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Some Confidence Regions for Traffic Intensity Vector
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Abstract Using the Consistent and Asymptotically Normal(CAN) estimator and its covariance matrix (A,) 100(1− α)%
confidence region for traffic intensity vector ρ with no assumption of arrival and service time distribution is constructed
in this paper. Also Standard Bootstrap (SB), Bayesian Bootstrap(BB) and percentile bootstrap (PB) are applied to develop
the confidence regions for traffic intensity vector ρ with confidence level 100(1− α)%. Simulation study is undertaken to
evaluate the performances of the confidence regions in terms of their coverage area percentage, average area and relative
coverage area. Calibration technique is used to improve the coverage area percentages of confidence regions.
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1. Introduction

Consider an open queueing network model as shown in Figure 1 which consists of two nodes with respective
service rates µ1 and µ2. The external arrival rate to node-1 is λ.

Figure 1. Two stage open queueing network

Traffic intensity vector ρ is defined as follows:

ρ = (ρ1 , ρ2)
′ =

(
λ

µ1
,

µ1

µ2

)′

(1)

and 1/λ represent mean inter-arrival time and 1/µ1 , 1/µ2 denotes mean service times at node-1 and node-2
respectively. Traffic intensity vector ρ can be interpreted as expected number of arrivals per mean service.
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Jackson [14] presented queueing networks with arrival process that can depend on the state of the system
and closed queueing networks with exponential servers. Disney [4] introduces basic properties of queueing
networks. Open queueing networks are useful in studying the behavior of computer communication networks
(Kleinrock [18]). Thiruvaiyaru, Basawa and Bhat [23] considered the problem of Maximum likelihood estimation
for Jackson networks with Poisson arrival and exponential service time at each node. Bootstrap technique are
discussed in Efron and Tibshirani [5]. Besides the standard bootstrap technique, Rubin [22] presented the Bayesian
bootstrap technique of resampling. Ke and Chu [16] proposed a nonparametric approach of intensity for a queueing
system with distribution free inter-arrival and service times. Gedam and Pathare [7] proposed CAN estimator and
different bootstrap approaches to develop the confidence intervals of intensities. Gedam and Pathare [8] constructed
an calibrated CAN, Exact-t, Variance-stabilized Bootstrap-t, and different bootstrap confidence intervals for
intensity parameters of open queueing network model with feedback. Gedam and Pathare [9] used calibration
technique to construct confidence intervals for intensity parameters. Numerical simulation study is conducted to
demonstrate performances of the calibrated confidence intervals. Pathare and Gedam [21] proposed a consistent
and asymptotically normal estimator for intensity parameters for a queueing network. Using this estimator and its
estimated variance, asymptotic confidence interval for intensities is constructed. Bootstrap approaches are applied
to develop the confidence intervals for intensity parameters. Gedam and Pathare [10] used data based recurrence
relation to compute a sequence of response time. The sample means from those response times, denoted by r̂1 and
r̂2 are used to estimate true mean response time r1 and r2. Confidence intervals for mean response times r1 and r2
are constructed. Gedam and Pathare [11] constructed various confidence intervals for mean response times of an
open queueing network model with feedback using the calibration approach.

The organization of the paper is as follows: The calibration technique is given in section 2. In section 3, we
discuss statistical inference of traffic intensity vector and construct different confidence regions for traffic intensity
vector. Section 4 is devoted to evaluate the performance of four confidence regions in terms of simulation analysis.
The performances of the confidence regions are assessed in terms of their coverage area percentage,average area
and relative coverage area. Calibration technique is used to improve the coverage percentage area of confidence
regions. Finally some concluding remarks are given in section 5.

