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Abstract In the current study, a general formulation of the discrete Chebyshev polynomials is given. The operational
matrix of fractional integration for these discrete polynomials is also derived. Then, a numerical scheme based on the
discrete Chebyshev polynomials and their operational matrix has been developed to solve fractional variational problems.
In this method, the need for using Lagrange multiplier during the solution procedure is eliminated. The performance of the
proposed scheme is validated through some illustrative examples. Moreover, the obtained numerical results were compared
to the previously acquired results by the classical Chebyshev polynomials. Finally, a comparison for the required CPU time
is presented, which indicates more efficiency and less complexity of the proposed method.
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1. Introduction

In the last two decades, numerical approaches based on orthogonal polynomials have been frequently used to
approximate solution of fractional differential and integral equations [1, 5, 4, 3, 2]. The key characteristic of these
approaches is that, by using the orthogonal properties of the polynomials and the typical spectral methods, they
reduce such fractional equations to a system of algebraic equations which can be solved more easier. According to
the defined inner product in the solution space, orthogonal polynomials are usually classified into two main classes:
continuous and discrete. For continuous orthogonal polynomials such as Legendre, Chebyshev, Hermite, and
Laguerre one has to evaluate an integral in the inner product, whereas discrete orthogonal polynomials come with
a discrete scalar product and hence the integral becomes a sum[6, 7]. Although continuous orthogonal polynomials
have been more frequently used to approximate solution of functional equations, there are some advantages of using
discrete orthogonal polynomials. For example, by using discrete orthogonal polynomials, the Fourier coefficients
can be calculated with the aid of a summation and the obtained coefficients are exact. Consequently, in comparison
to continouse cases, implimentation of discrete orthogonal polynomials is more efficient and less complex[8, 9].
Moreover, there is a close connection between stochastic processes and discrete orthogonal polynomials which
motivated many researchers to consider them to solve stochastic differential equations [10, 8].

In the field of optimization theory, calculus of variations concerns with the problem of optimizing a real-
valued functional over a set of functions [11, 12, 13, 14]. The functional is usually defined as definite integrals
involving functions and their derivatives. The development of the calculus of variations starts with Johann Bernoulli
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and his well-known ”brachistochrone” problem. Thereafter, this subject was developed by the works of Jakob
Bernoulli, Newton, Leibniz, Euler, Lagrange, Legendre, Jacobi, Weierstrass and Hilbert[13]. Recently, the calculus
of variations has been found many applications in areas such as quantum mechanics, medicine, economics,
aerodynamics, environmental engineering and biology[17, 16, 15, 11, 18, 19, 20]. As a generalization of calculus
of variations, the fractional calculus of variations (FCV) deals with variational functionals depending on fractional
derivatives instead of integer ones[11]. The subject of FCV was introduced in 1996 with the work of Riewe [18].
He used fractional derivatives to formulate the problem of calculus of variations and obtained the respective
Euler-Lagrange equations. Nowadays, FCV is under development due to its many applications in physics and
engineering[17, 16, 15, 11, 19, 21].

The main purpose of this paper is to present a comparitive study of numerical solution of the following fractional
variational problems:

Min. J(x) =

∫ b

a

F
(
t, x(t),C0 D

ν
t x(t), u(t)

)
dt, (1)

in which the variable u(t) is described by

u(t) =

∫ t

a

K
(
s, x(s),C0 D

ν
t x(s)

)
ds, a ≤ t ≤ b, (2)

subject to the following boundary conditions

x(a) = α, x(b) = β. (3)

The functions F and K are continuously differentiable, x is absolutely continuous functions, such that its fractional
derivative of order ν, i.e. C

0 D
ν
t x(t), exists and is continuous on [a, b]. First, the general formulation of DCPs and

their properties are investigated briefly. Then, DCPs and their operational matrix of fractional integration are used
to approximate solution of FVP (1)-(3). The obtained numerical results and the required CPU time were compared
to the previously acquired results by the classical Chebyshev polynomials in Ref. [16]. The comparison reveals that
presented DCPs method is more efficient and less complex than the Chebyshev polynomials method.

