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Robust Liu-Type Estimator for SUR Model
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Abstract The Liu-type estimator is one of the shrink estimators that is used to remedy for a problem of multicollinearity
in SUR model, but it is sensitive to the outlier. In this paper, we introduce the S Liu-type (SLiu-type) and MM Liu-type
estimator (MMLiu-type) for SUR model. These estimators merge Liu-type estimator with S-estimator and with MM-
estimator which makes it have high robustness at the different level of efficiency and at the same time prevents the bad
effects of multicollinearity. Moreover, to get more robust features, we have modified the Liu-type estimator by making it
depend on MM estimator instead of GLS estimator. The asymptotical properties for the suggested estimator were discussed
and we used the fast and robust bootstrap (FRB) to obtain the suggested robust estimators. Furthermore, we run the simulation
study to show the extent of excellence for the suggested robust estimators relative to the other estimators by many factors.
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1. Introduction

The SUR model was introduced by Zellner in [27] which is a special case of the linear regression model. The SUR
model stacks the several regression equations under the assumption that they have error terms are correlated across
them. The SUR model can be denoted by

Y = Xβ + µ. (1)

Where Y = (yT1 , y
T
2 , · · · , yTm)T is nm× 1 vector of dependent variables in m equations with n value of observation,

X = bdiag(X1, X2, · · · , Xm) is a block diagonal explanatory matrix, β = (βT
1 , β

T
2 , · · · , βT

m)T is pm× 1 vector
of coefficients in m equation and µ = (µT

1 , µ
T
2 , · · · , µT

m) is nm× 1 vector of error term in m equation with
mean E(µ) = 0nm×1 vector and variance E(µµT ) = Σ⊗ In where Σ is m×m matrix contains Cov(µiµj) =
σijIn, i, j = 1, 2, · · · ,m elements. We can form the SUR model in (1) as the multivariate liner regression model

Ÿ = β̈Ẍ + µ̈. (2)

Where Ÿ = (y1, y2, . . . , ym), yi = AT
i Y, β̈ = dig(β1, β2, . . . , βm), Ẍ = (X1, X1, . . . , Xm), Xi = AT

i X and
µ̈ = (µ̈1, µ̈2, ..., µ̈m) = (e1, e2, en)

T with ei = (µ̈i1, µ̈i2, ...µ̈im). The mean E(µ̈) = 0nm×1 vector and the variance
E(µ̈µ̈T ) = In ⊗ Σ. The Aitken’s estimator(GLS) for the SUR model in (1) was form as

β̂(GLS)(Σ) = (XT (Σ−1 ⊗ In)X)−1XT (Σ−1 ⊗ In)Y. (3)
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The (GLS) estimator is a suitable method for estimating the SUR Model since it is the best unbiased estimator, but
it works poorly when the data have multicollinearity. So, [19] suggested that ridge estimator prevent this problem
of multicollinearity in SUR model,

β̂(RidgeSUR)(Σ, λ) = (XT (Σ−1 ⊗ In)X + λIpm)−1XT (Σ−1 ⊗ In)Y. (4)

Where λ > 0 is ridge parameter. This estimator adds more ingredients to the hat matrix to eliminate the ill
condition. In the same way, [1] modified the ridge estimator for the SUR model in canonical form. The ridge
estimator depends on ridge parameter, so, [19, 6, 9] suggested the different methods to choose the ridge parameter.
[5] suggested robust cross validation (CV) to choose the ridge parameter. Since the ridge parameter has instability,
the Liu-type estimator, that was suggested by [12], is a suitable alternative for the ridge estimator. The Liu-Type
estimator is the result of merging the ridge estimator and stein estimator and it has two parameters that work in
parallel to effect the multicollinearity. The first parameter limits the excessive increase in the other parameter, and
therefore it limits the problem of instability associated with the ridge estimator. [8] introduced a Liu-Type estimator
for two SUR model. The Liu-Type estimator for SUR model is calculated based on the following equation:

minβ,Σ[(Y −Xβ)T (Y −Xβ) + (λ1/2β −
dβ(GLS)

λ1/2
)T (λ1/2β −

dβ(GLS)

λ1/2
), λ > 0,−∞ < d <∞. (5)

