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The Weibull Birnbaum-Saunders distribution and its applications

Lazhar Benkhelifa∗

Department of Mathematics and Informatics, Larbi Ben M’Hidi University, Algeria

Abstract A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is
proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data
in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative
and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the
model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the
performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by
applying it to two real data sets.
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1. Introduction

For modeling the material fatigue failure time process, Birnbaum and Saunders [5] developed a two-parameter
family of continuous probability models, known as the Birnbaum-Saunders (BS) distribution or as the fatigue
life distribution. Since the BS distribution was proposed, it has received much attention in the literature and has
been used in several fields such as engineering [19], insurance [26], medical sciences [2], wind analysis [21] and
econometrics [4], among others. For more details on the BS distribution, we refer to [3], [17] and [18].

A random variable T follows the BS distribution with shape parameter α > 0 and scale parameter β > 0, if it
can be written as follows

T = β

αZ
2

+

√(
αZ

2

)2

+ 1

2

,

where Z is a standard normal random variable. The cumulative distribution function (cdf) of T is

G(t) = Φ(v), t > 0, (1)

where Φ(·) is the standard normal distribution function, v = α−1ρ(t/β) and ρ(z) = z1/2 − z−1/2. The probability
density function (pdf) corresponding to (1) is given by

g(t) = κ(α, β)t−3/2(t+ β) exp

{
−τ(t/β)

2α2

}
, t > 0, (2)
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where κ(α, β) = exp(α−2)/(2α
√
2πβ) and τ(z) = z + z−1. The fractional moments of T are given by (see [27])

E(T k) = βkI(α, β),

where

I(α, β) =
Kk+1/2(α

−2) +Kk−1/2(α
−2)

2K1/2(α−2)
, (3)

and the function Kϵ(s) denotes the modified Bessel function of the third kind with ϵ representing its order and s
the argument. The parameter β is the median of the BS distribution, because G(β) = Φ(0) = 1/2.

The BS model is not appropriate for modeling highly skewed and heavy-tailed data sets. Also, the BS distribution
can exhibit unimodal (upside-down bathtub) shaped but not more other shapes like the monotone (decreasing or
increasing) and bathtub-shaped hazard rate functions. For these reasons, using different methods, several authors
have proposed various generalizations and extensions of the BS distribution. For example, Cordeiro and Lemonte
[8] proposed the beta BS distribution. Saulo et al. [29] introduced the Kumaraswamy BS distribution. Cordeiro et
al.[11] defined the McDonald BS distribution. Cordeiro et al. [10] introduced the gamma BS distribution. Hashemi
et al. [15] proposed the normal mean-variance Lindley BS distribution. Naderi et al. [24] proposed the normal
mean-variance generalized BS distribution. Naderi et al. [25] presented the skew-Laplace BS distribution.

Based on the Weibull cdf FW (w) = 1− e−awb

for w > 0, a > 0 and b > 0, Bourguignon et al. [7] proposed a
more general family with extra parameters a and b, called the Weibull-G family of distributions. The cdf of the
Weibull-G family is given by

F (t; a, b, θ) = 1− exp

(
−a

[
G(t, θ)

Ḡ(t, θ)

]b)
, (4)

where G(t, θ) is the baseline cdf depending on a parameter vector θ and Ḡ(t, θ) = 1−G(t, θ). Its corresponding
pdf is

f(t; a, b, θ) = abg(t, θ)

(
[G(t, θ)]b−1

[Ḡ(t, θ)]b+1

)
exp

(
−a

[
G(t, θ)

Ḡ(t, θ)

]b)
, (5)

where g(t, θ) is the baseline pdf. Many authors have used this family to propose an extension of some classical
distributions. Tahir et al. ([30], [31], [32]) defined the Weibull-Pareto, Weibull-Lomax and Weibull-Dagum
distributions by taking G(t, θ) to be the cdf of the Pareto, Lomax and Dagum distributions, respectively. Afify
et al.[1] defined and studied the Weibull Burr XII distribution. In a similar way, we propose a new extension of the
BS distribution called the Weibull BS (WBS) distribution.