The remainder of the paper is organized as follows: In Section 2, some basic definitions and notations of
Riemann-Liouville and Caputo fractional operators are introduced. Section 3 is devoted to definition of discrete
Chebyshev polynomials and their properties. Section 4 deals with the numarical solution of FVPs. In Section 5,
some illustrative examples are given to verify superiority of the discrete Chebyshev polynomials. Finally, some
concluding remarks are given in Section 6.

2. Preliminaries

The most frequently used definitions for fractional integral and derivative are the Caputo and Riemann-Liouville,
which can be defined as follows [24, 23, 22].

Definition 1
The fractional integration of order ν ≥ 0 in the Riemann-Liouville sense is defined as

(Iνf) (t) =


f(t), ν = 0,

1

Γ(ν)

∫ t

0

f(s)ds

(t− s)
1−ν , ν > 0.
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Some practical properties of the fractional operator Iν can be easily verified as follow:

0I
ν1
t (0I

ν2
t f(t)) = 0I

ν2
t (0I

ν1
t f(t)) , ν1, ν2 ≥ 0,

0I
ν1
t (0I

ν2
t f(t)) = 0I

ν1+ν2
t f(t), ν1, ν2 ≥ 0,

0I
ν
t t

r = Γ(r+1)
Γ(r+ν+1) t

ν+r, ν ≥ 0, r > −1.

Definition 2
Let ν be a real positive number. The Caputo fractional derivative operator of order ν, i.e. C

0 D
ν
t , could be defined as

follow:

C
0 D

ν
t f(t) =


1

Γ(n− ν)

∫ t

0

f (n)(s)

(t− s)ν−n+1
ds, t > 0, 0 ≤ n− 1 < ν < n,

dnf(t)

dtn
, ν = n ∈ N.

where n is an integer, t > 0.

Also, the following properties of the Caputo fractional operator C
0 D

ν
t can be easily verified:

C
0 D

ν
t (0I

ν
t f(t)) = f(t).

0I
ν
t

(
C
0 D

ν
t f(t)

)
= f(t)−

n−1∑
j=0

f (j)(0+)
tj

j!
, t > 0.

C
0 D

ν
t t

r =


0, for r ∈ N ∪ {0} and r < ν,

Γ(r + 1)

Γ(r − ν + 1)
tr−ν , otherwise.

3. Discrete Chebyshev polynomials

The discrete Chebyshev polynomials belong to a rich family of orthogonal polynomials which introduced by
Chebyshev. In this section, we restrict our attention to the basic definition, formula and properties of these
polynomials. For more details and some applications of these polynomials one can refer to Refs. [25, 26].

Definition 3
Let N be a positive integer number. The discrete Chebyshev polynomials Tn,N (x) may be defined as follow:

Tn,N (x) =

n∑
k=0

(−1)k
(
n+ k

n

)(
N − k

n− k

)(
x

k

)
, n = 0, 1, ..., N. (4)

Orthogonality:

The set of discrete Chebyshev polynomials {Tn,N , n = 0, 1, ..., N} is orthogonal on the interval [0, N ] with respect
to the following discret norm:

⟨f, g⟩ =
N∑
r=0

f(r)g(r). (5)
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Moreover, the orthogonality condition for these polynomials is as follow:

⟨Tm,N , Tn,N ⟩ =
N∑
r=0

Tm,N (r)Tn,N (r) = µnδmn,

where δmn is the Kronecker delta and µn can be defined as:

µn =
(N + n+ 1)!

(2n+ 1)(N − n)!(n!)
2 . (6)

Recurrence relation:

The set of discrete Chebyshev polynomials {Tn,N , n = 0, 1, ..., N} can be determined with the aid of the following
recurrence formulae:

αnTn+1,N (x) =
(N − k) (αn + βn − x)

k + 1
Tn,N (x)− (N − k + 1)(N − k)βn

k(k + 1)
Tn−1,N (x), n = 0, 1, ..., N.

where T0,N (x) = 1, T1,N (x) = N − 2x and

αn =
(N − n)(n+ 1)2

(2n+ 1)(2n+ 2)
, βn =

N2(N + n+ 1)

2n(2n+ 1)
.

