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Abstract Internet traffic data such as the number of transmitted packets and time spent on the transmission of Internet
protocols (IPs) have been shown to exhibit long memory property, often referred to as self-similarity. Simulating this type of
dataset is an important aspect of delay avoidance planning, especially when trying to mimic real-life processing of packets
on the Internet. Most of the existing procedures often assumed the process follows a Gaussian distribution, and thus long
memory processes such as Fractional Brownian Motion (FBM) and Fractional Gaussian Noise (FGN) among others are
used. These approaches often result in estimation errors arising from the use of inappropriate distribution. However, it has
been established that the distribution of Internet processes are heavy-tailed. Therefore, in this paper, a new method that is
capable of generating heavy-tailed self-similar traffic is proposed based on the first-order autoregressive AR (1) process. The
proposed method is compared with some of the existing methods at varying values of the self-similar index and sample sizes.
The imposed self-similarity indices were estimated using the Range/Standard deviation statistic (R/S). Performance analysis
was achieved using the absolute percentage errors. The results showed that the proposed method has a lower average error
when compared to other competing methods.
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1. Introduction

Scientic experimentation has gained a powerful tool with the advent of computers. Nowadays, their immense
processing capabilities are used to perform complex simulations of data in various real-world situations. In a few
seconds, the (almost) tireless machines are capable of simulating and testing panoply of conditions that a man
would take a lifetime to reproduce. Supported by the law of large numbers, their outputs are often considered as
decision aids or as scientic arguments, if the codied simulation and resulting built model is guaranteed to be free
of errors [9].

The term self-similarity was first described by Hurst [8] in his reports about the Nile River. It is now known to be
embedded in many of the processes relating to natural and articial events [9], with its popularity that may be traced
to the ndings that unfold the so-called self-similar nature of Internet traffic. This has brought attention to the fact
that the behaviour of trafc in the network aggregation points should be understood by considering the self-similar
and non-memoryless property. Quantication of self-similarity is often done by estimating the parameter known as
the Hurst parameter described in [22], the simulation of sequences with the aforementioned property constitutes
a rather defying task, mostly because of the retrospective nature of its denition. The generator of a sequence with
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the self-similarity structure requires the produced points to be orderly stored in the memory and processed before
further points are created.

As a matter of retrospective, we investigated some papers that employed simulated Internet data in the form
of voice, text, video, or their combinations to carry out various research on Internet traffic. Among the works
reviewed, the majority had the problem of simulating Internet traffic data using wrong models which may not
adequately capture the true self-similar and long-range dependent properties of Internet traffic. For example, the
use of Fractional Brownian Motion (FBM) process for modelling self-similarity in stock market prices [12]. The
same process was suggested in [13] for modelling connectionless communications with parameters based on an
equivalent burst model. Also, more recent authors, [23, 7] constructed algorithms for simulating Internet data that
are based on simulating Gaussian processes and Markov Decision Processes. The drawback of the approach lies in
its reliance on Gaussian process.

[23] proposed a method for detecting network anomalies and intrusions in communication networks based on
support vector machine (SVM) and broad learning system (BLS) to detect anomalies and intrusions in datasets
obtained from packet data networks. The authors used the SVM algorithm as a supervised learning approach to
identify optimal hyperplanes (decision boundaries) for classifying known network anomalies and intrusions. The
authors further compared the algorithm using the polynomial (linear, quadratic, and cubic), Gaussian, and sigmoid
kernels. The developed models are trained and tested using data from the Internet routing tables, a simulated air
force base network, and an experimental testbed. As robust as the approach, the demerit is the reliance on Gaussian
process, which is unrealistic in most Internet traffic data. To bridge this gap, we proposed a generalized self-similar
Internet traffic generator that is useful for generating self-similar processes from any probability distribution.

[7] worked on a virtual network embedding (VNE) via a Monte Carlo tree search using two VNE algorithms:
MaVEn-M and MaVEn-S. MaVEn-M employs the multi-commodity flow algorithm for virtual link mapping,
while MaVEn-S uses the shortest-path algorithm. The cog in the wheel of the approach is that it is based on the
Markov Decision Process (MDP) framework and devises action policies (node mappings) using the Monte Carlo
tree search algorithm. Besides, the VNE approach lacks a thorough justification of the Virtual Node Mapping
(VNoM) procedure used. Furthermore, the MDP method used cannot adequately capture the self-similar property
of Internet traffic.