The (Liu-Type) estimator for SUR model has another formula as

β̂(Liu−Type)(Σ, λ, d) = (XT (Σ−1 ⊗ In)X + λIpm)−1(XT (Σ−1 ⊗ In)Y − dβ̂GLS). (6)

Finally, [21] , introduced a stochastic restricted Liu-type estimator for SUR model. In many cases, the presence of
multicollinearity may coincide with the presence of outliers. Many authors used a robust estimator to neutralize
outliers. The M, S, MM, Least Trimmed Squares (LTS) and τ are the robust estimators that were suggested
by[7, 15, 16, 24, 25], respectively to overcome the contamination in the data resulting from outliers. [10] introduced
M-estimator for SUR model by the following equation:

minβ,Σ[
1

n

n∑
i=1

ρ(
(eTi Σ

−1ei)

σ
)1/2 = ϑ]. (7)

Where, the value of ϑ is tuning constant which is chosen as Eϕρ(µ̈) such that F ∼ N(0, 1) and ρ is Turkey’s
biweight function as the [13]

ρ(x) =

{
x2

2 − x4

2c2 + x6

6c4 , |x| 6 c
c2

6 , |x| > c
(8)

Where c > 0 is tuning parameter such as: ρ :
increas→ [0, c] and ρ :

continuous→ [c,∞) and ρ is continuous, differentiable
and symmetric. The Turkey’s biweight loss function is suitable choice for ρ against outliers. [4] introduced S-
estimator for SUR model that is calculated based on the following equation:

minβ,Σ[log |Σ|] subject to
1

n

n∑
i=1

ρ[(eTi Σ
−1ei)

1/2] = ϑ. (9)

The S-estimator in (9) has another form as

minβ,Σ[(log |Σ|)−
λs
n

n∑
i=1

ρ[(eTi Σ
−1ei)

1/2]]. (10)

Where λs is the Lagrange multipliers.
[18, 20] introduced another kind of robust estimator for SUR model that depends on the least absolute deviations.
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The MM estimator has a greater breakdown point where it uses the S-estimator as an initial point and it is
asymptotically normal where it satisfies the first condition of the M estimator. Also, the MM estimator is
computable when p > n and at the same time, it is robust when p/n is large [25] . Despite that S-estimator has
a high breakdown point that reaches to 50% and it has low efficiency. So, [11] used anther robust estimator for
SUR model that depends on the MM-function. Given that S-scalar (σ̂s) it can be gotten by solving the following
equation:

1

n

n∑
i=1

ρ0[
(eTi Σ

−1ei)

σ

1/2

] = 0.5. (11)

Then, The MM-estimator is based on the following equation:

min
β,Σ

[
1

n

n∑
i=1

ρ1[
(eTi Σ

−1ei)
1/2

σ̂s
] = ϑ. (12)

Where ρ0 ≥ ρ1, sup ρ0 = sup ρ1and c0 < c1.
When we use the mm estimator, the breakdown point can be controlled independently from the efficiency by using
c0,c1 in ρ0, ρ1 notwithstanding the efficiency. These properties do not exist at S estimator since the degree of
breakdown affects the degree of efficiency, for example when the maximum value for breakdown point is (50%),
the efficiency reaches about (29%) [4]. Some studies have made robust modifications for ridge estimator like [14],
where he showed that the robust ridge estimator is superior to partial least squares and principal components
regression estimator. [5] suggested robust ridge estimator for SUR model that merges ridge estimator with S-
estimator that is calculated based on the following equation:

min
β,Σ

[log |Σ| − λs
n

n∑
i=1

ρ[(eTi Σ
−1ei)

1/2] + λβ2]. (13)

(Tarek) Suggested Ridge MM estimator for SUR model. Given that S-scalar (σ̂s) as in (11), then the estimator got
by solving the following equation:

min
β,Σ

[
1

n

n∑
i=1

ρ1[(e
T
i Σ

−1ei)
1/2] + λβ2]. (14)

In this paper, we introduce MM Liu-Type estimator for SUR model that merges Liu-Type estimator with MM-
estimator. This estimator has a high breakdown point and is able to reduce the bad effect of multicollinearity at the
same time.