Explicit formula:

By using the relation (4), the discrete Chebyshev polynomial Tn,N can be written as follow:

Tn,N (x) =

n∑
k=0

(−1)k
(
n+ k

n

)(
N − k

n− k

)
k!

x(x− 1)...(x− k + 1)

=

n∑
k=0

(−1)k
(
n+ k

n

)(
N − k

n− k

)
k!

k∑
i=0

s(k, i)xi, n = 0, 1, ...N, (7)

in which s(k, i) are the Stirling numbers of the first kind [27, 28]. Therefore, the analytical form of Tn,N (x) can be
derived as follow:

Tn,N (x) =

n∑
k=0

aj,nx
k, n = 0, 1, ...N, (8)

where

aj,n =

n∑
r=j

(−1)r
(
n+ r

n

)(
N − r

n− r

)
s(r, i)

r!
. (9)

Shifted discrete Chebyshev polynomials:

In order to use the discrete Chebyshev polynomials on the interval [0, 1] we define the shifted discrete Chebyshev
polynomials (SDCPs) by introducing change of variable x = Nt. Let nth shifted discrete Chebyshev polynomial,
i.e. Tn,N (Nt), is denoted by Tn,N (t). Then, the set of SDCPs {Tn,N , n = 0, 1, ..., N} are orthogonal on the interval
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[0, 1] with respect to the following discrete norm:

⟨f, g⟩∗ =

N∑
r=0

f
( r

N

)
g
( r

N

)
. (10)

Also, the orthogonality condition for SDCPs can be defined as follow:

⟨Tm,N (t),Tn,N (t)⟩∗ =

N∑
r=0

Tm,N

( r

N

)
Tn,N

( r

N

)
= µnδmn, (11)

where µn is defined in relation (6).

Function approximation:

Any function f(t), defined over the interval [0, 1] may be expanded by the SDCPs as

f(t) ≃
N∑
i=0

ciTi,N (t) = CTΨ(t), (12)

where C and Φ(x) are (N + 1) vectores given by

CT = [c0, c1, ..., cN ]
T
, (13)

Ψ(t) = [T0,N (t),T1,N (t), ...,TN,N (t)]
T
, (14)

and the coefficients ci can be derived as follow

ci =
⟨f(t),Ti,N (t)⟩∗

µi
, i = 0, 1, ...N. (15)

Convergence analysis:

The discrete Chebyshev polynomials Tn,N (x) are special case of the well-known Hahn polynomials Qn(x;α, β,N)
with α = β = 0 [9]. The following Theorem provides conditions that ensure the series expansion of a function by
the discrete Chebyshev polynomials converges.

Theorem 1
The series expansion

n∑
k=0

⟨f,Tk,N ⟩
⟨Tk,N ,Tk,N ⟩Tk,N (x) of a function f by the discrete Chebyshev polynomials converges

pointwise, if the series expansionof the function f by the Jacobi polynomials converges pointwise and if n4

N → 0
as n,N → ∞.

Proof
The proof follows directly from Theorems 1.1, 2.1 and 2.2 in Ref. [9].

Operational matrices:

Now, some explicit formulations for operational matrix of fractional integration, in the Riemann-Liouville sense,
for the SDCPs will be obtained. Moreover, the product operational matrix for the SDCPs vector is defined.
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Lemma 1
For a positive number r the inner product of the Tn,N (t) and tr, denoted by β(n, r), can be derived as:

β (n, r) =
1

Nr

N∑
j=0

n∑
k=0

aj,nj
k+r. (16)

where aj,n is defined in relation (9).

Proof
By using definition of the discrete inner product ⟨., .⟩∗ in (11), we get:

β (n, r) = ⟨tr,Tn,N (t)⟩∗ =

N∑
j=0

Tn,N

(
j

N

)
jr

Nr
=

1

Nr

N∑
j=0

Tn,N (j)jr.

Now, the analytical form of the discrete Chebyshev polynomial Tn,N in relation (8) results (16).

