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SDP relaxation method for detecting P-tensors
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Abstract P-tensor and P0-tensor are introduced in tensor complementarity problem, which have wide applications in
many fields such as game theory, tensor complementarity problem. In this paper, we discuss how to check whether
a given symmetric tensor is P(P0)-tensor or not. For a symmetric tensor, it is a P(P0)-tensor is equivalent to the
positivity(nonnegativity) of a polynomial optimization problem. For such polynomial optimization problem, a SDP
relaxation method is proposed. By the proposed method, the P(P0)-tensor can be detected by solving a finite number of
SDP relaxations. Furthermore, numerical examples are reported to show the efficiency of the proposed algorithm.
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1. Introduction

For positive integers m and n1, n2, · · · , nm, an m-order and (n1, n2, · · · , nm)-dimensional real tensor is an array
in the space Rn1×n2×···×nm . Every tensor A from this space can be indexed as

A = (ai1i2···im), 1 ≤ ij ≤ nj , j = 1, 2, · · ·m. (1)

When n1 = · · · = nm = n, A is called an m-order n-dimensional square tensor. In such case, the tensor space
Rn1×n2×···×nm is denoted as Tm(Rn). A tensor in Tm(Rn) is said to be symmetric if its entries are invariant under
permutations of indices (i1, i2, . . . , im). The subspace of symmetric tensors in Tm(Rn) is denoted as Sm(Rn).
Using the notation as in Qi [16], for A ∈ Tm(Rn) and x := (x1, . . . , xn)

T ∈ Rn, we denote
Axm :=

∑
1≤i1,··· ,im≤n

ai1i2···imxi1xi2 · · ·xim ,

Axm−1 :=
( ∑

1≤i2,··· ,im≤n

aji2···imxi2 · · ·xim

)
j=1,...,n

.
(2)

Note that Axm−1 ∈ Rn. Denote [p] = {1, 2, . . . , p} for every positive integer p in this paper. With these notations,
the definition of P(P0)-tensor is presented, introduced in [18].

Definition 1
For A ∈ Tm(Rn), A is said to be a
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(i) P0-tensor if and only if for any nonzero vector x ∈ Rn, there exists i ∈ [n] such that xi ̸= 0 and

xi(Axm−1)i ≥ 0; (3)

(ii) P-tensor if and only if for any nonzero vector x ∈ Rn,

max
i∈[n]

xi(Axm−1)i > 0. (4)

This definition can be regarded as an extension of P(P0)-matrix, which plays important roles in linear
complementarity problems and variational inequalities, see [4, 6, 14].

For symmetric P(P0)-tensors, some properties of tensor are presented in [18]. It is shown that a given symmetric
tensor is P(P0)-tensor if and only if its smallest Z(H)-eigenvalue is positive(nonnegative). Furthermore, there does
not exist odd order P-tensor and nonzero P0-tensor. For even order symmetric tensor, it is a P(P0)-tensor if and
only if it is positive (semi-)definite. For computing the smallest Z(H)-eigenvalue, Qi et al. [17] discuss the case of
(m,n) = (3, 2). Later shifted power methods are proposed in [8, 19]. Recently, SDP relaxation method is applied
to compute Z(H)-eigenvalues in [1].

Motivated by these fact, in this paper, we propose a numerical method by solving SDP relaxations to check
whether the given symmetric tensor is P(P0)-tensor or not. Furthermore, it is a P-tensor if the minimum of SDP
relaxation is positive; it is a P0-tensor but not P-tensor if the optimal value of the polynomial optimization problem
is zero; it is not a P0-tensor if the optimal value of the polynomial optimization problem is negative.

This paper is organized as follows. Section 2 gives preliminaries on polynomial optimization. Section 3 presents
SDP relaxation method of polynomial optimization problem to check symmetric P(P0)-tensor. Numerical examples
are presented in Section 4.

2. Preliminaries

In this section, we review some basics in polynomial optimization. We refer to [10, 11] for surveys in polynomial
optimization.

In the space Rn, the symbol ∥ · ∥ denotes the standard Euclidean norm. Let R[x] be the ring of polynomials with
real coefficients and in variables x := (x1, . . . , xn), and let R[x]d be the set of real polynomials in x whose degrees
are at most d.

