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Abstract Increasing amounts of image data are being routinely collected as part of the big-data revolution, with
applications as diverse as automated security surveillance and dynamic medical imaging. To make best use of the data,
the analyses must be automatic and rapid. Simple image properties can be used to highlight specific features in an initial
screening or form input to elaborate classification techniques. A key stage in any image analysis is the identification of
structure amongst the noise. It is important to realise that noise can be localized, independent and random, or it could contain
small-scale structure which, in some ways, resembles the important features—this is called clutter. This paper uses the
concept of the Hough transform to convert grey-level images into a more useful feature space representation. This space
is searched for high density regions to identify dominant structure whilst taking into account micro-line clutter. Further,
a directional distribution is introduced and a resulting dominant direct is proposed as a single structural summary. Many
examples of simulated and real data images are used to illustrate the proposed techniques.
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1. Introduction

The Hough transform, first introduced by Paul Hough in 1962, is a method for extracting features of a particular
shape from an image. The original Hough transform is most commonly used for the detection of curves, such
as lines, circles and ellipses, in a black and white image where the transform can be regarded as an edge linker
grouping pixels together even though they may not be spatially close. The main idea of the method is to transform
a spatially-extended pattern into a concentrated region in a feature space, that is a problem of detecting a global
feature in the image space is then converted into a local problem in the feature space. A more detailed introduction
to the Hough transform can be found in [1] [2], [3] and [4] who place a particular group of Hough transforms in the
framework of importance sampling. Variations on the original Hough transform have been proposed for different
situations. For example, Shen and Wang [5] introduced a new algorithm to detect corners and Yang and Lee [6]
modify the Hough transform to detect short, thick and connected line segments by including weights. Several
modified approaches, see for example [7], have been presented to alleviate the computation and storage difficulties
in the standard Hough transform. Further extensions have focused on developing a Hough transform for use in
grey-level images, see for example [8]. There are also varied applications, for example to the detection of eyes in
human faces [9], and to the location of burried objects in radar images [10].
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The Hough transform method for line detection can be described as follows. The locations of a set of collinear
points (x, y) in the image can be described by the equation f(m, c, x, y) = y −mx− c = 0 where m and c are
two parameters, the slope and intercept, which characterize the line. The Hough transform technique assumes that
the coordinates of the point (x, y) are known and therefore serve as constant in the parametric equation, whilst
c and m are the unknown variables. This is a many–to–one mapping of the image to the parameter space, but it
defines a one–to–many mapping of the parameter space to the image space. Unfortunately, this parameterization
has a potential problem when m is infinite, that is when vertical lines exist in the image. To avoid this problem,
[11] suggested the alternative parameterization d = x cos(θ) + y sin(θ). A way of explaining this transformation is
to plot a perpendicular from the origin to the line, the angle that the perpendicular makes with the x-axis is θ and d
is the length of the perpendicular. See Figure 1 which shows a diagram of the transform process. Each point (θ, d)
in Hough space corresponds to a line at angle θ and distance d in the original data space. The parameters now are
θ and d where −π < θ ≤ π, and d is bounded by half the diagonal of the image. All points on a line contribute to
the same point in Hough space, but points lie on many lines.
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Figure 1. Diagram of the transform and the Hough space.

The transform is implemented by partitioning the Hough parameter space into a finite number of small regions,
called accumulator cells, which is equivalent to discretising the angle, θ and the distance d. As the algorithm
runs, each (x, y) is transformed into the discretised (θ, d) space and the corresponding cell is incremented in the
Hough accumulator. Resulting peaks in the accumulator represent strong evidence that a corresponding straight
line exists in the image. The original Hough transform method can be summarized in the following steps: (i)
threshold the given image to produce a binary representation, choosing the threshold to identify the desired features;
(ii) discretise the parameter space into a two dimensional matrix, H (the accumulator array), with appropriate
discretisation to balance resolution and robustness; (iii) define a function, such as count or sum, to summarize
the points in the image space; (iv) each point in the image space is mapped to the (θ, d) space and the accumulator
updated appropriately; (v) find the local maxima in the accumulator corresponding to the parameters of potentially
important features; and (vi) if desired, map each maxima in the accumulator back to image space.