Theorem 2
Let Ψ(t) be the SDCPs vector as defined in (14). Then its fractional integral of order ν in the Riemann-Liouville
sense is given by

0I
ν
t Ψ(t) = P(ν)Ψ(t) (17)

where P(ν) is the operational matrix of fractional integration and its (i, j)th element can be derived as

P(ν)
i,j =

N∑
j=0

(
i∑

k=0

ak,Nβ(k + ν, j)ν(k + 1)

ν(k + ν + 1)

)
, i, j = 1, 2, ..., N + 1. (18)

Proof
The ith element of the vector Ψ(t) is Ti−1,N (t). Therefore, its fractional integration of order ν may be written as

0I
ν
t Ti−1,N (t) = 0I

ν
t

i−1∑
k=0

Nkak,i−1t
k =

i−1∑
k=0

Nkak,i−1

(
0I

ν
t t

k
)
=

i−1∑
k=0

Γ(k + 1)Nkak,i−1

Γ(ν + k + 1)
tk+ν . (19)

Now by expanding the term tk+ν we get

tk+ν ≃
N∑
j=0

bk,jTj,N (t), (20)

in which bk,j can be derived as

bk,j =

⟨
xk+ν ,Tj,N (t)

⟩
∗

⟨Tj,N (t),Tj,N (t)⟩∗
=

β(k + ν, j)

µj
. (21)

By putting Eqs. (21) and (20) in (19), we have:

0I
ν
t Ti−1,N (t) =

N∑
j=0

(
i−1∑
k=0

β(k + ν, j)Γ(k + 1)Nkak,i−1

µjΓ(ν + k + 1)

)
Tj,N (t). (22)

Accordingly, the desired result is derived.
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Theorem 3
Let Ψ(t) be the SDCPs vector defined in (14) and V be an arbitrary (N + 1) vector. Then, we can write

Ψ(t)ΨT (t)V = ṼΨ(t), (23)

where Ṽ is the (N + 1)× (N + 1) product operational matrix and its (i, j)th element can be defined as

Ṽi+1,j+1 =
1

µj

N∑
k=0

Vk ⟨Tk,N (t)Ti,N (t),Tj,N (t)⟩∗, i, j = 0, 1, ..., N.

Proof
The product of two SDCPs vectors Ψ(t) and ΨT (t) is a (N + 1)× (N + 1) matrix as follow

Ψ(t)ΨT (t) =


T0,N (t)T0,N (t) T0,N (t)T1,N (t) . . . T0,N (t)TN,N (t)
T1,N (t)T0,N (t) T1,N (t)T1,N (t) . . . T1,N (t)TN,N (t)

...
...

. . .
...

TN,N (t)T0,N (t) TN,N (t)T1,N (t) . . . TN,N (t)TN,N (t)

 .

As a result, the relation (23) can be rewritten as:

N∑
k=0

Tk,N (t)Ti,N (t)Vk+1 =

N∑
k=0

Tj,N (t)Ṽi+1,k+1, i = 0, 1, ..., N.

Now, by multiplying both sides of the above relation by Tj,N (t) and using the defined inner product in (10), we
get:

N∑
k=0

⟨Tk,N (t)Ti,N (t),Ti,N (t)⟩∗ Vk+1 = ⟨Tj,N (t),Tj,N (t)⟩∗ Ṽi+1,j+1, i, j = 0, 1, ..., N.

Therefore, the matrix Ṽ may be given by

Ṽi+1,j+1 =

N∑
k=0

Vk ⟨Tk,N (t)Ti,N (t),Tj,N (t)⟩∗

⟨Tj,N (t),Tj,N (t)⟩∗
=

1

µj

N∑
k=0

Vk ⟨Tk,N (t)Ti,N (t),Tj,N (t)⟩∗.

4. The numerical approach

In this section, we will apply the SDCPs and thier operational matrix to solve the FVP (1)-(2) with boundary
conditions (3). First, we approximate C

0 D
ν
t x(t) via SDCPs as follows:

C
0 D

ν
t x(t) ≃ CTΨ(t), (24)

where Ψ(t) is the SDCPs vector as defined in relation (14) and C is unknown coefficient vector defined as:

C =


c1
c2
...
cN

 . (25)
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By applying the fractional Riemann-Liouville operator 0I
ν
t on both sides of the relation (24), we have:

x(t) ≃ 0I
ν
t C

TΨ(t) + α = CTP(ν)Ψ(t) + dTΨ(t), (26)

in which d is the SDCPs coefficient vector for α and P (ν) is the operational matrix of fractional integration of the
SDCPs vector Ψ(t) derived in Theorem 2. So, the boundary condition in relation (3) can be written as follows:

CTP(ν)Ψ(b) + dTΨ(b)− β ≃ 0, (27)

Moreover, by inserting the relations (24) and (26) the function u(t) in (2) can be approximated as a function of
unknown vector C, namely:

u [t, C] ≃
∫ t

a

K
(
s, CTPνΨ(s) + dTΨ(s), CTΨ(s)

)
ds. (28)

Therefore, the performance index (1) can be derived as follows:

JN [C] ≃
∫ b

a

F
(
t, CTPνΨ(s) + dTΨ(s), CTΨ(s), u [t, C]

)
dt. (29)

Finally, by applying the necessary conditions for optimality of the performance index JN [C] we are able to write

∂JN
∂ci

= 0, i = 0, 1, ..., N − 1. (30)

Eqs. (27) along with (30) generate a set of (N + 1) nonlinear equations that can be solved by the Newton’s iterative
method to find the coefficients ci, i = 0, 1, ..., N .

Main features of the SDCPs method

By using the SDCPs which are orthogonal with respect a discrete norm, a numerical scheme has been proposed to
approximate solution of FVPs. The implementation of this method is more efficient and less complex in comparison
with similare methods such as the classical Chebyshev polynomials method in which continuous norm is used.
Moreover, the need for using Lagrange multiplier during the solution procedure is eliminated.

5. Computational results and comparisons

In order to verify the efficiency and superiority of the SDCPs method, we will consider some examples in this
section. Let e(t) = x(t)− x̃(t) be the error function of the approximate solution x̃(t). The maximum absolute error
(MAE) for the obtained numerical solution will be estimated as follow:

∥e∥∞ = Max
0≤t≤1

|e(t)| .

All computations are carried out using MAPLE 17 with 30 digits precision.

Example 1
As first example, we consider the following FVP

Min. J(x) =

∫ 1

0

[(
C
0 D

ν
t x(t)− tΓ(ν + 2)

)2
+ u(t)

]
dt, 0 < ν ≤ 1,

in which

u(t) =

∫ t

0

(x(s)− sν+1)2ds, 0 ≤ t ≤ 1,
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subject to the boundary conditions

x(0) = 0, x(1) = 1.

The exact solution of this problem is x(t) = tν+1. The proposed DCPs method has been applied to solve this FVP
for various values ν. Fig. 1 shows the obtained approximate solution x(t) and the absolute error functions for
different choices of ν and N = 10. The MAE for the approximate solutions with different values of N and ν are
provided in Table 1. Moreover, in Table 2, the obtained optimal values J and the required CPU time (in seconds)
are compared with those achieved by the classical Chebyshev polynomials in Ref. [16]. From these results, we
can conclude that both discrete and classical Chebyshev polynomials are efficient for solving this FVP, while
the discrete polynomials method requires less CPU time when compared to the contentious one. Moreover, as
the number of basis functions i.e. N increases, complexity and required CPU time of the contentious Chebyshev
polynomials method increases significantly.

Figure 1. The obtained approximate solutions (Left) and the absolute error functions (Right) for different values of ν and
N = 10 (Example 1).

Table 1. The MAE of the approximate solution x̃(t) (Example 1).

ν N = 6 N = 8 N = 12

ν = 0.50 1.7× 10−3 6.2× 10−4 2.2× 10−4

ν = 0.70 5.6× 10−4 2.5× 10−4 1.0× 10−4

ν = 0.80 3.3× 10−4 1.4× 10−4 5.1× 10−5

ν = 0.90 1.2× 10−4 5.3× 10−5 1.8× 10−5

ν = 0.95 5.8× 10−5 2.5× 10−5 8.2× 10−6

ν = 0.99 1.2× 10−5 4.5× 10−6 1.4× 10−6

Example 2
Now, we consider the following FVP

Min. J(x) =

∫ 1

0

[(
C
0 D

ν
t x(t)− 1

)2
+ u(t)

]
dt, 0 < ν ≤ 1,

Stat., Optim. Inf. Comput. Vol. 9, September 2021
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Table 2. The optimal values J and required CPU time (in seconds) for different values of ν and N (Example 1).