2. S Liu-Type and MM Liu-Type estimator for SUR model

In SUR model in (1), if we merge the Liu-Type estimator in (5) with the S-estimator in (9), we get the (SLiu-Type)
estimator for SUR model by solving the following equation:

min
β,Σ

[log |Σ| − λs
n

n∑
i=1

ρ[(eTi Σ
−1ei)

1/2] + (λ1/2β − dβ̂GLS

λ1/2
)T (λ1/2β − dβ̂GLS

λ1/2
)]. (15)

We can rewrite (15) as

β̂SLiu−Type(Σ, λ, λs, d) = (XT (Σ̂−1
s ⊗Wn(β̂s))X + λwIpm)−1(XT (Σ̂−1

s ⊗Wn(β̂s))Y + dβ̂GLS) (16)
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Σ̂s = m[(Ÿ − Ẍβ̈)TWn(β̂s)(Ÿ − Ẍβ̈)](

n∑
i=1

[ρ′(wi)− ρ(wi) + ϑ])−1 (17)

λs = m[
1

2n

n∑
i=1

ρ′(wi)wi]
−1. (18)

WhereWn = diag(u(w1), u(w2), · · · , u(wn)), w
2
i = eTi Σ̂

−1
s ei, u(w) = ρ′(w)/w since ρ′(.) is drivative forρ(.)and

λw = 2nλ
λs
.

If we merge the Liu-type estimator in (5) with the MM estimator in (12), we get the (MMLiu-type) estimator
for SUR model. Given S-scalar σ̂s as in (11), the (MMLiu-type) estimator for SUR got by solving the following
equation:

min
β,Σ

(
1

n

n∑
i=1

ρ1[
(eTi Σ

−1ei)
1/2

σ̂s
) + (λ1/2β − dβ̂GLS

λ1/2
)T (λ1/2β − dβ̂GLS

λ1/2
)]. (19)

We can rewrite (18) as

β̂MMLiu−Type(Σ, λ, d) = (XT (Σ̂−1
MM ⊗Wn(β̂MM ))X + λIpm)−1(XT (Σ̂−1

MM ⊗Wn(β̂MM ))Y + dβ̂GLS) (20)

Σ̂MM = m[(Ÿ − Ẍβ̈)TWn(β̂MM)(Ÿ − Ẍβ̈)][

n∑
i=1

ρ′(wi)wi]
−1. (21)

Where Wn = diag(u(w1), u(w2), · · · , u(wn)) , w
2
i = eTi Σ̂

−1
MMei , u(w) = ρ′1(w)/w andΣ̂MM = σ̂2

sΣ̂s

If we use Σ̂MM instead of Σ̂GLS in (20) then

β̂WMMLiu−Type(Σ, λ, d) = (XT (Σ̂−1
MM ⊗Wn(β̂MM ))X + λIpm)−1(XT (Σ̂−1

MM ⊗Wn(β̂MM ))X + dIpm)β̂MM ).

Then

β̂WMMLiu−Type(Σ, λ, d) = FMM β̂MM . (22)

Where

FMM = (XT (Σ̂−1
MM ⊗Wn(β̂MM ))X + λIpm)−1(XT (Σ̂−1

MM ⊗Wn(β̂MM ))X + dIpm).

Similarly, If we use Σ̂s instead of Σ̂GLS in (16) then

β̂WSLiu−Type(Σ, λ, d) = Fsβ̂s. (23)

Where

Fs = (XT (Σ̂−1
s ⊗Wn(β̂s)X + λIpm)−1(XT (Σ̂−1

s ⊗Wn(β̂s)X + dIpm).

In fact, the β̂WSLiu−Type(Σ, λ, λs, d)) estimator and β̂WMMLiu−Type(Σ, λ, d)) are a weighting versions for
β̂SLiu−Type(Σ, λ, λs, d))) and β̂MMLiu−Type(Σ, λ, d))) estimators.
The unweighting versions of FMM and FS are formed as

F = (XT (Σ̂−1 ⊗Wn(β̂s))X + λIpm)−1(XT (Σ̂−1 ⊗Wn(β̂s))X + dIpm).