In [10], a similar and extended work of [7] considered network topology and energy efficiency in the VNE
process based on Energy Efficient, Concurrent, and Topology-Aware (EE-CTA). The shortcoming of EE-CTA
is that the generated substrate network and virtual network data used for the analysis is based on the same
predetermined MDP as used in [7].

Besides network-based approaches, fitness-based dynamic virtual network embedding (DYVINE) have also been
proposed to solve the problem of poor usage and extremely low acceptance rate in VNE for efficient mapping to
support the dynamic nature of incoming virtual networks [4]. The major demerit of [4] is the simulation setup for
the arrival and lifetime of the incoming virtual networks, which is assumed to follow the Poisson and exponential
distributions, respectively. These distributions are not adequate to explain the self-similar property of Internet traffic
with its non-memoryless characteristic. Given the aforementioned flaws in the various existing self-similar Internet
traffic generators, we propose a new generalized method for simulating self-similar processes based on Box-Jenkins
autoregressive moving average (ARMA) of order 1, AR (1). The modified version of the AR(1) process is used
to build an algorithm for a generator that is applicable for simulating self-similar processes that is adaptable to
any distribution. The new method is also readily suitable for simulating Internet traffic which may not necessarily
follow Gaussian distribution or Poisson-Exponential process.

The main result of this paper is a theorem presenting the derived Internet traffic generator proposed as well as the
efficiency of the model using simulated data. In particular, self-similar traffic from a mixture of both Gaussian and
non-Gaussian processes were simulated. In addition, we presented the performance comparison of the proposed
generator in the simulation of exact self-similar Internet traffic with some competing techniques such as Paxson,
Fractional Gaussian Noise (FGN), Hosking method, Fractional Brownian Motion (FBM) processes, Cholesky
method, and Fractional Autoregressive Integrated Moving Average (F-ARIMA).
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The rest of the paper is organized as follows; Section 2 gives preliminaries of self-similar processes. Section
3 presents the main results of this paper. Section 4 presents the numerical examples from simulations. Section 5
presents the discussion of results while the conclusion and future work are presented in Section 6.

2. Development of self-similar process model

In this section, a brief consideration of some terminologies related to Internet traffic and particularly heavy-tailed
distribution is presented.

2.1. Self-similarity

A self-similar object has been described to be exactly or approximately similar to a part of itself [16, 17, 18]. Self-
similarity in Internet traffic occurs when packets of the same burst length arrive at the same time or when packets
burst at the same inter-arrival period on the server [14, 16, 18]. Simply speaking, an Internet traffic process that
exhibits self-similarity implies that the process is indistinguishable from its scaled versions, which are obtained
by averaging the original process within different observation time scales. The mathematical description of self-
similarity is given by [1, 16].

Xm
j =

1

m
(Xjm−m+1,+Xjm−m+2 + · · ·+Xjm) (1)

Equation (1) describes an incremental process Xj(j = 1, 2, . . . ) whose average in non-overlapping blocks of size m
is another process Xm

j (j = 1, 2, ).Here, process Xj is said to be self-similar if Xm
j ≡ mH−1Xj where m(m ≥ 1)

is the scale parameter, and H, (0.5 < H ≤ 1) is the Hurst parameter, which is used to measure the burstiness of
an Internet traffic process. Obviously, when H = 1 , processes Xm

j and Xj have the same distribution without any
decay since var(Xm

j ) = var(Xj).

2.2. Long-Range Dependence (LRD)

A self-similar process can also contain a property of long-range dependence [25]. Long-Range Dependence (LRD)
describes the memory effect where a current value strongly depends upon the past values of a stochastic process,
and it is characterized by its autocorrelation function at various time points usually called the lag points. Given the
Hurst parameter H for 0 < H < 1,H ̸= 0.5 the autocorrelation function r(k) for lag k is;

r(k) = H(2H − 1)k−2H−2 (2)

For values 0.5 < H < 1 , the autocorrelation function r(k) decays hyperbolically to ck−2H−2 as k increases,
which means that the autocorrelation function is not summable [6]. This is opposite to the property of short-
range dependence (SRD), where the autocorrelation function decays exponentially, and the equation (2) has a finite
value. Short and long-range dependence have a common relationship with the value of the Hurst parameter (H) of
the self-similar process [14, 26, 16, 17, 18, 11, 20, 19, 21]. When the value of H lies in the interval 0 < H < 0.5,
the self-similar process is said to be SRD and if the value of H lies in the interval 0.5 < H < 1 the process is said
to have LRD.