2. Calibration Technique

The actual coverage of confidence region is rarely equal to the desired level. Hence to improve the coverage
accuracy of confidence region we use calibration technique. First use bootstrap to estimate the true coverage of
confidence region and the region is then adjusted by comparing with the target nominal level. The general theory
of calibration is reviewed in Efron and Tibshirani [6], following ideas of Loh [19], Beran [2], Hall [13], Hall and
Martin [12]. The bootstrap calibration technique was introduced by Loh [20]. To illustrate, first find γ̂ for the
confidence region for ρ with γ. Then set

γ1 =
γ2

γ̂
, if γ̂ ≥ γ

= γ +
(1− γ)(γ − γ̂)

(1− γ̂)
, if γ̂ < γ

(2)

That is we get the point (γ1, γ) by linearly interpolating between

(i) (0, 0) and (γ, γ̂) if γ̂ ≥ γ

(ii) (γ, γ̂) and (1, 1) if γ̂ < γ

Suppose we want a 95% confidence region for the ρ. Suppose by using α = 0.025 such that γ = 1− 2α = 0.95,
we find coverage area γ̂ = 0.87, that is γ̂ = 0.87 and γ = 0.95. Now we want to increase coverage area γ̂ = 0.87
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to 0.95. Here γ̂ < γ hence we get the point (γ1, γ) by linearly interpolating between (γ, γ̂) and (1, 1). That is

γ1 = γ +
(1− γ)(γ − γ̂)

(1− γ̂)

= 0.95 +
(1− 0.95)(0.95− 0.87)

(1− 0.87)

= 0.98

Hence we will set γ1 = 0.98. Therefore the calibrated confidence region for ρ is with γ = γ1 .

3. Statistical Inference of Traffic Intensity Vector

Let (X,Y ) be nonnegative random variables representing inter-arrival time and service time of node-1 and (Y,Z)
be nonnegative random variables representing inter-arrival time and service time to node-2. The traffic intensity
vector ρ is defined as follows:

ρ = (ρ1 , ρ2)
′ =

(
µY

µX
,

µZ

µY

)′

(3)

where µX and µY denote the mean inter-arrival time and mean service time of node-1. Also µY and µZ denote the
mean inter-arrival time and mean service time of node-2. Equation (3) is equivalent to equation (1).

3.1. Estimation of traffic intensity vector

Assume that (X1, X2, · · · , Xn) and (Y1, Y2, · · · , Yn) are random samples drawn from X and Y respectively. Let
(Y1, Y2, · · · , Yn) and (Z1, Z2, · · · , Zn) be random samples drawn from Y and Z. Let X , Y and Z be the sample
means of X ,Y and Z respectively.

According to the Strong Law of Large Numbers, X , Y and Z are strongly consistent estimator of µX , µY , and
µZ respectively. Thus strongly consistent estimator of ρ is given by

ρ̂ = (ρ̂1 , ρ̂2)
′ =

(
Y

X
,

Z

Y

)
(4)

As true distributions of X, Y and Z are not known in practice the asymptotic distribution of ρ can be developed
as follows.

Suppose Tm
D−→ Nm(θ,Σ). Let g : Rm−→Rk be such that g(u1, u2, · · ·um) = (g1(u1,

u2, · · ·um), g2(u1, u2, · · ·um), · · · , gn(u1, u2, · · ·um)). Assume g1, g2, · · · gk are totally differentiable functions
then g(Tm)

D−→ Nk(g(θ), MΣM ′) (Kale [15]) where

M =



∂g1
∂θ1

∂g1
∂θ2

∂g1
∂θ3

. . . ∂g1
∂θm

∂g2
∂θ1

∂g2
∂θ2

∂g2
∂θ3

. . . ∂g2
∂θm

. . . . . . . . . . . . . . . . . . . . . . . . . .

∂gk
∂θ1

∂gk
∂θ2

∂gk
∂θ3

. . . ∂gk
∂θm


If X1, X2, · · · , Xk are independent and identically distributed random vectors with mean µ ∈ Rk and covariance

matrix Σ where Σ is positive definite and has finite elements, then
√
n(Xn − µ)

D−→ Nk(0,Σ) where D−→ denotes
convergence in distribution (Kale [15]).