In this case, the (22) and (23) are modified as:

β̂UWMMLiu−Type(Σ, λ, d)) = F β̂MM (24)
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β̂UWSLiu−Type(Σ, λ, d) = Fβ̂s. (25)

In fact, the (SLiu-Type) estimator for SUR model has the special cases as the following:

β̂SLiu−Type(Σ, 0, λ, 0) = β̂s(Σ) (S-estimator)

β̂SLiu−Type(Σ, λ, λs, 0) = β̂SRidge(σ, λ) (Robust Ridge estimator)

β̂SLiu−Type(Σ, λ, 0, 0)) = β̂Ridge(Σ, λ)ifWn(β̂S) = In (Ridge estimator)

β̂SLiu−Type(Σ, λ, 0, d)) = β̂Liu−type(Σ, λ, d)ifWn(β̂S) = In (Liu-Type estimator)

The (MM Liu-Type) estimator for SUR model has the special cases as the following:

β̂MMLiu−Type(Σ, 0, 0)) = β̂MM (Σ) (MM estimator)

β̂MMLiu−Type(Σ, λ, 0)) = β̂MMRidge(σ, λ) (MM Ridge estimator)

β̂MMLiu−Type(Σ, λ, 0)) = β̂Ridge(σ, λ)ifWn(β̂MM) = In (Ridge estimator)

β̂MMLiu−Type(Σ, λ, d)) = β̂Liu−type(σ,Λ, d)ifWn(β̂MM) = In (Liu-Type estimator)

For the special cases of the (SLiu-Type) estimator and (MMLiu-Type) estimator for SUR model, we note that, the
equation Ws(β̂s) =Ws(β̂MM ) = In check if ρ(r) = r2.

3. Choosing the tuning parameters (λ, d)

In order to arrive at the best estimate of robust Liu-Type regression, appropriate tuning parameters must be selected.
The robust tuning parameters are a good choice in this case. So, [2, 3] chose tuning parameters for the Liu-Type
estimator that have robust features. In this section, we develop the [23] formula by using the robust function. The
suggested single value of tuning parameter (d̂) is

d̂ = median(
γijα

2
ij

2(1 + γijα2
ij)

), i = 1, 2, · · · ,m, j = 1, 2, · · · , p. (26)

Where γ = diag(γ1, γ2, · · · , γm), γ1 = diag(γi1, γi2, · · · , γim), i = 1, 2, · · · ,m is a eigenvalue of XT (Σ⊗
W )−1X and αij is ijth elements of γTβ.
On the other hand, there are many methods to choose the tuning parameter (Λ) such as AIC, BIC and Cross
validation (C.V). Some authors used K-fold cross validation to choose the tuning parameter(Λ). [26] used the K-
fold cross validation to choose the penalty parameter for a high dimension. We use the K-fold cross validation with
Turkey’s biweight to choose the tuning parameter (Λ)

λ̂ =argmin
λ [

1

nm

m∑
s=1

K∑
k=1

∑
i∈k

ρ(ysi − xTsiβ̂(−k),λ)]. (27)

Where β̂(−k),λ is penalized estimator, we chose it for Liu-Type estimator.

4. Theoretical properties

In this section, we discuss the properties for the S Liu-type and MM Liu-type estimator for SUR model. [4]
discuss the properties of the S-estimator for SUR model. We will make this discussion a main point for studying
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612 ROBUST LIU-TYPE ESTIMATOR FOR SUR MODEL

the properties of the proposed MM and S-estimator estimator.

Lemma 1: Assuming n1/2d d→ d0 and n1/2λ d→ λ0, then the estimator in (16) satisfy the following:

n1/2(β̂SLiu−Type − β)
d→ N(0, [

−E(ZTΣ−1Z)

H
− λ0 − 1]−1[(ζ − d20)E(ZTΣ−1Z)−1][

−E(ZTΣ−1Z)

H
− λ0 − 1]−1).

Where H = E[1− 1
M u(

∣∣Σ−1/2e)
∣∣)] + ρ′′(Σ−1/2e) and ζ = 1

mE[ρ′2(Σ−1/2e)] .

Proof: Frist, the SLiu-Type estimator fulfill the following condition

[

n∑
i=1

u(wi)X
−1AiΣ

−1AT
i Y ]− dβ̂GLS = [

n∑
i=1

u(wi)X
−1AiΣ

−1AT
i Xβ] + λβ.

