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1. Introduction

Fractional order calculus is a generalization of the integer order calculus to a real or complex numbers and,
nowadays, it plays an important role in various fields: physics (classic and quantum mechanics, thermodynamics,
etc.), chemistry, biology, economics, engineering, signal and image processing, and control. Niels Henrik Abel, in
1823, was probably the first to give an application of fractional calculus. Abel applied the fractional calculus in the
solution of an integral equation which arises in the formulation of the problem of finding the shape of a frictionless
wire lying in a vertical plane such that the time of a bead placed on the wire slides to the lowest point of the wire in
the same time regardless of where the bead is placed. This problem is, usually, designated by Tautochrone Problem
but sometimes it’s also referred as Isochrone Problem. The cycloid is the isochrone as well as the brachistochrone
curve. The brachistochrone problem deals with the shortest time of slide and, from mathematical point of view,
it marks the begin of the Calculus of Variations. The text is organized as follows. In Section 2 we collect some
necessary definitions and results about fractional calculus, fractional calculus of varitions and recall two formulas
of integration by parts (Theorem 2). The main results are presented in Section 3. The fundamental problem of
calculus of variations that we are considering is then stated in Section 3.1:

J(x) =

∫ b

a

L(t, x(t),CFDα
a+x(t)) dt,

where CFDα
a+x(t) is the left Caputo-Fabrizio fractional derivative (Definition 4). The main results of the paper

provide sufficient optimality conditions for the fundamental problem of calculus of variations under appropriate
convexity assumptions (see Theorem 4), transversality conditions (see Theorem 5) as well isoperimetric problem
and holonomic constraints (see Sections 3.2 and 3.3, respectively). We end up with the conclusion and future work
section mentioning some research directions for further work.
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2. Fractional calculus

In a letter to L’Hospital in 1695 Leibniz raised the following question: “Can the meaning of derivatives with
integer order be generalized to derivatives with non-integer orders?” L’Hospital was curious about that question
and replied by another question to Leibniz: “What if the order will be 1/2? ” Leibnitz in a letter dated September
30, 1695 answered: “It will lead to a paradox, from which one day useful consequences will be drawn.” The
question raised by Leibnitz for a fractional derivative was an ongoing topic for more than 300 years. Many known
mathematicians contributed to this theory over the years, among them Liouville, Riemann, Weyl, Fourier, Abel,
Lacroix, Leibniz, Grunwald and Letnikov. For more on the subject we refer the reader to [13, 18, 20, 23]. There
are several definitions of fractional derivatives and fractional integrals, like Riemann-Liouville, Caputo, Riesz,
Riesz-Caputo, Weyl, Grunwald-Letnikov, Hadamard, Chen, etc. We will present the definitions of the first two of
them (both are fractional derivatives with singular kernel). The Riemann-Liouville fractional derivative (RLFD)
was named after the work of Riemann and Liouville and can be defined in the following way:

Definition 1
Let x : [a, b] → R be a continuos function. The left and the right Riemann–Liouville fractional derivatives of order
α > 0 are defined, respectively, by

RLDα
a+x(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

(t− τ)n−α−1x(τ)dτ, t ∈ (a, b], (1)

and
RLDα

b−x(t) =
(−1)n

Γ(n− α)

dn

dtn

∫ b

t

(τ − t)n−α−1x(τ)dτ, t ∈ [a, b), (2)

where the Γ is the Euler gamma function, α is the order of derivative, and n = [α] + 1 with [α] being the integer
part of α.