By Theorem 3.2 we have,
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√
n

 X − µX

Y − µY

Z − µZ

 D−→ N3

  0
0
0

 ,
∑ 

where,

∑
=

 σ2
x 0 0
0 σ2

y 0
0 0 σ2

z

 .

σ2
x , σ2

y and σ2
z are variances of X ,Y and Z respectively.

Now consider g : R3 −→ R2 such that

g(U1, U2, U3) = (g1(U1, U2, U3), g2(U1, U2, U3))

=

(
U2

U1
,

U3

U2

)
= (ρ̂1, ρ̂2)

By Theorem 3.1 we have,

√
n

(
ρ̂1 − ρ1
ρ̂2 − ρ2

)
D−→ N2

[ (
0
0

)
, MΣM ′

]

where MΣM ′=

 U2
2

U4
1
σ2
X + 1

U2
1
σ2
Y − U3

U1U2
2
σ2
Y

− U3

U1U2
2
σ2
Y

U2
3

U4
2
σ2
Y + 1

U2
2
σ2
Z


and

M =

 −U2

U2
1

1
U1

0

0 −U3

U2
2

1
U2

 .

M ′ is transpose of M. Let A = MΣM ′. Again by Theorem 3.2 we have,

√
n

[ (
ρ̂1
ρ̂2

)
−
(

ρ1
ρ2

) ]
D−→ N2

[ (
0
0

)
, A

]
That is √

n
(
ρ̂− ρ

) D−→ N2 ( 0 , A) .

where

A=

 µ2
Y

µ4
X
σ2
X + 1

µ2
X
σ2
Y − µZ

µXµ2
Y
σ2
Y

− µZ

µXµ2
Y
σ2
Y

µ2
Z

µ4
Y
σ2
Y + 1

µ2
Y
σ2
Z


It follows that n

(
ρ̂− ρ

)′
A−1

(
ρ̂− ρ

)
has a χ2 - distribution with two degrees of freedom (Anderson [1]).

Let Tn = n
(
ρ̂− ρ

)′
A−1

(
ρ̂− ρ

) D−→ χ2
2

If A is unknown then using the sample estimates of µX , µY , µZ , σ
2
X , σ2

Y and σ2
Z we get estimator Â of A as

follows:

Â =

 Y
2

X
4S2

X + 1

X
2S2

Y − Z

XY
2S2

Y

− Z

XY
2S2

Y
Z

2

Y
4S2

Y + 1

Y
2S2

Z
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where

S2
X =

1

n− 1

n∑
i=1

(Xi −X)2, S2
Y =

1

n− 1

n∑
i=1

(Yi − Y )2 S2
Z =

1

n− 1

n∑
i=1

(Zi − Z)2

If covariance matrix A is unknown then n
(
ρ̂− ρ

)′
Â−1

(
ρ̂− ρ

) D−→ χ2
2.

Proof:
We know that Let Tn = n

(
ρ̂− ρ

)′
A−1

(
ρ̂− ρ

) D−→ χ2
2.

Let Sn = n
(
ρ̂− ρ

)′
Â−1

(
ρ̂− ρ

)
.

Now we show that Tn − Sn
P−→ 0. Consider

Tn − Sn = n
(
ρ̂− ρ

)′
(A−1 − Â−1)

(
ρ̂− ρ

)
We know that X P−→ µX , Y

P−→ µY , Z
P−→ µZ , S2

X
P−→ σ2

X , S2
Y

P−→ σ2
Y and S2

Z
P−→ σ2

Z . Then we have,
Y

2

X
4S2

X + 1

X
2S2

Y
P−→ µ2

Y

µ4
X
σ2
X + 1

µ2
X
σ2
Y ; Z

XY
2S2

Y
P−→ µZ

µXµ2
Y
σ2
Y ; Z

2

Y
4S2

Y + 1

Y
2S2

Z
P−→ µ2

Z

µ4
Y
σ2
Y + 1

µ2
Y
σ2
Z . Thus Â

converges component wise in probability to A and hence Â−1 P−→ A−1.