Where Z = AT
i X, t = AY

i , Ai is nm×m matrix with diagonal vectors ai =
{
1, at positioner i

0, elsewhere
and e = t− Zβ.

Following [4] , the equation (16),(17) they can be form as:
1
n

∑n
i=1 Ψ(Z, t, β,Σ) = 0, and Ψ = (ΨT

1 ,Ψ
T
2 ).

Then Ψ1(Z, t, β,Σ) = u(w)ZTΣ−1e− dβ̂GLS − λβ = 0,Ψ2(Z, t, β,Σ) = vec[mu(w)eeT − u(w)Σ] = 0,
and Cov(Ψ1,Ψ2) = E[(u(w)ZTΣ−1e− dβ̂GLS − λβ)(vec[m(u(w)eeT − v(w)Σ])]
= E[(u(w)ZTΣ−1)e− dβ̂MM − λβ)(vec[mu(w)eeT ])− (u(w)ZTΣ−1)e− dβ̂MM − λβ)(vec[v(w)]Σ)]
= E[(mu(w)2ZTΣ−1e vec(eeT )− dmu(w)β̂(GLS)vec(ee

T )− λβu(w)vec(eeT )− u(w)v(w)Z−1e vec(Σ) +

dv(w)β̂(GLS)vec(Σ) + λmβv(w)vec(Σ)].
Where w2

i = eT Σ̂−1e.
If we assume that, e is a symmetric distribution and independent from Zi and β̂MM are asymptotically independent
[4] then Cov(ΨT

1 ,Ψ
T
2 ) = 0.

For the central limit theorem, we get to

n1/2ψ(Z, t, β,Σ)
d→ N(0, V ar(Ψ1), V ar(Ψ2)).

Then

n1/2(β̂SLiu−Type − β)
d→ N(0, [E(Ψ1)

−1V ar(Ψ1)E(Ψ1)
−1T ]).

Where V ar(Ψ1) = V ar(u(w)ZTΣ−1e− dβ̂GLS − λβ) = V ar(u(w)ZTΣ−1e)− V ar(dβ̂GLS)− V ar(λβ)−
2Cov((u(w)ZTΣ−1e), dβ̂GLS)− 2Cov(u(w)ZTΣ−1e, λβ) + Cov(dβGLS , λmβ)
[4] clarified that V ar(u(w)ZTΣ−1e = ζE(ZTΣ−1Z) where ζ = 1

mE[ρ′2(Σ−1/2e)]

Assumingn1/2 d→ d0 and n
1/2λ

d→ λ0 then V ar(dβGLS) = d20(Z
TΣ−1Z−1), V ar(λβ) =

0,Cov(u(w)ZTΣ−1e, dβGLS) = 0 , Cov(u(w)ZTΣ−1e, λβ) = 0, Cov(dβGLS , λβ) = 0
So V ar(Ψ1) = (ζ − d2)E(ZTΣ−1Z)−1

Following [4], we see that

E(
∂Ψ1

∂β
) =

−E(ZTΣ−1Z)−1

H
− λ0 − 1.

Where H = E[(1− 1
m )u(

∣∣Σ−1/2e)
∣∣)] + ρ′′(Σ−1/2e)].

Lemma2: Assuming n1/2 d→ d0 and n1/2λ d→ λ0, then the estimator in (20) satisfy the following:

n1/2(β̂MMLiu−Type − β)
d→ N(0, [

−E(ZTΣ−1Z)

H∗ − λ0 − 1]−1[(ζ − d20)E(ZTΣ−1Z)−1][
−E(ZTΣ−1Z)

H∗ − λ0 − 1]−1).