If α ≥ 1 is an integer, these fractional derivatives are understood in the sense of usual differentiation, that is,

RLDα
a+x(t) =

(
d

dt

)α

x(t) and RLDα
b−x(t) =

(
− d

dt

)α

x(t)

With the objective to avoid some difficulties observed in the utilization of this definition, Michele Caputo
introduced, in 1967, the left and right Caputo derivatives, in the following way:

Definition 2
Let x : [a, b] → R be a continuos function. The left and the right Caputo fractional derivatives of order α > 0 are
defined, respectively, by

CDα
a+x(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1x(n)(τ)dτ, t ∈ (a, b], (3)

and
CDα

b−x(t) =
1

Γ(n− α)

∫ b

t

(−1)n(τ − t)n−α−1x(n)(τ)dτ, x ∈ [a, b), (4)

where α is the order of derivative, and n = [α] + 1 with [α] being the integer part of α.

There exists a relation between the Riemann–Liouville and the Caputo fractional derivatives:

CDα
a+x(t) = RLDα

a+x(t)−
n−1∑
k=0

f (k)(a)

Γ(k − α+ 1)
(x− a)k−α (5)

and
CDα

b−x(t) =
RLDα

b−x(t)−
n−1∑
k=0

f (k)(b)

Γ(k − α+ 1)
(b− x)k−α. (6)
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14 CALCULUS OF VARIATIONS INVOLVING CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIATION

Therefore,
if x(a) = x′(a) = . . . = x(n−1)(a) = 0, then CDα

a+x(t) = RLDα
a+x(t)

and
if x(b) = x′(b) = . . . = x(n−1)(b) = 0, then CDα

b−x(t) =
RLDα

b−x(t).

Recently, in 2015, Caputo and Fabrizio [10] proposed a new derivative of fractional order with a non-singular
kernel. This derivative has several interesting properties that are useful for modeling in many branches of sciences.
In [6], Atangana and Alqahtani wrote that, for instance, the derivative is able to describe substance heterogeneities
and configurations with different scales. Before presenting the definition of the new derivative, we need the
following definition:

Definition 3
The Sobolev space of order 1 in (a, b) is defined as

H1(a, b) = {x ∈ L2(a, b) | x′ ∈ L2(a, b)},

where x′ is a weak derivative of x.

Now we are in conditions to present the definition of left Caputo-Fabrizio derivative of order α.

Definition 4
Let α ∈ (0, 1), x be a function such that x ∈ H1(a, b), a < b and M(α) be a normalization function such that
M(0) = M(1) = 1. The left Caputo-Fabrizio derivative of order α is defined as(

CFDα
a+x

)
(t) =

M(α)

1− α

∫ t

a

x′(s) exp

(
−α(t− s)

1− α

)
ds . (7)

Remark 1
For example, we can consider M(α) = 1− α+

α

Γ(α)
.

Remark 2
Formula (7) is obtained changing the kernel (t− τ)−α in (3) with the function exp

(
−α(t−τ)

1−α

)
and

1

Γ(1− α)
with

M(α)

1− α
.

Using the idea of Remark 2, Abdeljawad and Baleanu state, in [12], that the right Caputo-Fabrizio fractional
derivative is defined by (

CFDα
b−x

)
(t) = −M(α)

1− α

∫ b

t

x′(s) exp

(
−α(s− t)

1− α

)
ds . (8)

Remark 3
Like the Caputo fractional derivative also Caputo-Fabrizio fractional derivative of a constant is zero.

Recently, Atangana and Goufo [7] developed, the following definitions generated by the modification of (1) and
(2).

Definition 5
Let α ∈ (0, 1), x be a function such that x ∈ H1(a, b), a < b and M(α) be a normalization function such that
M(0) = M(1) = 1. The left Riemann fractional derivative of order α in the Caputo-Fabrizio sense is defined as(

CFRDα
a+x

)
(t) =

M(α)

1− α

d

dt

∫ t

a

x(s) exp

(
−α(t− s)

1− α

)
ds . (9)

and the right Riemann fractional derivative of order α in the Caputo-Fabrizio sense defined by(
CFRDα

b−x
)
(t) = −M(α)

1− α

d

dt

∫ b

t

x(s) exp

(
−α(s− t)

1− α

)
ds . (10)
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Similarly to (5) and (6), we find in [12] a relation between Riemann and Caputo type fractional derivatives with
non-singular kernels as follows:

Theorem 1 (Proposition 2 of [12])
The following holds:

(
CFDα

a+x
)
(t) =

(
CFRDα

a+x
)
(t)− M(α)

1− α
x(a) exp

(
−α(t− a)

1− α

)
, (11)

(
CFDα

b−x
)
(t) =

(
CFRDα

b−x
)
(t)− M(α)

1− α
x(b) exp

(
−α(b− t)

1− α

)
. (12)

Although fractional calculus have various fields of applications, in this paper we are interested in the fractional
calculus of variations which deals with optimization of functionals that depends on a fractional operator with a
non-singular kernel. For fractional calculus of variations where functional depends on another fractional operators
see [1–4,14–17,19,24,25] and references therein; for computational and numerical aspects see [5,11]. The readers
interested in the discrete fractional calculus of variations are refereed to the work of Bastos et al. [8,9]. The theory
of the fractional calculus of variations was introduced by Riewe in 1996-1997 [21,22], to deal with nonconservative
systems in mechanics. Nowadays, the fractional problems of the calculus of variations is a subject under strong
research, mainly, due to its applications in science and engineering.

The following formulas of integration by parts for Caputo-Fabrizio fractional derivatives will be essential for
proving results concerning variational problems and were stated and proven in [12].

Theorem 2 (Theorem 2 of [12])∫ b

a

(
CFDα

a+f
)
(t)g(t)dt =

∫ b

a

f(t)
(
CFRDα

b−g
)
(t)dt+

[
M(α)

1− α
f(t)

(
e −α

1−α ,b−g
)
(t)

]t=b

t=a

. (13)

∫ b

a

(
CFDα

b−f
)
(t)g(t) =

∫ b

a

f(t)
(
CFRDα

a+g
)
(t)−

[
M(α)

1− α
f(t)

(
e −α

1−α ,a+g
)
(t)

]t=b

t=a

. (14)

where (
e −α

1−α ,b−g
)
(t) =

∫ b

t

exp

(
−α(b− t)

1− α

)
g(t)dt, t < b.

Remark 4
Observe that the left member of equations (13) and (14) contains a Caputo-Fabrizio fractional derivative, while the
right member contains a Riemann fractional derivative in the Caputo-Fabrizio sense . However, from Theorem 1
we could present this formulas with only one fractional derivative, although in this case the resulting equations will
contain some extra terms.

3. Main Results

In this Section we study some problems variational problems with functionals containing the Caputo-Fabrizio
fractional derivative, which is a fractional derivative with a non-singular kernel.

3.1. The Fundamental fractional problem of the calculus of variations

Given x ∈ C1[a, b], consider the functional

J(x) =

∫ b

a

L(t, x(t),CFDα
a+x(t)) dt, (15)

with the following assumptions:
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16 CALCULUS OF VARIATIONS INVOLVING CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIATION

1. L : [a, b]×R2 → R is continuously differentiable with respect to the second and third arguments;
2. given any x, the map t 7→ CFRDα

b−(∂3L(t, x(t),
CFDα

a+x(t))) is continuous.

Hereafter, given a function f : A ⊆ Rn → R, we denote

∂if(x1, . . . , xn) :=
∂f

∂xi
(x1, . . . , xn).

In the next theorem we can find fractional necessary optimality conditions to problem of find local minimizers
of (15).

Theorem 3 (Theorem 3 of [12])
Let x be a minimizer of the functional J as in (15), defined on

U =
{
x ∈ C1[a, b] : x(a) = xa and x(b) = xb

}
,

where xa, xb ∈ R are fixed. Then, x is a solution for the equation

∂2L(t, x(t),
CFDα

a+x(t)) + CFRDα
b−

(
∂3L(t, x(t),

CFDα
a+x(t))

)
= 0, ∀t ∈ [a, b]. (16)

Definition 6
Eq. (16) is called the Euler–Lagrange equation associated to the functional J . Solutions of this equation are called
extremals.