The rest of the paper is organized as follows. In Section 2, we introduce the WBS distribution and plot its density
and failure rate functions. Mathematical properties of the new distribution are derived in Section 3. In Section 4,
we discuss maximum likelihood estimation of the WBS parameters and derive the observed information matrix. In
Section 5, we carry out a simulation study to examine the performance of the maximum likelihood estimators for
WBS model. Two applications are presented in Section 6 to show the flexibility of the new distribution. Conclusions
are given in Section 7.

2. The WBS distribution

The cdf of the WBS distribution is obtained by inserting (1) in (4) as follows (we have omitted the dependence on
the parameters α, β, a and b)

F (t) = 1− exp

(
−a

[
Φ(v)

1− Φ(v)

]b)
. (6)
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The pdf corresponding to (6) is given by

f(t) =
abκ(α, β)t−3/2(t+ β)[Φ(v)]b−1

[1− Φ(v)]b+1
exp

(
−τ(t/β)

2α2
− a

[
Φ(v)

1− Φ(v)

]b)
, (7)

where β is a scale parameter and α, a and b are positive shape parameters. It is clear that the BS distribution is
not a special case of WBS distribution. Henceforth, a random variable T with pdf (7) is denoted by T ∼ WBS
(α, β, a, b). The reliability and the failure rate function of T are, respectively, given by

R(t) = exp

(
−a

[
Φ(v)

1− Φ(v)

]b)
,

and

h(t) =
abκ(α, β)t−3/2(t+ β)[Φ(v)]b−1

[1− Φ(v)]b+1
exp

(
−τ(t/β)

2α2

)
.

The plots of pdf and failure rate function for the WBS distribution are represented in Figures 1 and 2 respectively
for different values of parameters α, β, a and b. It is clear that, from Figure 1, the WBS pdf is symmetric, right-
skewed and left-skewed depending on the parameter values. From Figure 2, we observe that the failure rate function
of the WBS distribution can be increasing, decreasing, upside-down bathtub (unimodal) shaped, bathtub-shaped
or modified bathtub shaped (unimodal shape followed by increasing) depending on the parameter values. So, the
WBS distribution is quite flexible and can be used to fit various types of lifetime data sets in different fields.
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Figure 1. Plots of the WBS pdf for some values of the parameters.
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Figure 2. Plots of the WBS failure rate function for some values of the parameters.

3. Mathematical properties

Some characteristics of the WBS distribution can be found through an algebraic expansion which is more efficient
than computing those directly by numerical integration of its pdf (7). In this section, using algebraic expansions,
we give some mathematical properties of the WBS distribution.

3.1. Expansions for pdf and cdf

In this subsection, the expansions for the pdf and cdf of the WBS distribution are derived. We can write the pdf
and cdf of the WBS distribution as a linear combination of the pdf and cdf of exponentiated BS (EBS) distribution,
respectively. A random variable X is said to have a EBS distribution with parameters α, β and θ > 0, denoted
by X ∼EBS(α, β, θ), if its cdf and pdf, respectively, are given by Hθ(x) = Φθ(v) and hθ(x) = θg(x)[Φ(v)]θ−1,
where g is given in (2). Several authors have studied the properties of exponentiated distributions. For example,
Mudholkar and Srivastava [23] studied the exponentiated Weibull distribution, Gupta and Kundu [14] studied the
exponentiated exponential distribution and Sarhan and Apaloo [28] proposed the exponentiated modified Weibull
extension distribution.

The pdf of the WBS distribution (7) can be written as follows

f(t) = abg(t, θ)
[Φ(v)]b−1

[1− Φ(v)]b+1
exp

(
−a

[
Φ(v)

1− Φ(v)

]b)
, (8)

Using the series expansion of the exponential function, we obtain

exp

(
−a

[
Φ(v)

1− Φ(v)

]b)
=

∞∑
k=0

(−1)kak

k!