Where H∗ = E[(1− 1
m )u1(

∣∣Σ−1/2e)
∣∣)] + ρ1

′′(Σ−1/2e), and ζ = 1
mE[ρ1

′2(Σ−1/2e)].
Prrof: Following the proof in lemma 1 with replace u by u1 and ρ by ρ1.
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5. Fast and robust bootstrap

When we estimate the robust SUR Model by using the classic bootstrap, the results suffer from a lack of speed
and durability and it produces breakdown of the estimator [11]. To compute a robust estimator, we need robust
bootstrap procedures. This requirement is not necessary for non-robust estimators. Fast and robust bootstrap (FRB)
which were introduced by [17] is a suitable option to calculate the robust estimators. This method is asymptotically
consistent. In this paper, we apply (FRB) to (SLiu-Type) and (MMLiu-Type) estimator. At first, we rewrite (16),
(17), (20) and (21) as

f1(β̂s, Σ̂s) = (XT (Σ̂−1
s ⊗Ws(β̂))X + λIpm)−1(XT (Σ̂−1

s ⊗Ws(β̂))X + dIpm)β̂s (28)

f2(β̂s, Σ̂s) = m((Ÿ − Ẍβ̈)TWn(Ÿ − Ẍβ̈)(

n∑
i=1

[ρ′(Wi) + ρ(Wi) + ϑ])−1 (29)

f1(β̂MM , Σ̂MM , Σ̂MM ) = (XT (Σ̂−1
MM ⊗Wn(β̂))X + λIpm)−1(XT (Σ̂−1

MM ⊗Wn(β̂))X + dIpm)β̂MM (30)

f2(β̂s, Σ̂MM ), Σ̂s) = Φ((Ÿ − Ẍβ̈)TWn(Ÿ − Ẍβ̈). (31)

Where Wn = diag((u1(w1), u1(w2), · · · , u1(wn)), d
2
i =

∣∣∣Σ̂∣∣∣−1/m

eTi Γ̂
−1ei, u1(wi) = ρ′1(wi)/wi and Φ(N) =

|N |−1/m
N : N is an m×m.

Let the Θ̂ = (β̂T
MM , vec(Σ̂s)

T , vec(Σ̂MM )T , β̂T
s ) is a vector that join the (SLiu-Type) and (MMLiu-Type) estimator

and let

g(Θ̂) = (f1(β̂s, Σ̂s)
T , f2(β̂s, Σ̂s)

T , f3(β̂s, Σ̂MM , Σ̂s)
T , f4(β̂s, Σ̂MM , Σ̂s)

T ))T . (32)

The Θ̂ is a solution of a fixed-point equations Θ̂ = g(Θ̂) where g is function depend on the set data (yij , x
T
ij)

T , i =

1, 2, · · · ,m, j = 1, 2, · · · , n . The resampled corresponding estimator is Θi∗ that is solved by Θ̂i∗ = gi∗(Θ̂i∗).
These approximations bootstrap underestimate the true variability since the starting value is the same for all
bootstrap. The fast and robust bootstrap (FRB) is given by

Θ̂i∗
FRB = Θ̂ + (1−▽g(Θ̂))−1(gi∗(Θ̂)− Θ̂). (33)

Where ▽g(Θ̂)) is a matrix of partial derivatives which calculated by [11]. The Θ̂i∗
FRB has more robust and easier

to compute than Θ̂i∗ .

6. Simulation study

We obtain the (SLiu-Type) and (MMLiu-Type) estimator by (FRB) and then investigate by simulation. In this
simulation, the data of dependent variable is determined by the model

yij =

p∑
s=1

xjisβis + µij , j = 1, 2, · · · , n i = 1, 2, · · · ,m.

We chose p= 4 and p=10 and we generate the explanatory variables from multivariate normal distribution

as MVNm(0,Ωρx) where Ωρx =

{
1, for diag

ρx, for of fdiag.
and ρx is a correlation coefficient between explanatory

variables. We choose ρx = 0.25, 0.90. We generate error term’s from multivariate normal distribution as
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MVNm(0,Ωρx) where Ωρµ =

{
1, for diag

ρµ, for of fdiag.
and ρµ is a correlation coefficient between cross error

between equations. We choose ρµ = 0.10, 0.85. We choose γ = 20% and 50% as contamination rate and we
chose the number of observation n=20 and n=200. The initial value for coefficients is chosen as βp=4 =
[1, 1, 1, 1]Tandβp=10 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T and we run the simulation 500 replications. We use the equation
(26) to choose the tuning parameter (d) and we use the equation (27) with 5-fold cross validation to choose the
tuning parameter (λ). Table (1) summarizing the factors of the simulation study. We use MSE that is formed as

MSE =
1

nm
(Y −Xβ̂)T (Y −Xβ̂) (34)