The reviewed classical approaches that captures the behaviour of Internet traffic are detailed in the subsections
that follows.

2.3. Fractional Brownian Motion and Fractional Gaussian Noise

The Fractional Brownian Motion (FBM) described by [12] is a Gaussian stochastic process in continuous time
defined as:

BH(t) = BH(0) +
1

Γ(H + 1/2)

{∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]

}
dB(s) +

∫ 0

−∞
(t− s)H−1/2dB(s) (3)
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for t > 0 (and similarly for t < 0) where Γ(α) =
∫∞
0

xα−1 exp(−x)dx and 0 < H < 1. The FBM BH(t) has the
following covariance function:

E[BH(t)BH(s)] = 1/2(t|2H + |s|2H − |t− s|2H) (4)

The Hurst exponent describes the raggedness of the resultant motion with a higher value leading to smoother
motion. The value of H determines what kind of process the FBM is. For clarity, it was reported in [12] that:

i. if H = 1/2 then the process is, in fact, a Brownian motion or Wiener process;
ii. if H > 1/2 then the increments of the process are positively correlated;

iii. if H < 1/2, then the increments of the process are negatively correlated.

The increment process, X = Xk : k = 0, 1, ... of Fractional Brownian Motion is known as Fractional Gaussian
Noise (FGN) defined by;

X(t) = BH(t+ 1)−BH(t) (5)

It is clear that Xk has a standard normal distribution for every k, but that there is (in general) no independence. To
be precise, the corresponding auto-covariance function γ() is of the form

γ(k) =
1

2
[|k − 1|2H − 2|k|2H + |k + 1|2H ] (6)

for k ∈ Z. If H = 1/2, all the covariances are 0 (except, of course, for k = 0). Since Fractional Gaussian Noise is a
Gaussian process, this implies independence. This agrees with the properties of ordinary Brownian Motion, which
has independent increments.

2.4. Fractional Autoregressive Moving Average Process

Another widely used process with long-range dependence is Fractional Autoregressive Moving Average Process
(F-ARMA). The parameters of this model control long-range dependence as well as the short term behaviour. The
F-ARIMA model is based on the ARMA model [5]. An ARMA (p, q) process X = Xk : k = 0, 1, ... is a short
memory process that is the solution of;

ϕ(L)Xk = θ(L)ϵk. (7)

where ϕ and θ are polynomials of order p and q respectively, and ϵ is a white noise process, i.e., the ϵk are i.i.d.
standard normal random variables. The lag operator L is dened as LXk = Xk−1. A generalization of this model is
the ARIMA (p, d, q) process for d = 0, 1, ..., dened by the property that (1− L)dXk is an ARMA (p, q) process.
As implied by its name, the fractional ARIMA model admits a fractional value for the parameter d. For this, we
have to understand how (1− L)dXk dened for fractional d. The fractional order is computed using the binomial
expansion in (8);

(1− L)dXk =

∞∑
k=0

(
d

k

)
(−L)dXk (8)

where the binomial coefficient
(
d
k

)
is defined as;(

d

k

)
=

Γ(d+ 1)

Γ(d− k + 1)Γ(k + 1)
(9)

Since the case d > 1/2 can be reduced to the case −1/2 < d ≤ 1/2 by taking appropriate differences, the latter
case is particularly interesting. X is a stationary process for −1/2 < d < 1/2. Long-range dependence occurs
for 0 < d < 1/2, implying that the process is also asymptotically second-order self-similar in this case. The
corresponding Hurst parameter is H = 1/2 + d, [5].
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Apart from the standard processes presented above, there are some other interesting hybrid approaches for
simulating self-similar processes that are based on either the FBM or FGN. Some of these methods are presented
in the subsections that follow.