Therefore, Tn − Sn = n
(
ρ̂− ρ

)′
(A−1 − Â−1)

(
ρ̂− ρ

) P−→ 0

But we know that Tn
D−→ χ2

2 Therefore n
(
ρ̂− ρ

)′
Â−1

(
ρ̂− ρ

) D−→ χ2
2.

3.2. Different Confidence Regions for Traffic Intensity Vector

In this section we construct different confidence regions for traffic intensity vector.

3.2.1. Consistent and Asymptotically Normal Confidence Region: If A is unknown, then replace it by Â
(Anderson [1]). By using Theorem 3.3, 100(1− α)% CAN confidence region (CR) for ρ is given by,

CR =
{
ρ | n

(
ρ̂− ρ

)′
Â−1

(
ρ̂− ρ

)
≤ χ2

2,α

}
(5)

3.2.2. Standard Bootstrap Confidence Region: Using standard bootstrap procedure, a simple random sample
x∗ = (x∗

1, x
∗
2, · · · , x∗

n)
′ can be taken from the empirical distribution function of x = (x1, x2, · · · , xn)

′. Similarly we
can draw a bootstrap samples y∗ = (y∗1 , y

∗
2 , · · · , y∗n)′ and z∗ = (z∗1 , z

∗
2 , · · · , z∗n)′ from y = (y1, y2, · · · , yn)′ and z =

(z1, z2, · · · , zn)′ respectively. Then estimator of traffic intensity vector is denoted by ρ̂∗ = (ρ̂∗1 , ρ̂∗2)
′
=

(
y∗

x∗ , z∗

y∗

)′

and can be calculated from bootstrap samples where x∗, y∗ and z∗ be the sample means of x∗ = (x∗
1, x

∗
2, · · · , x∗

n)
′

, y∗ = (y∗1 , y
∗
2 , · · · , y∗n)′ and z∗ = (z∗1 , z

∗
2 , · · · , z∗n)′. Let ρ̂∗ be called a bootstrap estimator of ρ. The above

resampling process can be repeated N times.The N bootstrap estimates

ρ̂∗1 =

(
ρ̂∗11
ρ̂∗21

)
, ρ̂∗2 =

(
ρ̂∗12
ρ̂∗22

)
, · · · , ρ̂∗N =

(
ρ̂∗1N
ρ̂∗2N

)
can be computed from the bootstrap resamples. Averaging the N bootstrap estimates we get ρ̂N called bootstrap

estimate of ρ. That is, ρ̂N = (ρ̂N1 , ρ̂N2)
′
=

(
1
N

∑N
i=1 ρ̂

∗
1i ,

1
N

∑N
i=1 ρ̂

∗
2i

)′
and the covariance matrix of ρ̂ using

standard bootstrap can be estimated by

Ã∗=

 1
N−1

∑n
j=1(ρ̂

∗
1j − ρ̂N1)

2 1
N−1

∑n
j=1(ρ̂

∗
1j − ρ̂N1)(ρ̂

∗
2j − ρ̂N2)

1
N−1

∑n
j=1(ρ̂

∗
1j − ρ̂N1)(ρ̂

∗
2j − ρ̂N2)

1
N−1

∑n
j=1(ρ̂

∗
2j − ρ̂N2)

2
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Using the estimator of A as Ã∗, a 100(1− α)% SB confidence region for ρ is given by

CR =
{
ρ | n

(
ρ̂− ρ

)′
Ã∗−1

(
ρ̂− ρ

)
≤ χ2

2,α

}
(6)