The original definition has limitations in that it only identifies structure which appears as high intensities—in
particular above the threshold. Our modification has been made, because the standard Hough transform does not
deal with negative intensities, while the features in some images can take negative values, and it avoids the need to
choose a threshold. The main difference, between the standard Hough transform and the modified Hough transform,
is in forming the accumulator. The standard method counts the number of pixels above a threshold,

H(d, θ) =
∑

{I(x,y) > t},
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(a) Simulated data
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(c) Modified transform

Figure 2. Standard and modified Hough transforms applied to a simulated image.

while in the modified Hough transform, the accumulator cells represent the absolute values of the summation for
the intensities of the pixels,

H(d, θ) =
∣∣∣∑{I(x,y)}

∣∣∣ .
The modification is important to allow detection of curves which consist of negative, as well as positive, intensities.
The comparison can be explained in the following example. Figure 2(a) shows a synthetic image containing an X-
shape as a feature plus independent Gaussian noise with small variance. The standard and the modification Hough
transforms are used to produce the results in Figures 2(b) and (c). Both lines are visible in the modified Hough
transform as important peaks, but only one peak appears in the standard Hough transform. That is, the standard
Hough transform misses the line with negative intensity. It can also be seen that the low level noise in the data has
an increased influence in the Hough space making identification of important peaks challenging.

2. Location of peaks in Hough space

The task now is to determine the location of peaks in Hough space, which represent the lines in the image.
The important peaks are extracted from noisy and cluttered images by combining smoothing, thresholding and
morphological operations. Two methods for thresholding will be presented in this paper to extract dominant peaks
based on: (i) percentiles of the observed accumulator value distribution, and (ii) calibration to allow sensitivity to
lines of different length, then relate the threshold to a minimum line length which is of practical importance. Using
either of these methods, the threshold can be obtained and then the important lines can be found from the Hough
space. The basic steps to implement the method are as follows: (i) all cell entries below the threshold are removed
from the Hough space; (ii) smoothing by spatial median filter which usually leaves small groups of high pixels; (iii)
groups of pixels are then shrunk to single points; and (iv) mapping back from Hough space into Cartesian space
yields identified lines. We shall call the isolated points principle peaks and the corresponding back-transformed
lines, principle lines.

Again, consider the image of an X-shaped feature, redrawn in Figure 3(a) with modified Hough transformation
in Figure 3(b). To identify the peaks in the Hough space image, the first stage is a method to find a threshold. As it
can be seen, in (b), the feature constituted only a few high values compare to the whole image, hence the required
percentile in (c) might be taken as 98% or 99% to identify the peaks in the accumulator. Figure 3(c) shows the
cumulative distribution of the Hough matrix with the 99% percentile giving a threshold of t = 0.85. The regions in
Hough space, which are extracted using this threshold, are illustrated in Figure 4(a).

To reduce isolated noise in the thresholded Hough space image, the spatial median filter has been applied, which
replaces each pixel by the median value from the first-order neighbourhood values. The filtered Hough space image
now has several regions, each region with non-zero values surrounded by values equal to zero, as shown in Figure
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Figure 3. (a) Input image; (b) modified Hough space; (c) cumulative distribution.

(a) Thresholded Hough space (b) Median filtered (c) Principle peaks
 

 

(d) Principle lines

Figure 4. Stages in the identification of principle lines: (a) thresholded Hough space; (b) median filtered; (c) principle peaks;
(d) back-transformed principle lines.

4(b). The regions can be represented by their highest intensity, that is, each region will be reduced to its maximum
value as shown in Figure 4(c). Then, mapping back the obtained values from the Hough space into Cartesian space
yields a line description of the image as shown in Figure 4(d). The result, in this example, demonstrates that the
proposed method performs successfully and efficiently.

3. Calibration of Hough space threshold

In the previous section, because the choice of percentile to use in the cumulative distribution is unknown, the
threshold was chosen to be at an arbitrary high values. In some cases this may lead to missed important features or
picking up unwanted features. The main aim in this section is to obtain the optimum threshold which can extract the
features from the noise. The proposed new method is based on simulating noisy images to calibrate the approach
with the threshold obtained from the Hough transform of the noisy image. The size and intensity of the noise is
generated to be close to that in the real image.