We remark that Eq. (16) gives only a necessary condition. To obtain a sufficient condition, we recall the notion
of convex function. Given a function L(t, x, y) continuously differentiable with respect to the second and third
arguments, we say that L is convex in S ⊆ R3 if

L(t, x+ x1, y + y1)− L(t, x, y) ≥ ∂2L(t, x, y)x1 + ∂3L(t, x, y)y1.

Theorem 4
If function L as in (15) is convex in [a, b]×R2, then each solution of the fractional Euler–Lagrange equation (16)
minimizes J in U .

Proof Let x be a solution of Eq. (16) and x+ ϵh be a variation of x, with |ϵ| ≪ 1 and h ∈ C1[a, b] with
h(a) = 0 = h(b). Then

J(x+ ϵh)− J(x)

=

∫ b

a

[
L(t, x(t) + ϵh(t),CFDα

a+x(t) + ϵCFDα
a+h(t))− L(t, x(t),CFDα

a+x(t))
]
dt

≥
∫ b

a

[
∂2L(t, x(t),

CFDα
a+x(t))ϵh(t) + ∂3L(t, x(t),

CFDα
a+x(t))ϵCFDα

a+h(h)
]
dt

=

∫ b

a

[
∂2L(t, x(t),

CFDα
a+x(t))− CFRDα

b−(∂3L(t, x(t),
CFDα

a+x(t)))
]
ϵh(t) dt = 0,

since x is a solution of (16). Therefore, x is a local minimizer of J .
If we do not impose any restrictions on the boundaries or when one the boundary condition is missing, we need

to obtain two auxiliary conditions known as transversality conditions.

Theorem 5
Let x be a minimizer of the functional J as in (15). Then, x is a solution for the fractional differential equation

∂2L(t, x(t),
CFDα

a+x(t)) + CFRDα
b−

(
∂3L(t, x(t),

CFDα
a+x(t))

)
= 0, t ∈ [a, b].

If x(a) is free, then
M(α)

1− α
e −α

1−α ,b−

(
∂3g(t, x(t),

CFDα
a+x(t))

)
at t = a.
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If x(b) is free, then
M(α)

1− α
e −α

1−α ,b−

(
∂3g(t, x(t),

CFDα
a+x(t))

)
at t = b.

Proof Let x+ ϵh be a variation of x, with |ϵ| ≪ 1 and h ∈ C1[a, b]. Since x+ ϵh must belong to the set U , the
boundary conditions h(a) = 0 = h(b) must hold. Let j be the function j defined in a neighborhood of zero as

j(ϵ) = J(x+ ϵh).

Since x is a minimizer of J , then ϵ = 0 is a minimizer of j, and so j′(0) = 0. Computing j′(0) and using Proposition
2, we get ∫ b

a

[
∂2g(t, x(t),

CFDα
a+x(t)) + CFRDα

b−x(t)
(
∂3g(t, x(t),

CFDα
a+x(t))

)]
h(t) dt

+

[
h(t)

M(α)

1− α
e −α

1−α ,b−

(
∂3g(t, x(t),

CFDα
a+x(t))

)]t=b

t=a

= 0. (17)

Also, since x is a minimizer, then

∂2L(t, x(t),
CFDα

a+x(t)) + CFRDα
b−

(
∂3L(t, x(t),

CFDα
a+x(t))

)
= 0,

for all t ∈ [a, b]. Therefore, using Eq. (17), we obtain[
h(t)

M(α)

1− α
e −α

1−α ,b−

(
∂3g(t, x(t),

CFDα
a+x(t))

)]t=b

t=a

= 0.

If x(a) is free, then h(a) is also free and taking h(a) ̸= 0 and h(b) = 0, we get

M(α)

1− α
e −α

1−α ,b−

(
∂3g(t, x(t),

CFDα
a+x(t))

)
= 0 at t = a.