Table (1): The factor which used in simulation study
Factors Alternatives

p 4,10
n 20,200
ρx 0.25,0.90
ρµ 0.10,0.85
m 3,9
γ 20%,50%

7. The results of simulation:

The tables of the result of the simulation are designed to include all factors, and each table has been divided
so that it contains two main parts, the first part is the correlation coefficient between the independent
variables and the second part the pollution percentage, and these tables were designed in this way to deal
with the evaluators of multicollinearity and outliers. The result of the simulation study are summarized
in table (2),(3),(4) and (5) which relied on comparing four basic cases which are (γ = 20%, ρx = 0.25)
,(γ = 20%, ρx = 0.90),(γ = 50%, ρx = 0.25) and (γ = 50%, ρx = 0.90). This results clearly show that The
MMLiu-Type and WMMliu-Type estimators work well when the other estimators at all factors and the Liu-Type
estimator is the worst estimator at all factors. Also, the result of the simulation illustrated that,for all estimator,
when n and p increase, the MSE decreasing and when m, ρx, ρµ and γ increase, the MSE increase. It is clear that
the Liu-Type estimator, which is non robust estimator, is affected negatively as a result of increased contamination
rate. On the other hand, the MM estimator works better than S estimator in all cases. The weighting versions of
SLiu-Type and MMLiu-Type have a positive effect on the estimators. In the case (γ = 50%, ρx = 0.90), the work
of WMMliu-Type estimator is weaker than other cases in table (2),(3) and (5) but at the same time it works better
than the other estimators.

8. Conclusion:

In this study, we introduce some robust Liu-Type estimators for SUR model which we got by merging the S-
estimator or MM estimator and Liu-Type estimator to have the features that resist the multicollinearity and outliers
at the same time. For more robust features, we replaced the GLS estimator by MM estimator in the Liu-Type
estimator. This modification had good effects on the suggested estimators. Also, we discussed the asymptotical
properties for this estimator. To verify superioriority of the proposed estimators, we ran the simulation study
which it illustrated the superiority for the MMLiu-Type and WMMliu-Type estimators over the other estimators
for resisting the multicollinearity and outliers.
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Table (2): MSE value for the estimators at γ = 20% , ρx = 0.25
Estimator Factors

m=3
n=20 n=200

p=4 p=10 p=4 p=10
ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85

Liu-Type 35.31 45.23 34.29 42.31 33.06 40.25 31.02 43.32
S 34.98 35.55 33.84 35.05 32.19 33.91 30.87 31.16

MM 19.23 20.65 18.05 19.37 17.09 18.01 15.94 16.97
SLiu-Type 16.18 17.91 15.84 19.04 14.3 15.8 16.5 17.4

MMLiu-Type 5.61 6.72 5.21 5.27 4.22 5.28 6.99 7.12
WSLiu-Type 16.2 17.9 15.9 16.81 12.4 14.5 13.8 14.1

WMMliu-Type 1.25 1.38 1.11 1.19 1.12 1.89 0.78 0.89
m=9

Liu-Type 37.77 48.32 38.31 45.35 33.52 41.21 32.15 44.41
S 37.65 35.84 35.59 30.21 34.08 8.86 31.94 33.24

MM 22.14 21.08 19.68 9.02 18.02 17.89 16.98 17.08
SLiu-Type 17.5 18.45 16.97 17.46 16.87 17.65 16.54 17.25

MMLiu-Type 6.54 8.01 8.09 8.18 6.08 6.66 6.99 7.48
WSLiu-Type 19.2 27.2 33.9 35.4 19.2 21.05 22.6 30.3

WMMliu-Type 1.04 2.06 1.54 1.98 1.01 1.96 1.05 1.87

Table (3): MSE value for the estimators at γ = 20% , ρx = 0.90
Estimator Factors

m=3
n=20 n=200

p=4 p=10 p=4 p=10
ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85

Liu-Type 36.36 46.19 35.34 44.08 35.14 41.58 32.32 44.05
S 35.68 36.18 35.08 37.52 18.45 34.99 32.65 31.87

MM 20.09 22.05 19.87 20.21 18.88 19.87 17.04 16.99
SLiu-Type 16.88 18.07 16.24 20.05 14.4 16.01 17.04 17.9