2.5. Paxson method

Paxson [15] proposed a rather intuitive method for simulating the Fractional Gaussian Noise process. Paxson
studied the output of the FGN process by statistically testing if the resulting samples satisfy the desired properties.
The approach was found to be justification deficient as it is unclear why the obtained sample should be close to
Gaussian. In the Paxson method, the approximate FGN sample is the Fourier transform of

bk =


0, k = 0√

Rkf(tk)
N exp(iΦk), k = 1, 2, 3, . . . , N/2

b∗N−k, k = N
2 + 1, . . . , N − 1

(10)

where R1, R2, R3, . . . , Rk are independent exponentially distributed random variables with mean 1 for k ≥ 1, and
the (∗) denotes the complex conjugate. Besides, ΦN/2 is set to zero while Φ1,Φ2,Φ3, . . . ,Φk are independent
uniformly distributed random variables on [0, 2π] for k ≥ 1, also independent of the Rk. In this case, tk equals
2πk/N .

2.6. Hosking Method

The Hosking method [9] (also known as the Durbin or Levinson method) is an algorithm to simulate a
general stationary Gaussian process. Therefore, the focus here is on the simulation of Fractional Gaussian Noise
X0, X1, . . . .The method generates X(n+ 1) given Xn, . . . , X0 recursively. It does not use specific properties of
Fractional Brownian Motion nor Fractional Gaussian Noise and thus applicable to any stationary Gaussian process.
The key advantage of the approach is that the distribution of X(n+ 1) given the past can be explicitly computed.

2.7. Cholesky method

The Cholesky method [5] was developed using the Cholesky decomposition of the covariance matrix of Gaussian
processes. The approach involves redefining the covariance matrix Γ(n) such that it can be written as L(n)L(n)′,
where L(n) is an (n+ 1)× (n+ 1) lower triangular matrix. Denoting element (i, j) of L(n) by lij for i, j =
0, 1, . . . n, then L(n) is said to be the lower triangular matrix if lij = 0 for j > i. It can be proven that such a
decomposition exists when Γ(n) is a symmetric positive denite matrix.Unlike the Hosking method, the Cholesky
method can be applied to non-stationary Gaussian processes.

The various self-similar generators discussed so far can be evaluated and assessed for their efficiencies by
estimating the value of the Hurst index H initially imposed at the simulation step. The rescale range (R/S) statistics
is one of the popular methods for estimating the H value of a self-similar process. The following subsection
presents the procedure.

2.8. R/S analysis

The R/S statistics discussed by Rose [24] is particularly attractive because of its relative robustness against changes
in the marginal distribution, even for long-tailed or skew distributions. Given an empirical time series of length
(Xk : k = 1, ..., N), the whole series is subdivided into K non-overlapping blocks. The next is to compute the
rescaled adjusted range R(ti, d)/S(ti, d) for several values d, where ti = [N/K](i− 1) + 1 are the starting points
of the blocks which satisfy (ti − 1) + d ≤ N . Here, R(ti, d) is defined as:

R(ti, d) = max
{
0,W (ti, 1), . . . ,W (ti, d)

}
−min

{
0,W (ti, 1), . . . ,W (ti, d)

}
(11)

where
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W (ti, k) =

k∑
j=1

Xti+j−1 − k

(
1

d

d∑
j=1

Xti+j−1

)
, k = 1, . . . , d. (12)

Also, S(ti, d) denotes the sample standard deviation of Xti , . . . , Xti+d−1. For each value of d one obtains a
number of R/S samples. For small values of d, there are K samples. The number decreases for larger values of d
because of the limiting condition on the ti values. These samples are computed for logarithmically spaced values
of d, i.e. dl+1 = mdl with m > 1 starting with d0 fixed at 10. The R/S plot also known as pox diagram [24] is
computed using these values. The diagram is obtained by plotting log[R(ti, d)/S(ti, d)] against log d.

The next step involves fitting a least-squares line to the points of the R/S plot, where the R/S samples of the
external values of d are not considered. The slope of the regression line for these R/S samples is an estimate for
the Hurst parameter H . Both the number of blocks K and the number of values d should not be chosen to be too
small. In addition, some care has to be taken when deciding about the end of the transient, i.e., which of the small
values of d should not be taken into consideration for the regression line.

3. Proposed Generalized Self-Similar First Order Autoregressive Generator (GSFO-ARG)

3.1. The Development of GSFO-ARG Generator

Theorem 3.1: For any random AR(1) memoryless process Xk, with an underlying distribution D and
autocorrelation function ρk = γk/γ0. The transformed process X ′

k defined over Xk is a self-similar process with
the same distribution D and autocorrelation function ρ′k = (ck2H−2

0 )
k
k0 , where k0 is an optimal fractional index

parameter, H is the Hurst index and c = exp(k0 logH − (2H − 2) log k0).