3.2.3. Bayesian Bootstrap Confidence Region: Using Bayesian bootstrap procedure we calculate x∗∗ =
n∑

i=1

uixi

for µx (the mean of X,) where u′ = (u1, u2, · · · , un) is the vector of probabilities attached to the inter-arrival

data x1, x2, · · · , xn. Similarly we calculate y∗∗ =
n∑

i=1

viyi for µy (the mean of Y ) and z∗∗ =
n∑

i=1

wizi for µz

(the mean of Z). where v′ = (v1, v2, · · · , vn) and w′ = (w1, w2, · · · , wn) are vector of probabilities attached
to the data values y1, y2, · · · , yn and z1, z2, · · · , zn respectively. Then an estimate of traffic intensity vector is

denoted by ρ̂∗∗ = (ρ̂∗∗1 , ρ̂∗∗2 )
′
=

(
y∗∗

x∗∗ , z∗∗

y∗∗

)′
and can be calculated from BB replications. Let ρ̂∗∗ be called a

Bayesian bootstrap estimator of ρ. The above BB process can be repeated N times. The N BB estimates ρ̂∗∗1 =(
ρ̂∗∗11
ρ̂∗∗21

)
, ρ̂∗∗2 =

(
ρ̂∗∗12
ρ̂∗∗22

)
, · · · , ρ̂∗∗N =

(
ρ̂∗∗1N
ρ̂∗∗2N

)
can be computed from the BB replications. Averaging the N BB

estimates we get ρ̂BB called BB estimate of ρ. That is, ρ̂BB = (ρ̂BB1 , ρ̂BB2)
′
=

(
1
N

∑N
i=1 ρ̂

∗∗
1i , 1

N

∑N
i=1 ρ̂

∗∗
2i

)′
.

And the covariance matrix of ρ̂ using Bayesian bootstrap can be estimated by

Ã∗∗=

 1
N−1

∑n
j=1(ρ̂

∗∗
1j − ρ̂BB1)

2 1
N−1

∑n
j=1(ρ̂

∗∗
1j − ρ̂BB1)(ρ̂

∗∗
2j − ρ̂BB2)

1
N−1

∑n
j=1(ρ̂

∗∗
1j − ρ̂BB1)(ρ̂

∗∗
2j − ρ̂BB2)

1
N−1

∑n
j=1(ρ̂

∗∗
2j − ρ̂BB2)

2


Using the estimator of A as Ã∗∗ a 100(1− α)% BB confidence region for traffic intensity vector ρ is given by

CR =
{
ρ | n

(
ρ̂− ρ

)′
Ã∗∗−1

(
ρ̂− ρ

)
≤ χ2

2,α

}
(7)

3.2.4. Percentile Bootstrap Confidence Region: Now consider ρ̂1
∗ =

(
ρ̂∗11
ρ̂∗21

)
, ρ̂2

∗ =

(
ρ̂∗12
ρ̂∗22

)
, · · · , ρ̂N ∗ =(

ρ̂∗1N
ρ̂∗2N

)
the bootstrap distribution of ρ̂. To arrange ρ̂1

∗, ρ̂2
∗, ρ̂3

∗, · · · , ρ̂N
∗ we use Euclidian distance,

where Euclidian distance is given by, dj =
√

(ρ̂∗1j − ρ̂N1)2 + (ρ̂∗2j − ρ̂N2)2 , j = 1, 2 · · · , N where ρ̂N1 =

1
N

∑N
i=1 ρ̂

∗
1i, and ρ̂N2 = 1

N

∑N
i=1 ρ̂

∗
2i. Hence ρ̂1

∗(1), ρ̂2
∗(2), ρ̂3

∗(3), · · · , ρ̂N
∗(N) is the ordered arrangement

of ρ̂1
∗, ρ̂2

∗, ρ̂3
∗, · · · , ρ̂N

∗. Then utilizing the 100(1− α)th percentage point of the bootstrap distribution,
100(1− α)% PB confidence region for ρ is given by

CR =
{
ρj | dj ≤ ([N(1− α)])

}
(8)

where [x] denotes the greatest integer less than or equal to x.