[Φ(v)]bk

[1− Φ(v)]bk
. (9)
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Inserting (9) in (8), we obtain

f(t) = abg(t)

∞∑
k=0

(−1)kak

k!
[Φ(v)]bk+b−1[1− Φ(v)]−(bk+b+1).

Since 0 < Φ(v) < 1, for t > 0 and (bk + b+ 1) > 0, then by using the binomial series expansion of [1−
Φ(v)]−(bk+b+1) we can write

[1− Φ(v)]−(bk+b+1) =

∞∑
j=0

Γ(bk + b+ j + 1)

j!Γ(bk + b+ 1)
Φj(v),

where Γ(·) is the complete gamma function. So, the pdf of the WBS distribution can be expressed as

f(t) = g(t)

∞∑
k,j=0

(−1)kbak+1Γ(bk + b+ j + 1)

k!j!Γ(bk + b+ 1)
[Φ(v)]bk+b+j−1. (10)

If b is a positive real non-integer, we can expand [Φ(v)]bk+b+j−1 as

[Φ(v)]bk+b+j−1 =

∞∑
r=0

sr(bk + b+ j − 1)Φr(v), (11)

where

sr(m) =

∞∑
l=r

(−1)l+r

(
m
l

)(
l
r

)
.

Inserting (11) in (10), we get

f(t) =

∞∑
r=0

drhr+1(t), (12)

where

dr =

∞∑
k,j=0

(−1)kbak+1Γ(bk + b+ j + 1)sr(bk + b+ j)

k!j!(r + 1)Γ(bk + b+ 1)
, (13)

and hr+1(t) is the EBS(α, β, r + 1) density function. By integrating (12), we get

F (t) =

∞∑
r=0

drΦ
r(v). (14)

Equation (12) means that the pdf of the WBS distribution is a linear combination of the pdf of EBS distribution.
Based on this equation, several properties of the WBS distribution can be obtained directly from the EBS
distribution.

3.2. Moments

We can use the moments to study the most important features and characteristics of a distribution such as dispersion,
skewness and kurtosis. In this subsection, we derive the sth moment of the WBS random variable T from the
probability weighted moments of the BS distribution. The probability weighted moments of the BS distribution are

Stat., Optim. Inf. Comput. Vol. 9, March 2021



66 THE WEIBULL BIRNBAUM-SAUNDERS DISTRIBUTION AND ITS APPLICATIONS

defined, for p and r non-negative integers, by

τp,r =

∫ ∞

0

tpg(t)Φr(v)dt. (15)

To compute the integral (15) numerically, we can use any softwares such as MAPLE, MATLAB and R. From [8],
we have an alternative representation to compute τp,r that is

τp,r =
βp

2r

r∑
j=1

(
r
j

) ∞∑
k1,...,kj=0

A(k1, ..., kj)

2sj+j∑
m=0

(−1)m
(
2sj + j

m

)
I

(
p+

2sj + j − 2m

2
, α

)
. (16)

where sj = k1 + · · ·+ kj , A(k1, ..., kj) = α−2sj−jak1...akj , ak = (−1)k2(1−2k)/2[
√
π(2k + 1)k!]−1 and

I(p+ (2sj + j − 2m)/2, α) is calculated from (3) in terms of the modified Bessel function of the third kind.
Therefore, the sth moment of T can be written from (12) as

µs =

∞∑
r=0

drτs,r, (17)

where τs,r is obtained from (16) and dr is given by (13). We can compute numerically the sth moment in any
symbolic software by taking in the sum a large number of summands instead of infinity.

In Figures 3 and 4, we plot the skewness and kurtosis, for selected values of a and b where α = 5 and β = 2.
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Figure 3. Skewness of the WBS distribution.
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Figure 4. Kurtosis of the WBS distribution.