The second case is similar.

3.2. The Isoperimetric Problem

Historicaly, one of the earliest problems in geometry was the isoperimetric problem, which was considered by the
ancient Greeks. The problem is to find, among all closed curves of a given length, the one which encloses the
maximum area [26]. One of the oldest problems of this type is Queen Dido’s problem. The myth says the Queen
Dido landed on the coast of North Africa and asked to the locals for a small piece of land as a temporary place
where to stay. She was told that she could have as many land as she could enclose by an oxhide. no such a good
answer! But Queen Dido was smart: she cut the oxhide into very thin stips that she used to encircle an entire
hill. This is, according to the legend, how Carthage has been founded. The Queen Dido’s problem in Calculus of
Variation is a good example of isoperimetric problems. In other words, we can state the Queen Dido’s problem as
the problem of find, among all planar simple closed curves enclosing a fixed area, the one with minimal length.
In this section we study the fractional isoperimetric problem where the Lagrangian depends on the left Caputo-
Fabrizio fractional derivative.
Let l ∈ R be fixed and g : [a, b]×R2 → R be a continuously differentiable function with respect to the second and
third arguments, such that, for any function x ∈ C1[a, b], the map t 7→ (∂3g(t, x(t),

CFDα
a+x(t))) is continuous.

The integral constraint that we will consider is the following:

I(x) =

∫ b

a

g(t, x(t),CFDα
a+x(t)) dt = l. (18)
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18 CALCULUS OF VARIATIONS INVOLVING CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIATION

Theorem 6
Let x be a minimizer of the functional J as in (15), defined on

U =
{
x ∈ C1[a, b] : x(a) = xa and x(b) = xb

}
,

subject to the additional restriction (18). If x is not an extremal of I , then there exists a real λ such that, defining
the function K : [a, b]×R2 → R by K = L+ λg, x is a solution of the equation

∂2K(t, x(t),CFDα
a+x(t)) + CFRDα

b−x(t)
(
∂3K(t, x(t),CFDα

a+x(t))
)
= 0. (19)

Proof Consider a variation of x with two parameters x+ ϵ1h1 + ϵ2h2, with |ϵi| ≪ 1 and hi ∈ C1[a, b] satisfying
hi(a) = 0 = hi(b), for i = 1, 2. Define the functions i and j with two parameters (ϵ1, ϵ2) in a neighborhood of zero
as

i(ϵ1, ϵ2) = I(x+ ϵ1h1 + ϵ2h2)− l, and j(ϵ1, ϵ2) = L(x+ ϵ1h1 + ϵ2h2).

Using Theorem 2 and integration by parts, we get

∂i

∂ϵ2
(0, 0) =

∫ b

a

[
∂2g(t, x(t),

CFDα
a+x(t)) + CFRDα

b−x(t)
(
∂3g(t, x(t),

CFDα
a+x(t))

)]
h2(t) dt

+

[
h2(t)

M(α)

1− α
e −α

1−α ,b−

(
∂3g(t, x(t),

CFDα
a+x(t))

)]t=b

t=a

= 0.

Since x is not an extremal of I , there exists some function h2 such that ∂i/∂ϵ2(0, 0) ̸= 0. By the Implicit Function
Theorem, there exists an unique function ϵ2(·) defined in a neighborhood of zero such that i(ϵ1, ϵ2(ϵ1)) = 0.

On the other hand, (0, 0) is a minimizer of j, under the restriction i(·, ·) = 0, and we just proved that ∇i(0, 0) ̸= 0.
Appealing to the Lagrange Multiplier Rule, there exists a real λ such that ∇(j + λi)(0, 0) = 0. Differentiating the
map ϵ1 7→ j(ϵ1, ϵ2) + λi(ϵ1, ϵ2), and putting (ϵ1, ϵ2) = (0, 0), we get∫ b

a

[
∂2K(t, x(t),CFDα

a+x(t)) + CFRDα
b−x(t)

(
∂3K(t, x(t),CFDα

a+x(t))
)]

h1(t) dt

+

[
h1(t)

M(α)

1− α
e −α

1−α ,b−

(
∂3K(t, x(t),CFDα

a+x(t))
)]t=b

t=a

= 0.