MMLiu-Type 6.87 6.89 5.89 5.97 4.22 6.24 7.98 8.54
WSLiu-Type 17.58 19.05 16.87 17.99 15.32 15.65 14.99 14.89

WMMliu-Type 1.55 1.45 1.25 1.42 1.32 2.08 1.01 1.15
m=9

Liu-Type 38.89 49.21 40.21 47.08 35.08 43.25 35.08 48.21
S 39.32 40.21 36.32 41.54 38.88 38.97 34.25 38.57

MM 21.54 23.54 20.87 22.32 20.08 21.98 19.12 17.87
SLiu-Type 17.02 19.05 16.99 21.22 19.65 16.87 17.99 18.67

MMLiu-Type 7.02 7.87 6.36 6.98 7.88 8.35 6.96 7.77
WSLiu-Type 17.96 20.21 17.65 21.97 15.97 16.95 15.73 15.97

WMMliu-Type 1.54 2.21 1.66 2.05 1.11 2.09 1.18 2.01
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Table (4): MSE value for the estimators at γ = 50% , ρx = 0.25
Estimator Factors

m=3
n=20 n=200

p=4 p=10 p=4 p=10
ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85

Liu-Type 54.08 62.63 51.11 58.87 46.62 58.54 48.58 51.12
S 35.54 36.65 33.21 36.65 30.21 30.89 29.32 36.21

MM 20.21 21.08 19.32 25.32 18.25 19.32 18.02 26.91
SLiu-Type 18.51 21.14 17.96 21.18 17.85 19.89 19.02 19.96

MMLiu-Type 6.54 8.01 8.09 8.18 6.08 6.66 6.99 7.48
WSLiu-Type 19.21 27.23 23.92 25.44 19.28 21.05 22.68 25.32

WMMliu-Type 1.04 2.06 1.54 1.98 1.01 1.96 1.05 1.87
m=9

Liu-Type 55.35 64.32 52.87 60.54 50.96 61.05 50.24 55.41
S 37.68 39.08 36.69 40.52 35.35 36.35 34.36 36.89

MM 23.65 24.09 22.32 26.32 21.32 22.56 22.35 24.68
SLiu-Type 19.08 20.07 18.02 21.85 18.02 19.25 18.88 19.25

MMLiu-Type 6.66 7.52 6.52 7.79 6.04 6.17 6.01 6.65
WSLiu-Type 17.25 19.09 18.88 20.07 17.02 17.53 16.98 17.82

WMMliu-Type 2.33 2.58 2.24 2.68 1.11 2.09 1.18 2.01

Table (5): MSE value for the estimators at γ = 50% , ρx = 0.90
Estimator Factors

m=3
n=20 n=200

p=4 p=10 p=4 p=10
ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85 ρµ = 0.10 ρµ = 0.85

Liu-Type 59.65 67.92 53.35 65.32 55.32 56.08 52.32 54.65
S 38.36 39.32 37.02 39.89 36.66 37.19 35.57 40.02

MM 24.25 22.25 23.36 24.02 23.06 24.44 21.36 24.48
SLiu-Type 23.1 28.3 26.4 29.4 19.4 20.4 19.5 22.8

MMLiu-Type 7.12 7.54 8.91 9.25 6.81 7.38 8.81 9.04
WSLiu-Type 21.5 25.5 23.8 24.6 23.1 25.3 22.5 25.9

WMMliu-Type 3.54 4.57 4.85 6.32 3.25 3.68 4.61 4.56
m=9

Liu-Type 63.09 69.81 61.08 62.36 60.36 62.69 59.32 63.36
S 39.25 40.08 37.77 38.39 36.66 37.06 35.36 38.88

MM 25.55 23.08 21.25 23.06 23.36 25.55 22.89 24.25
SLiu-Type 26.63 29.06 25.99 26.93 25.54 26.63 24.44 26.36

MMLiu-Type 8.24 7.89 7.65 8.02 7.97 8.32 9.01 9.65
WSLiu-Type 24.3 28.4 28.9 29.2 28.32 31.52 29.32 32.5

WMMliu-Type 4.02 4.96 5.06 6.98 3.87 4.85 4.79 4.95
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