3.3. Moment generating function

Let T ∼WBS(α, β, a, b). The moment generating function of T , say M(s) = E
(
esT
)
, is an alternative specification

of its probability distribution. From (12), we obtain

M(s) =

∞∑
r=0

dr

∫ ∞

0

estg(t)Φr(v)dt.

Using the series expansion for the exponential function, we obtain

M(s) =

∞∑
r=0

∞∑
p=0

sp

p!
drτp,r,

where τs,r is obtained from (16) and dr is given by (13).

3.4. Quantile function

The WBS quantile function is obtained, by inverting F (·) given in (6), as follows

QWBS(u) =
β

2

(
αΦ−1(p) +

√
4 + [αΦ−1(p)]2)

)2
, u ∈ (0, 1],

where, Φ−1(·) is the standard normal quantile function and

p =

(
− 1

a log(1− u)
)1/b

1 +
(
− 1

a log(1− u)
)1/b .
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Therefore, it is easy to simulate the WBS distribution. Let U be a continuous uniform variable on the unit interval
(0, 1]. So, using the inverse transformation method, the random variable T given by

T = QWBS(U) =
β

2

(
αΦ−1(P ) +

√
4 + [αΦ−1(P )]2)

)2
, (18)

where

P =

(
− 1

a log(1− U)
)1/b

1 +
(
− 1

a log(1− U)
)1/b ,

has the WBS distribution. Equation (18) may be used to generate random numbers from the WBS distribution
when the parameters are known.

3.5. Mean deviations

Let T ∼ WBS(α, β, a, b). The mean deviations of T about the mean and about the median can be used as measures
of spread in a population. They are given by

δ1 = E (|T − µ1|) =
∫ ∞

0

|T − µ1|f(t)dt and δ2 = E (|T −m|) =
∫ ∞

0

|T −m|f(t)dt,

respectively, where the mean µ1 is calculated from (17) and the median m is given by m = QWBS(1/2). The
measures δ1 and δ2 can be expressed as

δ1 = 2µ1F (µ1)− J(µ1) and δ2 = E(|T −m|) = µ1 − 2J(m),

where J(q) =
∫ q

0
tf(t)dt. From (12) and (15), J(q) can be written as

J(q) =

∞∑
r=0

drφ(q, r), (19)

where φ(q, r) =
∫ q

0
tg(t)Φr(v)dt. From [8], we have

φ(q, r) =
τ(α, β)

2r

r∑
j=1

(
r
j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A(k1, ..., kj)

2sj+j∑
m=0

(−β)m
(
2sj + j

m

)

×
∫ q

0

t(2sj+j−2m−1)/2(t+ β) exp−τ(t/β)

2α2
dt,

where sj and A(k1, ..., kj) are defined in (16). Consider

D(p, q) =

∫ q

0

tpexp− (t/β + β/t)

2α2
dt = βp+1

∫ q/β

0

upexp−u+ u−1)

2α2
dt.

From [33], we can write

D(p, q) = 2βp+1Kp+1

(
α−2

)
− qp+1Kp+1

(
q

2α2β
,

β

2α2q

)
.

where, Kω(u1, u2) is the incomplete Bessel function with order ω and arguments u1 and u2. Then, we obtain

φ(q, r) =
τ(α, β)

2r

r∑
j=1

(
r
j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A(k1, ..., kj)

2sj+j∑
m=0

(−β)m
(
2sj + j

m

)

×
{
D

(
2sj + j − 2m+ 1

2
, q

)
+ βD

(
2sj + j − 2m− 1

2
, q

)}
,

which can be calculated from the function D(p, q). So, we can use this expression for ϕ(q, r) to compute J(q). From
(19), we obtain the Bonferroni and Lorenz curves defined by B(p) = J(q)/pµ1 and L(t) = J(q)/µ1, respectively.
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3.6. Reliability

