− F (c, s))w dΩ+

∫
Ω

D ·D∇c · ∇w dΩ−∫
ΓT

D1nx
∂c

∂x
w +D2ny

∂c

∂y
w dΓ (9)

∫
Ω

λdiv(ux, uy)div(vx, vy) + µε(ux, uy) : ε(vx, vy)dΩ =

∫
Ω

γ (c)T0(vx, vy) · e⃗x dΩ (10)

Stat., Optim. Inf. Comput. Vol. 7, September 2019



J. A. RODRIGUES AND J. OLIVEIRA 609

where (nx, ny) is the outward unit normal to ΓT .
We remark that at equation (10) we have used the Hooke’s law for plane stress, with the displacement vector

(ux, uy) for the relationship between the two-second-order tensors, the strain tensor ε and the stress tensor σ:

σ = λtr(ε(ux, uy)II + µε(ux, uy), (11)

where II denotes the 2-identity matrix,

ε =

 ε11 =
∂ux

∂x
ε12 =

1

2

(
∂ux

∂y
+

∂uy

∂x

)
ε21 =

1

2

(
∂uy

∂x
+

∂ux

∂y

)
ε22 =

∂uy

∂y

 (12)

and tr(·) represents the trace of a matrix. The Lamé positive constants λ and µ are given by (cf [16])

µ =
E

(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
,

with the Young’s modulus E > 0 and the Poisson ratio ν ∈ ]0, 1/2[.

The time integration will be done by using a backward Euler method which is written as:

∫
Ω

sτ+1

h
w dΩ =

∫
Ω

sτ

h
w dΩ +

∫
Ω

F
(
cτ+1, sτ+1

)
w dΩ (13)

∫
Ω

cτ+1

h
w dΩ =

∫
Ω

cτ

h
w dΩ +

∫
Ω

(
v0 − v1β − kcc

τ+1 − F
(
cτ+1, sτ+1

))
w dΩ+

∫
Ω

D∇cτ+1 · ∇w dΩ−
∫
ΓT

D1nx
∂cτ+1

∂x
w +D2ny

∂cτ+1

∂y
w dΓ (14)

∫
Ω

λdiv(uτ+1
x , uτ+1

y )div(vx, vy) + µε(uτ+1
x , uτ+1

y ) : ε(vx, vy)dΩ =

∫
Ω

γ
(
cτ+1

)
T0(vx, vy) · e⃗x dΩ (15)

for the instant τ > 0 and a given guess
(
c0, s0

)
,where h is called the step size. We remark that at each instant

we obtain a new configuration for the cell due to the displacement field u⃗τ+1 = (uτ+1
x , uτ+1

y ) coming from the
concentration cτ+1. We refer [15] for theoretical questions about existence and unicity of the numerical solutions
over adequate finite element spaces.

By reasons of numerical stability the equation (13 ) must be penalized with an artificial diffusion therm using a
small parameter ξ like that:∫

Ω

sτ+1

h
w dΩ =

∫
Ω

sτ

h
w dΩ+

∫
Ω

F
(
cτ+1, sτ+1

)
w dΩ+ ξ

∫
Ω

∇sτ+1 · ∇w dΩ (16)

The numerical scheme can be defined by: Given a given guess
(
c0, s0

)
determine

(
cτ+1, sτ+1, u⃗τ+1

)
, τ > 0

by solving eqs(16), (14) and (15) resp.
(17)

We consider the cycle ends when the quantity of calcium is low in the cell:
∫
Ω
cτ+1 dΩ < ϵ , for a small ϵ.
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5. Numerical results

At this section we will apply scheme (17) with the parameters from Table 1 using the partial differential equation
solver, using finite element methods, FreeFem++ [17] .