4. Simulation Study

A simulation study was performed to examine the relevance of confidence regions constructed in equations (5) to
(8). The performances of the confidence regions are assessed in terms of their coverage area percentage,average
area and relative coverage area.Relative coverage area is defined as the ratio of coverage area percentage to average
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area of confidence region. We have simulated M/E4/1 to E4/H
Pe
4 /1, M/HPe

4 /1 to HPe
4 /E4/1, E4/H

Pe
4 /1

to HPe
4 /M/1 and E4/H

Po
4 /1 to HPo

4 /HPe
4 /1 queueing network models, where M : exponential distribution,

E4 : 4-stage Erlang distribution, HPe
4 : 4-stage hyperexponential distribution and HPo

4 : 4-stage hypoexponential
distribution. The values of (ρ1 , ρ2) are set to (0.2 , 0.8). Random samples of arrival times and service times
are drawn. Next N = 1000 bootstrap resamples are drawn from the original samples, as well as N = 1000 BB
replications are simulated for the original samples. The above simulation process is replicated N = 1000 times. We
compute coverage area percentage, average area and relative coverage area of the confidence regions. Calibration
technique is used to improve the coverage percentage area of confidence regions obtained in equations (5) to (8).
Based on the different estimation approaches coverage area percentage,average area and relative coverage area of
ρ without calibration and with calibration are shown in Tables 1 to 5. More on simulation technique for confidence
intervals or hypothesis testing, we refer our readers to Kibria and Banik [17] and Banik and Kibria [3] among
others. Figure 2 shows that as sample size increases from 5 to 100 coverage area percentage are approaches to 95
%.

Figure 2. Confidence Regions for Traffic Intensity Vector of a M/E4/1 to E4/H
Pe
4 /1 Queueing Network Model without

feedback
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5. Conclusions

Estimation approaches CAN, SB, BB and PB are used to construct various confidence regions for traffic intensity
vector. From Tables 1 to 4 we observed that average area are decreasing as n increases from 5 to 100 but both
coverage area percentage and relative coverage area are increasing as n increases from 5 to 100. Coverage area
percentage are approaches to 95 % when n increases to 100. Also we observed that, with calibration technique
relative coverage area is comparatively more than without calibration technique. It is observed that, the estimation
approach Bayesian Bootstrap has the greatest relative coverage area without as well as with calibration for all
queueing network models. From Table 5 it is observed that, due to calibration technique maximum increase in
coverage area percentage of confidence regions is 14.7% for E4/H

Pe
4 /1 to HPe

4 /M/1 queueing network model.
These approaches are successfully and efficiently applied to practical queueing network models. Also calibration
technique can be used to improve the coverage area percentage of confidence regions.

Table 1. Simulation results for confidence regions of M/E4/1 to E4/H
Pe
4 /1

Coverage Area Percentages for ρ1 = 0.2 and ρ2 = 0.8
Estimation Before Calibration After Calibration
Approches n = 5 n = 10 n = 20 n = 30 n = 50 n = 100 n = 5 n = 10 n = 20 n = 30 n = 50 n = 100
Chi 0.826 0.896 0.909 0.928 0.935 0.928 0.896 0.926 0.953 0.941 0.932 0.950
SB 0.844 0.922 0.917 0.939 0.947 0.930 0.908 0.931 0.958 0.940 0.931 0.952
BB 0.796 0.884 0.901 0.926 0.935 0.924 0.878 0.929 0.955 0.942 0.932 0.954
PB 0.852 0.878 0.881 0.893 0.892 0.894 0.973 0.980 0.970 0.972 0.968 0.978

Average Areas for ρ1 = 0.2 and ρ2 = 0.8
Chi 1.926 1.937 1.898 1.932 1.926 1.919 1.902 1.871 1.904 1.905 1.919 1.912
SB 0.827 0.240 0.104 0.068 0.040 0.020 0.868 0.231 0.105 0.067 0.040 0.019
BB 0.380 0.188 0.092 0.063 0.038 0.019 0.374 0.182 0.093 0.062 0.038 0.019
PB 0.484 0.333 0.231 0.190 0.145 0.103 0.480 0.329 0.230 0.189 0.146 0.103