For a polynomial tuple h = (h1, h2, · · · , hs), the ideal generated by h is the set

I(h) := h1 ·R[x] + h2 ·R[x] + · · ·+ hs ·R[x].

The k-th truncation of I(h) is the set

Ik(h) := h1 ·R[x]k−deg(h1) + · · ·+ hs ·R[x]k−deg(hs).

The complex and real algebraic varieties of h are respectively defined as

VC(h) := {x ∈ Cn | h(x) = 0}, VR(h) := VC(h) ∩Rn.

A polynomial p is said to be sum of squares (SOS) if there exist p1, p2, · · · pr ∈ R[x] such that p = p21 + p22 + · · ·+
p2r . The set of all SOS polynomials is denoted as Σ[x]. For a given degree m, denote

Σ[x]m := Σ[x] ∩R[x]m.

The quadratic module generated by a polynomial tupe g = (g1, · · · , gt) is the set

Q(g) := Σ[x] + g1 · Σ[x] + · · ·+ gt · Σ[x].
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The k-th truncation of the quadratic module Q(g) is the set

Qk(g) := Σ[x]2k + g1 · Σ[x]2k−deg(g1) + · · ·+ gt · Σ[x]2k−deg(gt).

Note that if g = ∅ is an empty tuple, then Q(g) = Σ[x] and Qk(g) = Σ[x]2k.
Let N be the set of nonnegative integers. For x := (x1, . . . , xn), α := (α1, . . . , αn) and a degree d, denote

xα := xα1
1 · · ·xαn

n , |α| := α1 + · · ·+ αn, Nn
d := {α ∈ Nn : |α| ≤ d}.

Denote by RNn
d the space of all real vectors y that are indexed by α ∈ Nn

d . For y ∈ RNn
d , we can write it as

y = (yα), α ∈ Nn
d .

For f =
∑

α∈Nn
d
fαx

α ∈ R[x]d and y ∈ RNn
d , we define the operation

⟨f, y⟩ :=
∑
α∈Nn

d

fαyα. (5)

For an integer t ≤ d and y ∈ RNn
d , denote the t-th truncation of y as

y|t := (yα)α∈Nn
t
. (6)

Let q ∈ R[x] with deg(q) ≤ 2k. For each y ∈ RNn
2k, ⟨qp2, y⟩ is a quadratic form in vec(p), the coefficient vector

of the polynomial p with deg(qp2) ≤ 2k. Let L(k)
q (y) be the symmetric matrix such that

⟨qp2, y⟩ = vec(p)T
(
L(k)
q (y)

)
vec(p). (7)

The matrix L
(k)
q (y) is called the k-th localizing matrix of q generated by y. It is linear in y. For instance, when

n = 2, k = 2 and q = x1x2 − x2
1 − x2

2,

L
(2)

x1x2−x2
1−x2

2
(y) =

 y11 − y20 − y02 y21 − y30 − y12 y12 − y21 − y03
y21 − y30 − y12 y31 − y40 − y22 y22 − y31 − y13
y12 − y21 − y03 y22 − y31 − y13 y13 − y22 − y04

 .

If q = (q1, . . . , qr) is a tuple of polynomials, we then define

L(k)
q (y) :=

(
L(k)
q1 (y), . . . , L(k)

qr (y)
)
. (8)

When q = 1 (the constant 1 polynomial), L(k)
1 (y) is called the k-th moment matrix generated by y, and we denote

Mk(y) := L
(k)
1 (y). (9)

For instance, when n = 2 and k = 2,

M2(y) =


y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

 .

For a degree d, denote the monomial vector

[x]d :=
[
1x1 · · · xn x

2
1 x1x2 · · · x2

n · · · xm
1 · · · xm

n

]T
. (10)
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3. Checking symmetric P(P0)-tensor

In this section, we propose a numerical method to check whether a given symmetric tensor is P(P0)-tensor or not.
From [18], for a symmetric tensor, it is a P(P0)-tensor if and only if it is positive (semi-)definite. Furthermore, the
positive (semi-)definiteness is equivalent to positivity(nonnegativity) of the smallest Z(H)-eigenvalue. Motivated
by this, we propose a numerical method to check the P(P0)-tensor. Before proceeding, we recall the definition of
Z(H)-eigenvalues.