Proof:

As earlier defined, an ARMA (p, q) process X = Xk : k = 0, 1, . . . is a short memory process that is the solution
of the equation (13) [2].

ϕ(L)Xk = θ(L)ϵk. (13)

with ϕ, θ, and lag operator L are as defined in subsection 2.4. The equation (13) can then be re-written as;

Xk = ϕ1Xk−1 + ϕ2Xk−2 + · · ·+ ϕpXk−p + ϵk + θ1ϵk−1 + θ2ϵk−2 + . . . θqϵk−q. (14)

Accordingly, following Cryer and Chan [3], an AR (1) process is;

Xk = ϕXk−1 + ϵk. (15)

The corresponding autocorrelation property of the process is;

ρk =
γk
γ0

(16)

and var(Xk) = γ0, which then implies from (16) that;

γ0 = ϕ2γ0 + σ2
e . (17)

→
γ0 =

σ2
e

1− ϕ2

and

γk = ϕk σ2
e

1− ϕ2
.
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Thus,

ρk =
ϕk σ2

e

1−ϕ2

σ2
e

1−ϕ2

→
ρk = ϕk. (18)

If |ϕ| < 1, the magnitude of the autocorrelation function decreases exponentially as the number of lags k increases.
This implies an AR(1) process is a short memory process. Our approach is to make the simple AR(1) process a
long memory process by equating the established autocorrelation of any self-similar process to that of the AR(1)
process and solving the resultant expression. The derivation follows as;

ρk−Selfsimilar = ck2H−2 (19)

ρk−Selfsimilar = ρk−AR(1) (20)

ck2H−2 = ϕk (21)

→

k
√
ck2H−2 = ϕ.

The problem here is to obtain the value of ϕ that will ensure a specific self-similar index H given c and k. To obtain
c that will ensure a specific H implies that ϕ = H;

k
√
ck2H−2 = H. (22)

→
log c+ (2H − 2) log k = k logH

log c = k logH − (2H − 2) log k.

Thus,
c = exp(k logH − (2H − 2) log k). (23)

After the substitution of (23) in (21), we have,

k
√

exp(k logH − (2H − 2) log k)k2H−2 = ϕ. (24)

And finally, we have,
ϕ = (exp(k logH − (2H − 2) log k)k2H−2)

1
k (25)

Equation (25) shows that if k is chosen appropriately the autocorrelation will decay slowly since the autocorrelation
of AR(1) is ϕk.

The next step in the simulation process is obtaining the value of k that will also ensure a specific H keeping
in mind that 0 < ϕ < 1 is required to achieve a stationary AR(1) as well as positive autocorrelation property of
a self-similar sequence. For k ≤ H and ϕ > 1, the AR(1) process will not be stationary. If k → ∞, then ϕ → 1
and thus k lies in the interval H < k < ∞. Therefore, to obtain an exact self-similar process with a specific H , k
should be increased gradually until the target H is achieved. By direct substitution of (25) in (15), our proposed
GSFO-ARG generator X ′

k can be obtained using:

X ′
k = (exp(k0 logH − (2H − 2) log k0)k

2H−2
0 )

1
k0 Xk−1 + ϵk. (26)
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where k0 is the optimal k that will ensure a specific H .The distribution of ϵk determines the distribution of X ′
k,

thus GSFO-ARG generator applies to any distribution. The corresponding autocorrelation property is;

ρ′k = (exp(k0 logH − (2H − 2) log k0)k
2H−2
0 )

k
k0 (27)

Equation (27) shows that the autocorrelation of the sequence X ′
k will decay hyperbolically and eventually yield the

expected autocorrelation of any self-similar process when k0 → k.

4. Numerical Examples and Results

We present the results of some five existing self-similar generators compared with the proposed GSFO-ARG
method at different values of the Hurst parameter H. Since the values of H in the interval 0.5 < H < 1 are desirable
for the self-similar process with LRD, which is the focus of this study. Therefore, we choose H = 0.6, 0.7, 0.8 and
0.9 values for the implementation of all the self-similar generators discussed in this study. Also, the optimal value
of k0 that is desirable for each of the chosen Hurst parameters H were determined and used for the proposed
GSFO-ARG method to generate its own set of stochastic sequences.