N = 6

J CPU time

Chebyshev polynomial [16] DCPs Chebyshev polynomials DCPs

ν = 0.50 7.677× 10−9 1.052× 10−8 8.078 2.469
ν = 0.70 3.329× 10−9 2.175× 10−8 8.063 2.343
ν = 0.90 2.588× 10−10 9.133× 10−10 8.063 2.782
ν = 0.99 1.986× 10−12 7.811× 10−12 8.297 2.438

N = 8

J CPU time

Chebyshev polynomial [16] DCPs Chebyshev polynomials DCPs

ν = 0.50 8.338× 10−10 2.246× 10−9 17.203 4.735
ν = 0.70 3.076× 10−10 3.785× 10−10 18.843 4.641
ν = 0.90 1.928× 10−11 1.631× 10−11 17.688 4.454
ν = 0.99 1.336× 10−13 1.034× 10−13 18.828 4.703

N = 10

J CPU time

Chebyshev polynomial [16] DCPs Chebyshev polynomials DCPs

ν = 0.50 1.458× 10−10 7.286× 10−9 25.891 7.500
ν = 0.70 4.739× 10−11 1.021× 10−10 26.765 9.609
ν = 0.90 2.512× 10−12 3.861× 10−12 25.500 9.547
ν = 0.99 1.608× 10−14 2.258× 10−13 26.063 9.625

in which

u(t) =

∫ t

0

(
x(s)− sν+1

Γ(ν + 2)

)2

ds, 0 ≤ t ≤ 1,

subject to the boundary conditions

x(0) = 1, x(1) =
1

Γ(ν + 1)
.

The exact solution is x(t) =
tν

Γ(ν + 1)
. The described DCPs method in Section 5 with different values of N and

ν have been applied to solve this problem. The approximate solutions x(t) and their absolute error functions for
N = 10 and variouse values of ν are plotted in Fig. 2. Moreover, the MAE of the approximate solution x̃(t) for
variouse values of N and ν are listed in Table 3. In order to verify the superiority and efficiency of the DCPs
method, in Table 4 the obtained optimal values J and the required CPU time (in seconds) were compared to those
achieved by the classical Chebyshev polynomials in Ref. [16]. From these results, it is clear that the proposed DCPs
method is efficient and accurate for solving FVPs. In addition, it can be concluded that application of DCPs is less
time consuming and complex in comparison with the classical Chebyshev polynomials.

Example 3
Consider the following FVPs

Min. J(x) =

∫ 1

0

[
2

(
C
0 D

ν
t x(t)−

Γ(ν + 4)

Γ(4)
t3 − Γ(ν + 3)

Γ(3)
t2
)2

+ 5u(t)

]
dt, 0 < ν ≤ 1,
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Figure 2. The obtained approximate solutions (Left) and the absolute error functions (Right) for different values of ν and
N = 10 (Example 2).

Table 3. The MAE of the approximate solution x̃(t) (Example 2).

ν N = 8 N = 10 N = 12

ν = 0.50 5.7× 10−2 8.7× 10−2 4.1× 10−2

ν = 0.70 1.5× 10−2 1.2× 10−2 1.0× 10−2

ν = 0.80 6.6× 10−3 5.1× 10−3 4.2× 10−3

ν = 0.90 2.3× 10−3 1.6× 10−3 1.2× 10−3

ν = 0.95 8.6× 10−4 6.3× 10−4 5.1× 10−4

ν = 0.99 1.4× 10−4 1.1× 10−4 8.3× 10−5

in which

u(t) =

∫ t

0

(
x(s)− sν+3 − sν+2

)2
ds, 0 ≤ t ≤ 1,

subject to the boundary conditions

x(0) = 0, x(1) = 2, 0 ≤ t ≤ 1.

For 0 < ν ≤ 1 the exact solution of this problem is x(t) = tν+3 + tν+2. The solution of this FVP has been
approximated by using the proposed DCPs method for variouse values of N and ν. The approximate solutions
x̃(t) and their absolute error functions for N = 10 and variouse values of ν are plotted in Fig. 3. The MAE of the
solution functions x(t) for different choices of N and ν are presented in Table 5. Furthermore, Table 6 provides a
comparison between the obtained optimal values J and their required CPU time (in seconds) and those derived
by the classical Chebyshev polynomials in Ref. [16]. According to the presented results, it is clear that both
DCPs and classical Chebyshev polynomials methods are efficient in solving FVPs, while application of DCPs
is less time consuming and complex in comparison to the typical Chebyshev polynomials method. Moreover, it is
easy to conclude that complexity and required CPU time of the classical Chebyshev polynomials method increses
significantly as the number of basis functions N increases.
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Table 4. The optimal values J and required CPU time (in seconds) for different values of ν and N (Example 2).