Definition 2
For A ∈ Tm(Rn), a number λ ∈ R is called a Z-eigenvalue of A if there exists a vector u ∈ Rn such that

Aum−1 = λu, uTu = 1. (11)

(The superscript T denotes the transpose.) Such u is called a Z-eigenvector associated with λ, and (λ, u) is called a
Z-eigenpair. Furthermore, a number α ∈ R is called an H-eigenvalue of A if there exists 0 ̸= v ∈ Rn such that

Avm−1 = αv[m−1]. (12)

(The symbol v[m−1] denotes the vector such that (v[m−1])i = (vi)
m−1 for i = 1, . . . , n). Such v is called an H-

eigenvector associated with α, and (α, v) is called an H-eigenpair.

From [13], the smallest Z(H)-eigenvalue is the optimal value of the following optimization problem

fs := min Axm

s.t. x⊤x[m′] = 1,
(13)

where x[k] = (xk
i ) ∈ Rn. fs is the smallest Z-eigenvalue when m′ = 1, and fs is the smallest H-eigenvalue when

m′ = m− 1. The computation of (13) for m′ = 1 and m′ = m− 1 are similar, hence we only adopt m′ = 1 for
cleanness in the following.

The first order optimality condition of (13) with m′ = 1 can be written as following{
mAxm−1 − λx = 0,
x⊤x = 1,

for some λ ∈ R. It is clear to see that λ = mAxm. Based on this observation, we consider the following
optimization problem

min Axm

s.t. Axm−1 = (Axm)x,
x⊤x = 1.

(14)

It is clear to see that problems (13) and (14) are equivalent, that is, they have the same optimal solution. Hence, it
suffices to consider problem (14). For convenience, we introduce the following notations{

f(x) := Axm,
h(x) := {x⊤x− 1, Axm−1 − (Axm)x}. (15)

Now problem (14) can be rewritten as
min f(x)
s.t. h(x) = 0.

(16)

Lasserre’s hierarchy ([9]) of semidefinite relaxations for problem (16) is

ρ
(1)
k := min ⟨f, y⟩

s.t. L
(k)
h (y) = 0,

⟨1, y⟩ = 1, Mk(y) ≽ 0, y ∈ RNn
2k ,

(17)
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where k = k0, k0 + 1, . . . and k0 = ⌈m+1
2 ⌉. Here ⌈t⌉ is the smallest integer that is larger than or equal to t. Matrix

X ≽ 0 means that X is positive semidefinite, and matricesL(k)
h (y), Mk(y) are defined in (8) and (9). The dual

optimization problem of (17) is

ρ
(2)
k := max θ

s.t. f − θ ∈ I2k(h).
(18)

As in [9], it can be shown that for all k
ρ
(2)
k ≤ ρ

(1)
k ≤ fs

and the sequences {ρ(1)k } and {ρ(2)k } are monotonically increasing. Furthermore, suppose y∗ is a minimizer of (17).
If there exists a real integer t ∈ [k0, k] such that

rankMt−k0(y
∗) = rankMt(y

∗), (19)

then ρ
(1)
k = fs, and we can get r := rankMt(y

∗) global optimizers of (16) (cf. [12]). It is clear to have the following
results.

Theorem 1
Tensor A is a P-tensor if ρ(1)k > 0, and tensor A is a P0-tensor but not a P-tensor if and only if fs = 0. Furthermore,
tensor A is not a P0-tensor if and only if fs < 0.

Based on this result, we present our numerical algorithm here.

Algorithm 1
To check the membership problem of P(P0)-tensor

Step 0: For tensor A, write polynomial tuples fand h as in (15). Let k = ⌈m+1
2 ⌉.

Step 1: Solve the hierarchy of (17) for k and get ρ(1)k with minimizer y∗k.
Step 2: Check ρ

(1)
k . If ρ(1)k > 0, then A is a P-tensor and stop; if ρ(1)k = 0 and rank condition (19) with y∗k holds for

some t, then A is a P0-tensor but not P-tensor and stop; and if ρ(1)k < 0, rank condition (19) is satisfied for
some t, then A is not a P0-tensor and stop. If rank condition (19) with y∗k fails, let k := k + 1 and go to Step
1.