Furthermore, the relative performance of each generator is assessed using the percentage error formula given by;

E =
H − Ĥ

H
× 100 (28)

In some instances, especially in cases for which the value of the Hurst parameter H is underestimated by a
generator, the absolute percentage error can be used and it is given by;

|E| = |H − Ĥ|
H

× 100 (29)

In equations (28) and (29), Ĥ represents the estimate of the Hurst parameter H provided by each generator.
Results in Table 1 are the average estimates of the Hurst parameters based on the sequences generated by each

of the existing self-similar generators compared with our proposed generator at sample size n = 28 averaged over
1000 iterations. Table 1 also reports the percentage error (PE) and absolute percentage errors (APE) of estimates
as computed by all the six self-similar generators. The APE is used to assess the efficiency of the generators of
the self-similar process. Based on this assessment, a method with the least APE is the most efficient among all the
self-similar generators considered. Similarly, the results of all the six self-similar generators at sample size n = 210
over 1000 iterations are also provided in Table 2. A similar pattern of results were equally observed in both the
Table 1 and Table 2 for all the six generators. Tables 1 and 2 also show that the proposed GSFO-ARG method has
the least % absolute errors and thus adjudged as the most efficient of all the six methods considered. To have a clear
overview and assessment of the level of closeness of the estimated Hurst parameters Ĥ as provided by the six self-
similar generators including the proposed GSFO-ARG method to their true values H, we plotted H against Ĥ and it
is shown in Figures 1a and 1b using the results in Tables 1 and 2 for n = 28 and n = 210 respectively. The line plot
of the true value H against the expected value of Ĥ is equally provided in solid black lines, as shown in Figures 1a
and 1b. It should be noted that E(Ĥ) = H , thus for H = (0.6, 0.7, 0.8, 0.9), E(Ĥ) = (0.6, 0.7, 0.8, 0.9). Therefore,
the plot of H against E(Ĥ) = H should produce a line that makes an angle ∠450 with the x-axis (solid black
lines in Figures 1a and 1b) which is the reference line against which the line provided by each of the generators is
compared. By this, a generator whose line is the closest to the reference line would be adjudged the best of the six
generators.

Finally, we provide in Figure 2, the line graphs of the percentage absolute errors of all the six self-similar
generators at the chosen Hurst parameter values as reported in Table 2 at sample size n = 210. The method that
provided a graph with points closest to the horizontal x-axis of the graph is adjudged to be the most efficient among
the competing ones.
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Figure 1. Figure 1a. shows the plots of the Hurst parameters (H) obtained by the five chosen self-similar generators and the
proposed GSFO-ARG (AR) generator against the true values H at sample size n = 28.The plot of H against E(Ĥ) = H
for values of H in the interval 0.5 < H ≤ 1 is also provided in a solid black line. Figure 1b. shows the plots of the Hurst
parameters (H) provided by the five chosen self-similar generators and the proposed GSFO-ARG (AR) generator against
the true values H at sample size n = 210. The plot of H against E(Ĥ) = H for values of H in the interval 0.5 < H ≤ 1 is
also provided in solid black line.

Figure 2. The plots of the percentage absolute error of estimates of the Hurst parameters (H) of all the six self-similar
generators against the chosen values of H at sample size n = 210

Stat., Optim. Inf. Comput. Vol. 8, December 2020



J. POPOOLA, W. B. YAHYA, O. POPOOLA AND O. R. OLANIRAN 819

Table 1. Results of generators performances at n = 28 over 1000 iterations.

Hurst (H) Generator Mean (Ĥ) % Error (E) % Absolute error (|E|)

0.6 GSFO-ARG; k0 = 1.99 0.6254 4.2271 4.2271
PAXSON 0.6551 9.1771 9.1771
FBM 0.9852 64.1951 64.1951
F-ARIMA 0.5404 -9.9256 9.9256
FGN-CHOLESKY 0.9894 64.9039 64.9039
DURBIN 0.6443 7.3895 7.3895

0.7 GSFO-ARG; k0 = 1.11 0.7577 8.2394 8.2394
PAXSON 0.7059 0.8442 0.8442
FBM 1.0003 42.8984 42.8984
F-ARIMA 0.5934 -15.2248 -15.2248
FGN-CHOLESKY 0.9910 41.5773 41.5773
DURBIN 0.7197 2.8090 2.8090