Table 1. Cell parameters values [11]

v0 1 µM·s−1

k 10 s−1

kf 1 s−1

v1 7.3 µM·s−1

M1 65 µM·s−1

M2 500 µM·s−1

K2 1 µM

KR 2 µM

KA 0.9 µM

m = n n = 2

p 4

E 105 Pa

ν 0.49

Tu 18.5× 104 Pa

With the purpose of fulfilling a wide range of model cases, we created four different models of cardiomyocytes,
varying the possible zones to place the mathematical boundary conditions for the simulation of the T-tubules,
as well as the freedom of each side of the cell, in order to obtain different kinds of contraction movements. By
symmetric reasons, we describe the four case as the following:

1. Case 1: T-tubule is placed on the left side of the cell, and the right side is free to contract, Figure 4 a).
2. Case 2: T-tubules is placed on the left side and both sides are free for the contraction movement, Figure 4 b).
3. Case 3: T-tubule is placed in the right side and both sides are free for the contraction movement, Figure 4 c).
4. Case 4: Both sides are free for the contraction movement, but there are T-tubules from the upper boundary

and from the bottom boundary , Figure 4 d).

For all cases we simulate only one cycle, supposing a conveyable conditions of ATP and oxygen.

Figure 4. Outline of cardiomyocyte with different localizations for ΓT

To better explain the results, we will present the graphic of calcium concentration over time, maximum
cardiomyocyte contraction and the gradient of calcium diffusion for each case.
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For all exhibited graphics we have used the time τ as unity for the x-axis and in the y-axis we will consider
calcium concentration µM for the blue graphic and percent (%) of shortening for the green one.

The numerical scheme (17) is initiated with
(
c0, s0

)
= (0.1, 0.5) for all following cases.

5.1. Case 1

In this case, as described before, T-tubule is placed on the left side of the cell, and the right side is free to contract.
The cardiomyocyte’s contraction happens when the calcium concentration is greater than 0.45 µM, approximately,
and we remark with Figure 5 that the contraction peak time is approximately in one-third of the cycle as it was
expected.

µ
M

%

ms

Figure 5. Cytosol concentration and shortening %, during a cycle, for a Tu = 18.5× 104 in Case 1

The maximum cardiomyocyte contraction is achieved at τ = 41 ms (millisecond), as we show in Figure 6. The
initial cell length is 10 µm, and after contraction its length is about 8.9 µm, which results in a reduction of 11% (%
of shortening), s shown at Figure 6.

31

Figure 6. Maximum cardiomyocyte contraction at τ = 41 ms , in Case 1

The simulation of the T-tubule effect is exhibited in Figure 7 with the gradient of the calcium concentration
cτ , τ = 41 ms.

 gradient of c 

Figure 7. Gradient of the calcium concentration τ = 41 ms, in Case 1
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5.2. Case 2

In this case 2, T-tubule is also placed on the left boundary of the cell, but both left and right sides are free to contract.
The cardiomyocyte’s contraction happens when the calcium concentration is greater than 0.45 µM, approximately,
and we can remark with Figure 8 that the contraction peak time is approximately one-third of the cycle as it was
theoretically expected.

µ
M

ms

Figure 8. Cytosol concentration in the cell for one cycle, in Case 2

The maximum cardiomyocyte contraction is achieved at τ = 41 ms, as we show in Figure9. At this case the cell
length after contraction is about 9.4 µm, which results in a reduction of 6%.

32

Figure 9. Maximum cardiomyocyte contraction at τ = 41 ms, in Case 2

The simulation of the T-tubule effect is exhibited in Figure 10 with the gradient of the calcium concentration
cτ , τ = 41 ms.

 gradient of c 

Figure 10. Gradient of the calcium concentration τ = 41 ms, in Case 2

5.3. Case 3

In this case 3, T-tubule is placed on the right side of the cell, and both left and right sides are free to contract. The
cardiomyocyte’s contraction happens when the calcium concentration is greater than 0.45 µM, approximately, and
we can remark with Figure 11 that the contraction peak time is in approximately one-third of the cycle as it was
expected.
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µ
M

ms

Figure 11. Cytosol concentration in the cell for one cycle, in Case 3

The maximum cardiomyocyte contraction is achieved at τ = 41 ms, as we show in Figure 12. As above the initial
cell length is 10 µm, and after contraction its length is about 9.3 µm, which results in a reduction of 7%.