Relative Coverage areas for ρ1 = 0.2 and ρ2 = 0.8
Chi 0.429 0.463 0.479 0.480 0.486 0.484 0.471 0.495 0.500 0.494 0.486 0.497
SB 1.021 3.838 8.820 13.753 23.788 47.781 1.046 4.030 9.163 13.960 23.462 48.971
BB 2.093 4.708 9.768 14.736 24.778 48.696 2.346 5.115 10.309 15.214 24.745 50.532
PB 1.760 2.637 3.812 4.705 6.152 8.703 2.028 2.976 4.214 5.138 6.623 9.463

Table 2. Simulation results for confidence regions of M/HPe
4 /1 to HPe

4 /E4/1

Coverage Area Percentages for ρ1 = 0.2 and ρ2 = 0.8
Estimation Before Calibration After Calibration
Approches n = 5 n = 10 n = 20 n = 30 n = 50 n = 100 n = 5 n = 10 n = 20 n = 30 n = 50 n = 100
Chi 0.833 0.897 0.922 0.927 0.937 0.930 0.898 0.916 0.945 0.953 0.950 0.957
SB 0.864 0.924 0.931 0.937 0.945 0.932 0.908 0.926 0.953 0.954 0.949 0.959
BB 0.813 0.895 0.915 0.920 0.930 0.926 0.884 0.913 0.944 0.952 0.955 0.960
PB 0.852 0.878 0.885 0.891 0.891 0.882 0.979 0.974 0.981 0.974 0.975 0.979

Average Areas for ρ1 = 0.2 and ρ2 = 0.8
Chi 1.937 1.888 1.908 1.917 1.898 1.932 1.980 1.880 1.930 1.894 1.931 1.925
SB 0.899 0.241 0.106 0.068 0.039 0.020 1.391 0.242 0.108 0.067 0.040 0.020
BB 0.397 0.186 0.093 0.063 0.037 0.019 0.405 0.185 0.094 0.062 0.038 0.019
PB 0.497 0.334 0.234 0.190 0.147 0.104 0.512 0.331 0.235 0.189 0.148 0.104

Relative Coverage Areas for ρ1 = 0.2 and ρ2 = 0.8
Chi 0.430 0.475 0.483 0.484 0.494 0.481 0.454 0.487 0.490 0.503 0.492 0.497
SB 0.961 3.827 8.816 13.699 23.998 47.442 0.653 3.835 8.858 14.175 23.677 49.025
BB 2.049 4.815 9.806 14.715 24.907 48.424 2.183 4.931 9.998 15.405 25.173 50.467
PB 1.714 2.632 3.784 4.680 6.048 8.468 1.912 2.943 4.180 5.162 6.594 9.396
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Table 3. Simulation results for confidence regions of E4/H
Pe
4 /1 to HPe

4 /M/1

Coverage Percentage Areas for ρ1 = 0.2 and ρ2 = 0.8
Estimation Before Calibration After Calibration
Approches n = 5 n = 10 n = 20 n = 30 n = 50 n = 100 n = 5 n = 10 n = 20 n = 30 n = 50 n = 100
Chi 0.770 0.865 0.889 0.910 0.930 0.948 0.851 0.898 0.921 0.936 0.949 0.926
SB 0.771 0.862 0.891 0.901 0.931 0.947 0.854 0.895 0.919 0.939 0.945 0.928
BB 0.713 0.842 0.876 0.899 0.924 0.950 0.817 0.879 0.916 0.934 0.946 0.919
PB 0.769 0.851 0.872 0.869 0.872 0.889 0.916 0.929 0.936 0.966 0.960 0.959