Using the conditions h1(a) = 0 = h1(b), we prove the desired result.

Remark 5
We can include the case where x is an extremal of I . If we apply the general form of the Lagrange Multiplier Rule,
then there are two reals (λ0, λ) ̸= (0, 0) such that x is a solution of the equation

∂2K0(t, x(t),
CFDα

a+x(t)) + CFRDα
b−x(t)

(
∂3K0(t, x(t),

CFDα
a+x(t))

)
= 0, ∀t ∈ [a, b],

where the function K0 : [a, b]×R2 → R is defined by K0 = λ0L+ λg.

3.3. Holonomic Constraints

Consider the functional J defined by

J(x1, x2) =

∫ b

a

L(t, x1(t), x2(t),
CFDα

a+x1(t),
CFDα

a+x2(t)) dt, (20)

on the space

U =
{
(x1, x2) ∈ C1[a, b]× C1[a, b] : (x1(a), x2(a)) = xa and (x1(b), x2(b)) = xb

}
,

with xa, xb ∈ R2 fixed. We are assuming that the Lagrangian verifies the two following conditions
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1. L : [a, b]×R4 → R is continuously differentiable with respect to its ith argument, for i = 2, 3, 4, 5;
2. given any function x, the maps t 7→ CFRDα

b−(∂iL(t, x(t),
CFDα

a+x(t))) are continuous, for i = 4, 5.

We consider in this new variational problem an extra constraint (called in the literature as holonomic constraint).
Assume that the admissible functions lie on the surface

g(t, x1(t), x2(t)) = 0, (21)

where g : [a, b]×R2 → R is continuously differentiable with respect to the second and third arguments. For
simplicity, we denote

x = (x1, x2) and CFDα
a+x = (CFDα

a+x1,
CFDα

a+x2).

Theorem 7
Let x ∈ U be a minimizer of J as in (20), under the constraint (21). If

∂3g(t, x(t)) ̸= 0 ∀t ∈ [a, b],

then there is a continuous function λ : [a, b] → R such that x satisfies

∂2L(t, x(t),
CFDα

a+x(t)) + CFRDα
b−

(
∂4L(t, x(t),

CFDα
a+x(t))

)
+ λ(t)∂2g(t, x(t)) = 0 (22)

and
∂3L(t, x(t),

CFDα
a+x(t)) + CFRDα

b−

(
∂5L(t, x(t),

CFDα
a+x(t))

)
+ λ(t)∂3g(t, x(t)) = 0

on [a, b].

Proof Consider a variation of x of type x+ ϵh, with |ϵ| ≪ 1, and h ∈ C2[a, b]×R2, satisfying the boundary
conditions h(a) = (0, 0) = h(b). Since

∂3g(t, x(t)) ̸= 0, ∀t ∈ [a, b],

by the Implicit Function Theorem, there exists a subfamily of variations satisfying restriction (21), that is, there
exists a unique function h2(ϵ, h1) such that (x1(t) + ϵh1(t), x2(t) + ϵh2(t)) satisfies (21). Hence, for all t ∈ [a, b],
we have

g(t, x1(t) + ϵh1(t), x2(t) + ϵh2(t)) = 0. (23)

Differentiating Eq. (23) with respect to ϵ and putting ϵ = 0, we get

∂2g(t, x(t))h1(t) + ∂3g(t, x(t))h2(t) = 0. (24)

Define the function

λ(t) = −
∂3L(t, x(t),

CFDα
a+x(t)) + CFRDα

b−

(
∂5L(t, x(t),

CFDα
a+x(t))

)
∂3g(t, x(t))

. (25)