The data set, shown in Figure 5(a), is generated using the same noise model as was used to simulate the X-
shape in Figure 3(a). The Hough space image is shown in Figure 5(b), and Figure 5(c) shows the Hough space
for the original X-shape image using the same grey-scale to allow comparison. The threshold is found using the
maximum value in the accumulator of the noise image. The threshold was obtained then applied to the Hough space
for the original image with results shown in Figure 6(a). The speckles, that remain after the thresholding, will be
smoothed by the spatial median filter and then the remaining regions are represented by their peaks as shown in
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(a) Simulated noisy image
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(b) Hough space for noise image
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(c) Hough space for original image

Figure 5. Threshold calibration using pure noise: (a) simulated noisy image; (b) Hough space for noise image; (c) Hough
space for original image.
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(a) Thesholded Hough space (b) Principle peaks
 

 

(c) Principle lines

Figure 6. Stages in identification of principle lines: (a) thresholded Hough space; (b) principle peaks; (c) back-transformed
principle lines.

Figure 6(b). Finally the peaks are mapping back to Cartesian space. The simple structure of the feature in the image
is reconstructed correctly by the method.

Although the results of this example are good, the assumption of independent and identically distributed noise
may not be appropriate. In many imaging cases, the background in the image is not only noise, but some edge
fragments may produce false lines, this is called clutter. The effect on the Hough transform from clutter was
discussed by Benoudine et al. [12]. In cluttered images, some peaks in Hough space result from unwanted short
lines, which we call micro-lines, in the image. The micro-lines, for instance, may be due to background objects
rather than part of the feature and can mislead the methods by undesirable increases in the accumulator. The
purpose, therefore, is to design an approach that minimizes the problem of false detection of false objects in the
image background. A simple way to deal with this problem is to produce a threshold that can remove or reduce the
clutter and noise. To do so a threshold should be obtained which exceeds the peaks that are caused by the clutter.
A higher threshold detects long lines, but misses short lines, whereas a low threshold detects short lines as well as
long lines.

Our proposed calibration process is similar to that for pure noise, but the simulated image includes clutter, in
additional to the independent noise. The clutter is simulated using lines of increasing length and pre-specified
angles. The prior knowledge, of minimum length of important lines, is used to set the length of lines to use for the
simulated clutter. Then, the threshold is set as a high percentile of the cumulative distribution of the corresponding

Stat., Optim. Inf. Comput. Vol. 5, December 2017



F. M. O. HAMED AND R. G. AYKROYD 353

 

 

(a) Short micro-lines

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
30

−
20

−
10

0
10

20
30

θ

d
(b) Hough space

0.000 0.001 0.002 0.003

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

x

F
n(

x)

(c) Cumulative distribution

 

 

(d) Medium micro-lines
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(f) Cumulative distribution

 

 

(g) Long micro-lines
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(i) Cumulative distribution

Figure 7. Clutter analysis using, short lines (top row), medium lines (middle row) and long lines (bottom row), each with
simulated data, modified Hough space and corresponding cummulative distribution.

Hough space. In order to evaluate the performance, three simulated images have been generated each containing 10
randomly positioned lines, shown in the left-hand column in Figure 7. The lines are simulated to be in two groups
according to their directions. The simulated lines have intensity equal to 1 and the intensity of the background is 0.
The Gaussian noise of mean 0 and standard deviation 0.1 is added to the image.

Using the modified Hough transform, the three simulated datasets are transformed into Hough spaces, see the
central column in Figure 7. Suppose that, as prior knowledge, the line is acceptable as a feature in an image, if
it is of length more than three pixels, otherwise it is regarded as clutter in the image. The right-hand column in
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Figure 7 shows the cumulative distribution for the three Hough spaces. The 98% of the cumulative distribution of
this Hough space is used as a threshold, giving t = 0.0015, which has been applied to the Hough space.
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(c) Using long micro-lines

Figure 8. Back-transformed principle lines for, (a) short lines; (b) medium lines (c) long lines.