In the stress-strength modelling, R = (T2 < T1) is a measure of component reliability when it is subjected to
random stress T2 and has strength T1. The component fails when T2 < T1. The parameter R is referred to
as the reliability parameter. In this subsection, we derive the reliability R when T1 and T2 have independent
WBS(α, β, a1, b1) and WBS(α, β, a2, b2) distributions. The pdf of T1 and the cdf of T2 can be obtained from (12)
and (14) as

f1(t) = g(t)

∞∑
r=0

d1rΦ
r(v), and F2(t) =

∞∑
r=0

d2rΦ
r(v),

respectively, where

d1r =

∞∑
k,j=0

(−1)kb1a
k+1
1 Γ(b1k + b1 + j + 1)sr(b1k + b1 + j)

k!j!(r + 1)Γ(b1k + b1 + 1)
,

and

d2r =

∞∑
l,m=0

(−1)lb2a
l+1
2 Γ(b2l + b2 +m+ 1)sr(b2l + b2 +m)

l!m!(r + 1)Γ(b2l + b2 + 1)
.

We have

R =

∫ ∞

0

f1(t)F2(t)dt.

Then

R =

∞∑
r=0

d1rd2r

∫ ∞

0

g(t)Φ2r(v)dt.

From (15), we can write

R =

∞∑
r=0

d1rd2rτ0,2r,

where τ0,2r is obtained from (16).

3.7. Order statistics

In this section, the distribution of the ith order statistic for the WBS distribution are presented. If T1, ..., Tn are
a random sample from WBS distribution with cdf (6) and pdf (7), and T1,n ≤ · · · ≤ Tn,n are the order statistics
obtained from this sample, the pdf of Ti,n is given by

fi,n(t) =
n!

(n− i)!(n− 1)!

n−i∑
j=0

(−1)j
(
n− i
j

)
f(t)[F (t)]i+j−1. (20)

From (6), we have

[F (t)]i+j−1 =

[
1− exp

(
−a

[
Φ(v)

1− Φ(v)

]b)]i+j−1

.
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Using the binomial series expansion, we get

[F (t)]i+j−1 =

∞∑
k=0

(−1)k
(
i+ j − 1

k

)
exp

(
−ka

[
Φ(v)

1− Φ(v)

]b)
. (21)

Inserting (7) and (21) in (20), we obtain

fi,n(t) =
n!abτ(α, β)t−3/2(t+ β)Φb−1(v)

(n− i)!(n− 1)![1− Φ(v)]b+1
exp

(
−τ(t/β)

2α2

)
×

n−k∑
j=0

∞∑
k=0

(−1)k+j

(
i+ j − 1

k

)(
n− i
j

)
exp

(
−a(k + 1)

[
Φ(v)

1− Φ(v)

]b)
.

Using the power series for the exponential function, we get

exp

(
−a(k + 1)

[
Φ(v)

1− Φ(v)

]b)
=

∞∑
l=0

(−1)l(ak + a)l

l!

Φbl(v)

[1− Φ(v)]bl
.

Then

fi,n(t) =
n!abτ(α, β)t−3/2(t+ β)

(n− i)!(n− 1)!
exp

(
−τ(t/β)

2α2

)
×

n−k∑
j=0

∞∑
k=0

(−1)k+j

(
i+ j − 1

k

)(
n− i
j

) ∞∑
l=0

(−1)l(ak + a)l

l!

Φbl(v)

[1− Φ(v)]bl
.

Since 0 < Φ(v) < 1, for t > 0 and (bl + b+ 1) > 0, we have

[1− Φ(v)]−(bl+b+1) =

∞∑
m=0

Γ(bl + b+ 1 +m)

m!Γ(bl + b+ 1)
Φm(v).