0.8 GSFO-ARG; k0 = 0.979 0.8674 8.4273 8.4273
PAXSON 0.7687 -3.9064 3.9064
FBM 1.0016 25.2036 25.2036
F-ARIMA 0.6421 -19.7410 19.7410
FGN-CHOLESKY 0.9943 24.2854 24.2854
DURBIN 0.7683 -3.9625 3.9625

0.9 GSFO-ARG; k0 = 0.967 0.9415 4.6139 4.6139
PAXSON 0.8198 -8.9118 8.9118
FBM 1.0052 11.6858 11.6858
F-ARIMA 0.6945 -22.8322 22.8322
FGN-CHOLESKY 0.9937 10.4148 10.4148
DURBIN 0.8208 -8.8014 8.8014

5. Discussion of results

Tables 1 and 2 present the estimated average values of the Hurst parameter index H as provided by each of the six
self-similar generators including the proposed one at sample sizes n = 28(256) and n = 210(1, 024) respectively.
Also, the percentage errors and absolute percentage errors of these estimates were reported for each method using
the R/S statistics at these two sample sizes. It was observed that at various Hurst index H levels, the proposed
GSFO-ARG(1) generator produces a fairly close estimate compared to the other generators. Among the five
existing generators considered, Paxson and Durbin’s method produced better estimates compared to the other three
existing generators (FBM, FGN-Chol, and F-ARIMA) considered.

It can be observed from the various results in Tables 1 and 2 that the F-ARIMA method under-estimated while
FBM and FGN-Chol overestimated the imposed H values at all the chosen levels. The results of R/S statistics
on all the six methods showed that the proposed GSFO-ARG method yielded the least percentage absolute error
(PAE), at all the chosen levels of the Hurst index H .

In summary, the efficiency of five existing self-similar Internet packets generators was examined. Furthermore,
an alternative method, GSFO-ARG(1) for generating such a self-similar sequence, was proposed for efficiency
gain. The efficiency of the five existing methods and the proposed method was assessed using PAE. The various
results presented in Tables 1 and 2 showed that the method that provided the best estimates of the Hurst index
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Table 2. Results of generators performances at n = 210 over 1000 iterations.

Hurst (H) Generator Mean (Ĥ) % Error (E) % Absolute error (|E|)

0.6 GSFO-ARG; k0 = 1.99 0.6190 3.1694 3.1694
PAXSON 0.6266 4.4307 4.4307
FBM 0.9940 65.6740 65.6740
F-ARIMA 0.5416 -9.7321 9.7321
FGN-CHOLESKY 0.9959 65.9875 65.9875
DURBIN 0.6460 7.6651 7.6651

0.7 GSFO-ARG; k0 = 1.11 0.7078 1.1143 1.1143
PAXSON 0.7108 1.5387 1.5387
FBM 1.0033 43.3237 43.3237
F-ARIMA 0.6148 -12.1760 12.1760
FGN-CHOLESKY 0.9958 42.2589 42.2589
DURBIN 0.7021 0.2987 0.2987

0.8 GSFO-ARG; k0 = 0.979 0.8004 0.0552 0.0552
PAXSON 0.7759 -3.0085 3.0085
FBM 1.0046 25.5778 25.5778
F-ARIMA 0.6892 -13.8563 13.8563
FGN-CHOLESKY 1.0038 25.4808 25.4808
DURBIN 0.7644 -4.4543 4.4543

0.9 GSFO-ARG; k0 = 0.967 0.9054 0.5971 0.5971
PAXSON 0.8343 -7.2995 7.2995
FBM 1.0039 11.5428 11.5428
F-ARIMA 0.7448 -17.2419 17.2419
FGN-CHOLESKY 0.9996 11.0714 11.0714
DURBIN 0.8391 -6.7662 6.7662

H is the proposed GSFO-ARG method, which was simply shortened as AR(1) generator because its development
originated from the first-order autoregressive process.

6. Conclusion

It can generally be concluded that whenever the interest centres on examining the self-similar processes of Internet
traffic, the proposed GSFO-ARG(1) method should be employed. This is irrespective of whether the self-similar
process is Gaussian or non-Gaussian.

In the future study, it might be imperative to consider computer systems for the impacts of different operating
systems and other properties often employed by users systems for generating the sequences of Internet traffic data.
This is desirable to determine the influence of different systems configurations on the properties of the self-similar
processes as established here and elsewhere [16, 17, 18].
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