It is important to note that, the number of the observations, which are greater than the threshold, on the cumulative
distribution curve of long lines is more than that for medium lines, which is more than that on the cumulative
distribution curve of the smallest lines. The Hough spaces are thresholded and the spatial median filter has been
used, then the prominent peaks in the results image are mapping back to Cartesian coordinates, shown in Figure 8.
Due to the way that the short lines were generated, some of them lay in the same straight line. Using the maximum
value in the Hough space would be too large, and hence the threshold was obtained at 98%. The use of a threshold
set at 98% of the cumulative distribution has led to some unwanted short lines but works better for medium and
long lines. In this example, the method can detect most of straight lines from the medium and long lines. and there
is some duplication where many line fragments are nearly collinear.

4. The directional distribution and scale-space threshold tree

If the distance in the Hough space is not of interest, that is the main objective is to describe the direction of the
features in the image, the Hough space is collapsed over the distance. Rather than looking at the true marginal
distribution, however, the maximum observation corresponding to each angle in the Hough space is taken and then
divided by the sum of the maximum values. The directional distribution exhibits principle modes which define the
dominant directions. Note that the number of modes in the directional distribution does not represent the number
of lines in the image but the number of dominant directions in the image.

Recall the X-shaped dataset in Figure (3). The data were simulated with two dominant directions, these are
−π/4 = −0.785 and π/4 = 0.785. The directional distribution, obtained from the Hough space, in Figure 9(a)
shows a bimodal shape. The two modes are caused by the two dominant directions in the data. Due to noise and
artifacts in the Hough space, however, some small modes arise. These minor modes, which are unimportant, can be
removed, or reduced, by smoothing, such as smoothing splines. However incorrectly chosen smoothing parameters
may lead to over smoothing or under smoothing.

Using the optimal smoothing parameter, see the result in Figure 9(b), it is easy to identify and isolate the principle
peaks in the directional distribution. Choosing a large smoothing parameter leads to over smoothing, which means
a very smooth appearance missing important details, for example as in Figure 9(c).

To avoid over and under smoothing in the directional distribution, the scale space method, see for example [13],
can be used to automatically choose an optimal smoothing parameter and to detect the number of peaks in the
data. To achieve a selective smoothing that removes noise while preserving the dominant direction peaks in the

Stat., Optim. Inf. Comput. Vol. 5, December 2017



F. M. O. HAMED AND R. G. AYKROYD 355

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

 

Thresholds 

 

(a) Undersmoothed

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
20

0.
25

0.
30

0.
35

 

θ

 
(b) Moderate smoothing
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Figure 9. Results of smoothing the directional distribution using: (a) undersmoothing; (b) well-chosen smoothing; (c)
oversmoothing.

directional distribution, the scale space method is applied rather than cross validation. This is because the cross-
validation method is not designed to find the number of groups, but to best estimate the full distribution. However,
the scale-space method provides the number of thresholds that splits the directional distribution into groups, each
group representing a dominant direction.

To reduce edge effects, that may occur at the ends of the directional distribution, the data is repeated. The periodic
data is smoothed with a range of smoothing parameters, including those extreme cases of under smoothing and
over smoothing. Then the best smoothing level is regarded as the median of the values in the range of smoothing
parameter that makes the most persistent number of modes. That is with the longest twigs in the threshold tree.
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(a) Smoothed directional distribution
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(b) Scale-space tree

Figure 10. Scale space tree for threshold choice: (a) the smoothed directional distribution; (b) the scale-space tree for the
X-shaped feature.

The best representation of the smoothed curve is plotted in Figure 10(a) with dashed vertical lines to split the
different dominant directions. These correspond to peaks in the smoothed curve, and are equal to -0.77 and 0.77.
The threshold tree is in Figure 10(b), with dashed lines to show the ends of the longest twigs in the tree. In this
example, the smoothed curve yields dominant directions closer to the true directions of the feature than the standard
default smoothing. In addition, however, the scale-space tree also gives a multi-scale summary which can be used
for a deeper understanding of structure in the data image.