Therefore, the pdf of the ith order statistic for WBS distribution is

fi,n(t) =

∞∑
l,m=0

ϑl,mhbl+b+m(t), (22)

where

ϑl,m =

∞∑
k=0

n−k∑
j=0

nbak+1(k + 1)lΓ(bl + b+m+ 1)

l!m!(n− i)!(n− 1)!(bl + b+m)Γ(bl + b+ 1)

(
i+ j − 1

k

)(
n− i
j

)
,

and hbl+b+m is the EBS density function with power parameter bl + b+m. Equation (22) means that the density
function of the WBS order statistics is a linear mixture of the EBS densities. Then, we can easily obtain the
mathematical properties for Ti,n.

4. Estimation

In this section, the estimation of the unknown parameters of the WBS distribution are obtained using the maximum
likelihood method. Let t1, t2, ..., tn be observed values of T1, T2, ..., Tn, n independent random variables having
the WBS distribution with unknown parameter vector ξ = (α, β, a, b)T . The log-likelihood function for ξ, is given
by
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ℓ = ℓ(ξ) = n log(a) + n log(b) + n log[τ(α, β)]− 3

2

n∑
i=1

log(ti) +

n∑
i=1

log(ti + β)

− 1

2α2

n∑
i=1

τ(ti/β) + (b− 1)

n∑
i=1

log[Φ(vi)]− (b+ 1)

n∑
i=1

log[1− Φ(vi)]

−a

n∑
i=1

[
Φ(vi)

1− Φ(vi)

]b
.

Then, the elements of the score function U(ξ) = (∂ℓ/∂α, ∂ℓ/∂β, ∂ℓ/∂a, ∂ℓ/∂b)T are given by

∂ℓ

∂α
= −n

α

(
1 +

2

α2

)
+

1

α3

n∑
i=1

(
ti
β
+

β

ti

)
− b− 1

α

n∑
i=1

viϕ(vi)

Φ(vi)

− b+ 1

α

n∑
i=1

viϕ(vi)

1− Φ(vi)
− ab

α

n∑
i=1

viϕ(vi)Φ
b−1(vi)

[1− Φ(vi)]b+1
,

∂ℓ

∂β
= − n

2β
+

n∑
i=1

1

ti + β
+

1

2βα2

n∑
i=1

(
ti
β
− β

ti

)
− b− 1

2βα

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)

Φ(vi)

− b+ 1

2βα

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)

1− Φ(vi)
+

ab

2βα

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)Φ

b−1(vi)

[1− Φ(vi)]b+1
,

∂ℓ

∂a
=

n

a
−

n∑
i=1

[
Φ(vi)

1− Φ(vi)

]b
,

and

∂ℓ

∂b
=

n

b
+

n∑
i=1

log[Φ(vi)]−
n∑

i=1

log[1− Φ(vi)]− a

n∑
i=1

[
Φ(vi)

1− Φ(vi)

]b
log

[
Φ(vi)

1− Φ(vi)

]
,

where ϕ(·) is th standard normal pdf, vi = α−1
{√

ti/β −
√

β/ti

}
and τ(

√
ti/β) =

√
ti/β +

√
β/ti for i =

1, ..., n. The maximum likelihood estimate ξ̂ = (α̂, β̂, â, b̂)T of ξ = (α, β, a, b)T is obtained by setting U(ξ) = 0,
and solving the equations simultaneously.

Using the normal approximation of the MLE of ξ, we can construct approximate confidence intervals for the
parameters. Under some regular conditions (see [12]) that are fulfilled for parameters in the interior of the parameter
space but not on the boundary, the asymptotic distribution of

√
n
(
ξ̂ − ξ

)
is N4

(
0, J−1(ξ̂)

)
, where J−1(ξ̂) is the

observed information matrix evaluated at ξ. The observed information matrix is given by

J(ξ) = −


Lαα Lαβ Lαa Lαb

· Lββ Lβa Lβb

· · Laa Lab

· · · Lbb

 ,

where the elements are given in the Appendix. The approximate 100(1− η)% two-sided confidence intervals

for α, β, a and b are given by α± zη/2
√

var(α̂), β ± zη/2

√
var(β̂), a± zη/2

√
var(â) and b± zη/2

√
var(b̂)

respectively, where zη/2 is the quantile (1− η/2) of the standard normal distribution and var(·) is the diagonal
element of J−1(ξ̂) corresponding to each parameter.
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5. Simulation study