Theorem 2
Let A ∈ Sm(Rn). Then we have:

1. lim
k→∞

ρ
(1)
k = fs when tensor A is not a P-tensor.

2. If VR(h) is finite, ρ(1)k = fs and rank condition (19) is satisfied for some k. Hence, Algorithm 1 terminates in
finitely many steps.

The proof can be seen from Theorem 3.1 in [13] and omitted here.

4. Numerical Examples

In this section, we give numerical examples for how to check whether a given tensor is P(P0)-tensor or not. The
computation is implemented in MATLAB 7.10 in a Dell Linux Desktop with 8GB memory and Intel(R) CPU
2.8GHz. The software Gloptipoly 3 [7] is used to solve the semidefinite relaxations. For convenience, we use
the following notation: for any i1, i2, . . . , im ∈ [n], we use π(i1i2 · · · im) to denote a permutation of i1i2 · · · im,
and Sπ(i1i2···im) to denote the set of all these permutations. ρ(1)k = 0 if |ρ(1)k | < 1e− 5 in the following numerical
examples. For cleanness, only four decimal digits are displayed.
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Table 1

a times P(P0)-tensor?
-2 0.26s not P0

− 4
√
15 0.29s P0 but not P

-1 0.16s P

0 0.16s P

1 0.16s P
4
√
15 0.29s P0 but not P
2 0.27s not P0

Example 1
([5], Example 3.1) Consider the nonnegative tensor A ∈ S3,3 such that

a111 = 100, a222 = 3, a333 = 1,
a112 = a113 = a122 = a133 = 1,
a223 = 3, a233 = 2.5, a123 = 0.

By [5], A is not a P0-tensor. Using Algorithm 1, it is obtained that fs = −100.0034. The detection takes about
0.15 seconds to assert that the tensor is not a P0-tensor.

Example 2
([2], Example 5.8) Consider the tensor A ∈ S6,3 is given by

a333333 = 1,∑
i1i2i3i4i5i6∈Sπ(111122)

ai1i2i3i4i5i6 = 1,∑
i1i2i3i4i5i6∈Sπ(112222)

ai1i2i3i4i5i6 = 1,∑
i1i2i3i4i5i6∈Sπ(112233)

ai1i2i3i4i5i6 = −3.

The corresponding polynomial of the tensor A is

f(x1, x2, x3) = x4
1x

2
2 + x2

1x
4
2 + x6

3 − 3x2
1x

2
2x

2
3.

This is the famous Motzkin polynomial, which is nonnegative but not a sum of squares. By Algorithms 1, it is
obtained that fs = 0. The detection takes about 0.60 seconds to assert that the tensor is a P-tensor but not P0-tensor.
This confirms the fact that the Motzkin polynomial f(x1, x2, x3) is positive semi-definite from [2].

Example 3
([3], Example 4.1) Consider tensor A ∈ S6,4 such that

a111111 = a222222 = 11
4 , a333333 = a444444 = 1,∑

i1i2i3i4i5i6∈Sπ(111222)
ai1i2i3i4i5i6 = −3

4 ,∑
i1i2i3i4i5i6∈Sπ(334444)

ai1i2i3i4i5i6 = 2
5 .

The corresponding polynomial of the tensor A is

f(x1, x2, x3, x4) =
11

4
x6
1 +

11

4
x6
2 + x6

3 + x6
4 −

15

2
x3
1x

3
2 + 6x2

3x
4
4.

By [3], -1 is the minimum H-eigenvalue of A, that is, A is not a P0-tensor. By Algorithm 1, it is obtained that
fs = −0.2500. The detection takes about 1.8 seconds to assert that the tensor is not a P0-tensor.

Example 4
Consider the tensor A ∈ S4,3 with the entries aijkl = 0 except

a1111 = 2, a2222 = 3, a3333 = 5, a1123 =
a

3
.
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Similar to [15], a is chosen different values. In table 1, we report the results, where “times” denotes the elapsed
time.

5. Conclusion

In this paper, we proposed a SDP relaxation method for checking whether a given symmetric tensor is P(P0)-tensor
or not. We determine P(P0)-tensor by solving a finite number of SDP relaxations. As a prospect, whether such
method can be applied to check a nonsymmetric P(P0)-tensor is our future research.
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