N = 8

J CPU time

Chebyshev polynomial [16] DCPs Chebyshev polynomials DCPs

ν = 0.50 2.427× 10−6 1.19× 10−5 28.578 9.344
ν = 0.70 4.548× 10−7 9.195× 10−7 29.250 9.922
ν = 0.99 7.611× 10−11 8.553× 10−11 29.094 10.454

N = 10

J CPU time

Chebyshev polynomial [16] DCPs Chebyshev polynomials DCPs

ν = 0.50 9.933× 10−7 6.476× 10−6 59.110 19.531
ν = 0.70 1.647× 10−7 4.533× 10−7 58.453 20.922
ν = 0.99 2.171× 10−11 3.573× 10−11 57.829 21.093

N = 12

J CPU time

Chebyshev polynomial [16] DCPs Chebyshev polynomials DCPs

ν = 0.50 4.845× 10−7 3.751× 10−6 82.532 32.640
ν = 0.70 7.166× 10−7 9.504× 10−7 96.938 38.031
ν = 0.99 7.713× 10−12 1.760× 10−12 98.297 39.921

Figure 3. The obtained approximate solutions (Left) and the absolute error functions (Right) for different values of ν and
N = 10 (Example 3).
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Table 5. The MAE of the approximate solution x̃(t) (Example 3).

N = 6 N = 8 N = 12

ν = 0.50 8.7× 10−5 3.7× 10−5 7.7× 10−6

ν = 0.70 4.8× 10−5 1.6× 10−5 3.9× 10−6

ν = 0.80 2.9× 10−5 1.1× 10−5 2.3× 10−6

ν = 0.90 1.2× 10−5 4.0× 10−6 2.2× 10−7

ν = 0.95 5.6× 10−6 1.8× 10−6 3.8× 10−7

ν = 0.99 1.6× 10−7 3.8× 10−7 6.8× 10−8

Table 6. The optimal values J and required CPU time (in seconds) for different values of ν and N (Example 3).

N = 5

J CPU time

Chebyshev polynomials [16] DCPs Chebyshev polynomials DCPs

ν = 0.5 2.855× 10−10 1.960× 10−9 17.109 3.438
ν = 0.7 1.366× 10−10 5.882× 10−10 17.875 3.438
ν = 0.9 9.337× 10−12 3.740× 10−11 18.922 3.406

N = 7

J CPU time

Chebyshev polynomials [16] DCPs Chebyshev polynomials DCPs

ν = 0.5 1.291× 10−11 1.615× 10−10 24.344 5.922
ν = 0.7 6.855× 10−12 4.592× 10−11 24.344 6.484
ν = 0.9 6.061× 10−13 3.001× 10−12 24.125 6.078

N = 9

J CPU time

Chebyshev polynomials [16] DCPs Chebyshev polynomials DCPs

ν = 0.5 8.479× 10−13 2.156× 10−12 68.532 10.750
ν = 0.7 4.035× 10−13 5.438× 10−12 64.797 11.312
ν = 0.9 3.089× 10−14 3.127× 10−13 64.891 11.235

6. Concluding Remarks

This paper proposed a new type of discrete orthogonal polynomials basis. By using these orthogonal polynomials
and their fractional operational matrix a numerical method is developed to solve FVPs. As these polynomials are
orthogonal with respect to a discrete norm, implementation of the presented method is more efficient and less
complex in comparison with similar methods in which continuous orthogonal polynomials are used. Application
of the proposed method for some test problems verified that:

1. The discrete orthogonal polynomials are efficient for solving FVPs.
2. Application of discrete Chebyshev polynomials is less time consuming and complex in comparison with the

classical Chebyshev polynomials.
3. The complexity and required CPU time of classical Chebyshev polynomials increases significantly as the

number of basis functions increases.
4. The need for using Lagrange multiplier during the solution procedure is eliminated.
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