In this section, a simulation study is performed (by means of the statistical software R) to assess the finite sample
behavior of the MLEs of the parameters of the WBS distribution. The inversion method is used to generate random
samples from the WBS distribution using equation (18). The simulation study is repeated for N = 1000 times
each with different sample sizes n = 20, 50, 100, 200, 500, and with the following cases for the true parameters
(α, β, a, b):

• Case I: α = 1.5, β = 0.1, a = 0.75, b = 0.25.
• Case II: α = 0.25, β = 0.5, a = 0.8, b = 0.75.
• Case III: α = 3, β = 0.25, a = 1.2, b = 1.

The evaluation of the performance is based on the bias and the root mean squared errors (RMSE) defined as follows:

Bias =
1

1000

1000∑
i=1

(
λ̂i − λ

)
and RMSE =

√√√√ 1

1000

1000∑
i=1

(
λ̂i − λ

)
,

where λ = α, β, a, b. The results of our simulation study are summarized in Table 1. We can see that the bias and
RMSE of the MLEs converge to zero when the sample size is increased, as expected.

Table 1. Bias and RMSE of the WBS distribution parameters.

Case I Case II Case III
Sample size Parameter Bias RMSE Bias RMSE Bias RMSE

n = 20 α 0.2859 1.2857 -0.1046 0.1307 -1.1307 2.3541
β 0.1130 0.1346 0.4587 0.4671 0.1976 0.3750
a 0.0399 0.2840 0.0439 0.4603 -0.0942 0.4929
b 0.0953 0.3211 -0.3687 0.4497 -0.4066 0.7514

n = 50 α 0.1308 0.9072 -0.0616 0.1179 -0.5855 2.0534
β 0.1058 0.1131 0.4410 0.4601 0.1216 0.2844
a 0.0177 0.1627 0.0379 0.4056 -0.0618 0.3536
b 0.0430 0.2244 -0.2346 0.3993 -0.2122 0.7176

n = 100 α 0.0495 0.4751 -0.0423 0.0983 -0.0756 2.0036
β 0.1014 0.1047 0.4215 0.4460 0.1120 0.2727
a 0.0047 0.1113 -0.0351 0.3371 -0.0259 0.2584
b 0.0176 0.1222 -0.1614 0.3394 -0.0255 0.7013

n = 200 α 0.0056 0.3397 -0.0156 0.0794 0.0551 1.7264
β 0.1012 0.1027 0.3989 0.4129 0.1019 0.2675
a 0.0031 0.0734 -0.0254 0.3288 -0.0143 0.2015
b 0.0044 0.0856 -0.0700 0.2696 0.0203 0.6148

n = 500 α -0.0021 0.2022 0.0051 0.0649 0.0119 1.2447
β 0.1005 0.1012 0.0948 0.1036 0.0948 0.2341
a 0.0023 0.0503 0.0031 0.3058 -0.0086 0.1263
b 0.0007 0.0507 0.0064 0.2213 0.0144 0.4430

n = 1000 α -0.0012 0.1253 0.0013 0.0402 0.0098 1.0017
β 0.0857 0.0971 0.0697 0.0922 0.0686 0.1650
a 0.0010 0.0331 0.0012 0.2104 -0.0061 0.1002
b 0.0004 0.0309 0.0045 0.1569 0.0098 0.2829
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6. Applications