Using equations (24) and (25), we obtain

λ(t)∂2g(t, x(t))h1(t) =
[
∂3L(t, x(t),

CFDα
a+x(t)) + CFRDα

b−

(
∂5L(t, x(t),

CFDα
a+x(t))

)]
h2(t). (26)

On the other hand, since x is a minimizer of J , the first variation of J must vanish:∫ b

a

∂2L(t, x(t),
CFDα

a+x(t))h1(t) + ∂3L(t, x(t),
CFDα

a+x(t))h2(t)

+∂4L(t, x(t),
CFDα

a+x(t))CFDα
a+h1(t) + ∂5L(t, x(t),

CFDα
a+x(t))CFDα

a+h2(t) dt = 0.
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Integrating by parts, we obtain∫ b

a

[
∂2L(t, x(t),

CFDα
a+x(t)) + CFRDα

b−

(
∂4L(t, x(t),

CFDα
a+x(t))

)]
h1(t)

+
[
∂3L(t, x(t),

CFDα
a+x(t)) + CFRDα

b−

(
∂5L(t, x(t),

CFDα
a+x(t))

)]
h2(t) dt = 0.

Inserting Eq. (26) into the integral, we get∫ b

a

[
∂2L(t, x(t),

CFDα
a+x(t)) + CFRDα

b−

(
∂4L(t, x(t),

CFDα
a+x(t))

)
+ λ(t)∂2g(t, x(t))

]
h1(t) dt = 0,

and, since h1 is arbitrary, we have that x is a solution of the equation

∂2L(t, x(t),
CFDα

a+x(t)) + CFRDα
b−

(
∂4L(t, x(t),

CFDα
a+x(t))

)
+ λ(t)∂2g(t, x(t)) = 0.

Also, using Eq. (25), we obtain the second condition

∂3L(t, x(t),
CFDα

a+x(t)) + CFRDα
b−

(
∂5L(t, x(t),

CFDα
a+x(t))

)
+ λ(t)∂3g(t, x(t)) = 0.

The proof is complete.

Theorem 8
Suppose that the function L(t, x1, x2, y1, y2) as in (20) is convex in [a, b]×R4, g : [a, b]×R2 → R is continuously
differentiable with respect to the second and third arguments, and let λ be given by Eq. (25). If ∂3g(t, x(t)) ̸= 0, for
all t ∈ [a, b], and x is a solution of the fractional Euler–Lagrange equation (22), then x minimizes J in U , subject
to (21).

Proof If x+ ϵh is a variation of x, then

J(x+ ϵh)− J(x) ≥
∫ b

a

[
∂2L(t, x(t),

CFDα
a+x(t)) + CFRDα

b−(∂4L(t, x(t),
CFDα

a+x(t)))
]
ϵh1(t)

+
[
∂3L(t, x(t),

CFDα
a+x(t)) + CFRDα

b−(∂5L(t, x(t),
CFDα

a+x(t)))
]
ϵh2(t) dt.

Since the variation functions must satisfy the constraint (21), we have the following relation

h2(t) = −∂2g(t, x(t))h1(t)

∂3g(t, x(t))
,

and using Eq. (25), we deduce

J(x+ ϵh)− J(x) ≥
∫ b

a

[
∂2L(t, x(t),

CFDα
a+x(t)) + CFRDα

b−

(
∂4L(t, x(t),

CFDα
a+x(t))

)
+λ(t)∂2g(t, x(t))] ϵh1(t) dt,

which is zero by hypothesis.

4. Conclusion and future work

In this paper we have presented variational problems that depend on the Caputo-Fabrizio derivative operator. We
exhibit sufficient conditions of optimality for the fundamental problem of the calculus of variations, for problems
subject to integral constrains (isoperimetric problems) and for problems subject to holonomic constraints. As future
work, it would be interesting to get some real examples/applications for main results of this paper and also make
some research to get new properties for the Caputo-Fabrizio derivative operator.
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