The two dominant directions, in the simulated micro-lines, were −π/5 = −0.628 and π/4 = 0.785. The
directional distribution of the medium length micro-lines is obtained but is a very rough curve, as plotted in Figure
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11(a), and it is not easy to identify the number of dominant directions. To appropriately smooth the directional
distribution, the optimal smoothing parameter has been found using the scale-space method, the threshold tree is
presented in Figure 11(b) and the optimal smoothing curve is displayed in Figure 11(c). The dominant directions,
in the smoothed curve, are now easily detected and they are -0.54 and 0.85. Figure 11(d) shows the directional
distribution of long lines, the two peaks corresponding to the dominant directions are -0.61 and 0.74. Using the
scale-space method the optimal smoothing is chosen for the directional distributions resulting in the bimodal curve,
in Figure 11(f). The smoothed curve has peaks at -0.61 and 0.79 which represent the dominant directions. Because
the data were simulated, the number of dominant directions is known, and it has been identified easily and correctly
from the smoothed curve. In both cases, medium and long lines, the smoothed curves were more helpful in detecting
the dominant direction than the unsmoothed directional distributions.
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(a) Directional distribution
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(b) The scale-space tree
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(c) Smoothed directional distribution
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(d) Directional distribution
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(e) The scale-space tree
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(f) Smoothed directional distribution

Figure 11. The first row: directional distribution, scale-space tree and smoothed directional distribution for medium lines;
the second row: directional distribution, scale-space tree and smoothed directional distribution for long lines.

5. Application to real texture data

Three different textures have been taken from the internet †. The three textures are plotted in the left-hand column in
Figure 12, and are paving (128× 128 pixels), zebra (503× 484) and mesh net (92× 64) respectively. Each texture
image consists of curves that represent the feature. To detect the major features in the texture, the Hough transform
method was applied as described. The middle column in Figure 12 presents the Hough space corresponding to each

†www.astronomy.swin.edu.au/∼pbourke/texture
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(f) Reconstructed principle lines

(g) Mesh net
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(i) Reconstructed principle lines

Figure 12. Left column: texture images; Middle column: Hough spaces; Right column: Reconstruction of principle lines
corresponding to paving (top row), zebra skin (middle row) and mesh net (bottom row).

textured image and mapping back the important pixels in the Hough transform space into Cartesian space is plotted
in the right column. In this example, the features in the paving image were described well using the method and in
particular, a very good representation has been obtained for the pattern in zebra skin data. The final image is mesh
netting, but because none of the lines are particularly straight and there is variation of directions, the method does
not give as good results as in the other datasets.

Results for the directional distribution and dominant direction are shown in Figure 13. The left-hand column
presents the directional distributions of paving, zebra and mesh respectively. The threshold trees are plotted in the
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(a) Directional distribution
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(b) The scale-space tree
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(c) Smoothed directional distribution
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(d) Directional distribution
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(e) The scale-space tree
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(f) Smoothed directional distribution
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(g) Directional distribution
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(h) The scale-space tree
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(i) Smoothed directional distribution

Figure 13. Left-hand column: the directional distributions; middle column: scale-space trees; right-hand column: Smoothed
directional distributions, corresponding to paving (top row), zebra skin (middle row) and mesh net (bottom row).

middle column with the dashed lines identifying the longest twigs in the trees. The smoothed curves are shown
in the right-hand column. Since the directional distribution is periodic, then one threshold splits the data into one
group, as in Figure 13(c), while two thresholds divides the data into two groups. The smoothed distribution of the
zebra data has one peak, which means the data has one dominant direction at 1.0. Despite the smoothed distribution
of the paving appearing to consist of three modes at −π/2 = −1.571, 0 and π/2 = 1.571, in fact the number of
dominant directions is two, because the direction at −π/2 is identical to direction at π/2. Finally, the number of
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dominant directions in the mesh is two which can easily be extracted from the smoothed directional distribution at
−1.25 and 0.22.

6. Summary and discussion

A modified Hough transform has been proposed and works well when images contain both negative or positive
intensities. Also, a combination of thresholding and smoothing is included to identify important points in Hough
space which are back-transformed to reconstruct corresponding line features in image space. Further, a novel
approach to the identification of dominant directions based on a scale-space tree is proposed. All methods have
been tested on simulated data and then applied successfully to real data images.

The proposed techniques have wide-spread applications in many areas of image processing and image analysis
which involve the identification of linear features and dominant directions. Such current applications include
security surveillance, for example X-rays of airport user luggage or automatic tracking of vehicles in street-scenes
— testing of our proposed techniques in similar situations can form useful further work. We believe that our
methods can form a useful building block for other researchers and have the potential to become part of the standard
toolbox of users of image analysis techniques.
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