35

Figure 12. Maximum cardiomyocyte contraction at τ = 41 ms, in Case 3

The simulation of the T-tubule effect is exhibited in Figure 13 with the gradient of the calcium concentration
cτ , τ = 41 ms.

 gradient of c 

Figure 13. Gradient of the calcium concentration τ = 41 ms, in Case 3

5.4. Case 4

In this case 4, T-tubule is placed, over a reduced length zone, on the top and bottom boundaries of the model (Figure
4 d) ) and both left and right sides are free to contract. The cardiomyocyte’s contraction happens when the calcium
concentration is greater than 0.36 µM, approximately, and we can remark with Figure 14 that the contraction peak
time appears in the middle of the cycle.

The maximum cardiomyocyte contraction is achieved at τ = 82 ms, as we show in Figure 15. After contraction
the cell length is about 9.8 µm, which results in a reduction of 2% .

The simulation of the T-tubule effect is exhibited in Figure 16 with the gradient of the calcium concentration
cτ , τ = 82 ms.

Finally we resume at Table 2 the main results from the study cases.
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µ
M

ms

Figure 14. Cytosol concentration in the cell for one cycle, in Case 4

83

Figure 15. Maximum cardiomyocyte contraction at τ = 82ms, in Case 4

 gradient of c 

Figure 16. Gradient of the calcium concentration τ = 82 ms, in Case 4

Table 2. Main results comparison for study cases

Case time (ms) shortening (%) calcium concentration (µM)

1 41 11 0.45

2 41 6 0.45

3 41 7 0.45

4 82 2 0.36
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6. Conclusion

We have investigated an Finite Element Method approach for simplified coupled mathematical model of excitation-
contraction in isolated cardiomyocytes.

We started with the variational formulation model and proceed its numerical implementation based on software
FreeFem++.

The results from the study cases highlight to the T-tubules distribution importance along the cardiomyocyte. We
remark that for all cases the cell deformation is higher near the T-tubule boundary, as the calcium concentration.
Table 2 points to the importance of a large zone for calcium influx and a existence of sides free to contract, this
simulate the contact between two cells.

For case 1, the result was a concentration of 0.45µM and a % of shortening around 10% corresponds to the results
obtained by DelMonte et al [18] and Høydal et al [19]. These results are the ones expected for the physiological
function of a real cardiomyocyte. This means that this simulation is reliable for these two parameters, concentration
and % of shortening.

In case 2, the result was a concentration of 0.45µM and a % of shortening around 5% corresponds to the results
obtained by Kamgoue et al (3%) [20]. These results can also be considered normal or indicate a situation of
hypocalcemia (3%).

The results of case 3 were presented with a concentration of 0.45µM and a % of shortening from 4% to 10% ,
which corresponds to the results obtained both by Kamgoue et al [20] and Garcia-Canadilla et al (9%) [21].

At last, for case 4, with the special location of T-tubules (on the top and bottom boundarys), we reach a
concentration of cytoplasmatic calcium of 0.36µM and a % of shortening of 2%, which means that for this kind of
model distribution (T-tubule on top and bottom), the local active cellular tension must to be higher for the same %
of shortening.

The results obtained with our model are faithful to what is known to be true with cell’s physiology and
pathological conditions (hypocalcemia).

This study proposes a simplification of the mathematical context of the excitation-contraction in isolated
cardiomyocytes problem and brings a contribution to a very complex subjet.

A relevant study is to introduce in this mathematical model multiple parametric, to enable understanding its
influence, namely the ones that are considered to be important to studied cardiac diseases.
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