Average Areas for ρ1 = 0.2 and ρ2 = 0.8
Chi 1.601 1.750 1.841 1.849 1.891 1.903 1.633 1.761 1.813 1.870 1.887 1.893
SB 0.333 0.177 0.092 0.062 0.038 0.019 0.338 0.178 0.091 0.063 0.038 0.019
BB 0.254 0.156 0.086 0.059 0.037 0.019 0.259 0.156 0.085 0.060 0.037 0.019
PB 0.588 0.449 0.326 0.270 0.212 0.151 0.606 0.441 0.322 0.272 0.211 0.150

Relative Coverage Areas for ρ1 = 0.2 and ρ2 = 0.8
Chi 0.481 0.494 0.483 0.492 0.492 0.498 0.521 0.510 0.508 0.501 0.503 0.489
SB 2.313 4.880 9.648 14.596 24.579 49.761 2.530 5.036 10.100 15.006 25.068 49.080
BB 2.809 5.403 10.141 15.197 25.077 50.669 3.158 5.620 10.730 15.594 25.735 49.272
PB 1.309 1.896 2.673 3.218 4.121 5.879 1.512 2.106 2.907 3.553 4.556 6.385

Table 4. Simulation results for confidence regions of E4/H
Po
4 /1 to HPo

4 /HPe
4 /1

Coverage Percentage Areas for ρ1 = 0.2 and ρ2 = 0.8
Estimation Before Calibration After Calibration
Approches n = 5 n = 10 n = 20 n = 30 n = 50 n = 100 n = 5 n = 10 n = 20 n = 30 n = 50 n = 100
Chi 0.804 0.882 0.907 0.912 0.950 0.946 0.872 0.916 0.942 0.942 0.950 0.937
SB 0.812 0.880 0.907 0.911 0.951 0.945 0.876 0.921 0.945 0.946 0.942 0.936
BB 0.750 0.856 0.897 0.905 0.947 0.943 0.848 0.911 0.940 0.943 0.948 0.934
PB 0.816 0.860 0.872 0.887 0.904 0.913 0.950 0.966 0.968 0.963 0.975 0.960

Average Areas for ρ1 = 0.2 and ρ2 = 0.8
Chi 1.1157 1.1738 1.2219 1.2062 1.2597 1.2620 1.1353 1.1965 1.2378 1.2419 1.2471 1.2468
SB 0.2447 0.1216 0.0619 0.0405 0.0253 0.0126 0.2454 0.1247 0.0628 0.0416 0.0251 0.0125
BB 0.1826 0.1055 0.0577 0.0386 0.0246 0.0125 0.1843 0.1081 0.0585 0.0397 0.0243 0.0123
PB 0.4571 0.3305 0.2419 0.1950 0.1547 0.1102 0.4601 0.3352 0.2422 0.1994 0.1537 0.1094

Relative Coverage Areas for ρ1 = 0.2 and ρ2 = 0.8
Chi 0.721 0.751 0.742 0.756 0.754 0.750 0.768 0.766 0.761 0.759 0.762 0.752
SB 3.319 7.235 14.657 22.501 37.622 74.805 3.569 7.385 15.055 22.734 37.580 74.981
BB 4.108 8.111 15.536 23.434 38.539 75.680 4.602 8.427 16.074 23.737 39.014 75.911
PB 1.785 2.602 3.605 4.548 5.842 8.288 2.065 2.882 3.996 4.830 6.343 8.776

Table 5. Maximum percentage(%) increase in coverage percentage area due to calibration technique

Increase in Coverage Percentage area for ρ1 = 0.2 and ρ2 = 0.8
Queueing Network Model n = 5 n = 10 n = 20 n = 30 n = 50 n = 100

M/E4/1 to E4/HPe
4 /1 12.10 10.20 8.90 7.90 7.60 8.40

M/HPe
4 /1 to HPe

4 /E4/1 12.70 9.60 9.60 8.30 8.40 9.70
E4/HPe

4 /1 to HPe
4 /M/1 14.70 7.80 6.40 9.70 8.80 7.00

E4/HPo
4 /1 to HPo

4 /HPe
4 /1 13.40 10.60 9.60 7.60 7.10 4.70
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