In this section, we show the flexibility of the WBS distribution by means of two well-known real data sets with
different shapes. The first data set is given in [22] while the second data set is given in [34]. The first data set has
a bathtub shaped failure rate function whereas the second data set has an increasing failure rate function. For these
data sets, we compare the WBS distribution with the beta BS (BBS) [8], Kumaraswamy BS (KBS) [29], McDonald
BS (McBS) [10], Marshall-Olkin extended BS (MOEBS) [20], gamma BS (GBS) [9], exponentiated generalized
BS (EGBS) [9], transmuted BS (TBS) [6], EBS and BS distributions using the graphical method, minus twice
the maximized log-likelihood (−2ℓ̂), Akaike information criterion (AIC), Bayesian information criterion (BIC),
Consistent akaike information criterion (CAIC) and Kolmogorov–Smirnov (K-S) test. The pdfs of the BBS, KBS,
McBS, MOEBS, GBS, EGBS and TBS distributions (for t > 0) are, respectively, given by

fBBS(t) =
g(t)

B(a, b)
Φa−1(v)[1− Φ(v)]b−1, fKBS(t) = abg(t)Φa−1(v)[1− Φa(v)]b−1,

fMcBS(t) =
cg(t)

(B(a/c, b)
Φa−1(v)[1− Φc(v)]b−1, fMOEBS(t) =

ag(t)

[1− (1− a)Φ(−v)]2
,

fGBS(t) =
g(t)

Γ(a)
[−log1− Φ(v)]b−1, fEGBS(t) = abg(t)[1− Φ(v)]a−1[1− {1− Φ(v)}a]b−1,

and fTBS(t) = g(t)[1 + a− 2aΦ(v)], where g(t) is the BS(α, β) pdf (2) and α, β, a, b, c > 0.

6.1. Meeker and Escobar data

This data set represents failure and running times of 30 devices provided by Meeker and Escobar [22]. The data
set is: 2, 10, 13, 23, 23, 28, 30, 65 ,80, 88, 106, 143, 147, 173, 181, 212, 245, 247, 261, 266, 275, 293, 300, 300,
300, 300, 300, 300, 300, 300. The total time on test (TTT) plot for the Meeker and Escobar data in Figure 5(a)
shows a convex shape followed by a concave shape. This corresponds to a bathtub-shaped failure rate. So, the
WBS distribution is suitable for this data set. Table 2 lists the MLEs and their corresponding standard errors in
parentheses of parameters of the WBS, BBS, KBS, McBS, MOEBS, GBS, EGBS, TBS, EBS and BS distributions
for Meeker and Escobar data set. From Table 3, we observe that the WBS distribution has the largest p-value
and the smallest −2ℓ̂, AIC, BIC, CAIC and K-S values. So, the WBS distribution gives an excellent fit than the
others models for Meeker and Escobar data set. Figure 6 shows of the data set and the estimated densities of all
models. From this Figure, we observe that the WBS model is the closest to the empirical histogram than the other
fitted models. Therefore, the WBS model could be chosen as the best model for Meeker and Escobar data. The
probability-probability (P-P) plots of the fitted distributions, in Figure 7, confirm this result.

6.2. Turbochargers failure data

The data set represents the time to failure(103 h) of turbocharger of one type of engine given in [34]. The data set
is: 1.6, 2.0, 2.6, 3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7, 7.0, 7.1, 7.3,
7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7, 8.8, 9.0. The TTT plot in Figure 5(b) shows a concave
shape then the data has an increasing failure rate function. Table 4 gives the MLEs of the parameters of all models
used here and their corresponding standard errors in parentheses. The statistics −2ℓ̂, AIC, BIC, CAIC, K-S and its
p-value are listed in Table 5. From this Table, we can see the WBS distribution as the best fit for the data set among
all the seven models. The histogram of this data set and the plots of the estimated densities of all models are shown
in Figure 8. So, the WBS model provides a better fits. This result is confirmed by the P-P plots in Figure 9.
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Table 2. MLEs and their standard errors in parentheses for the first data.

Model α β a b c

WBS 0.8152 22.9053 0.1115 0.2683 -
(0.5466) (13.5555) (0.0674) (0.2193) -

McBS 22.3663 0.3293 6.9147 124.9055 67.0133
(19.2479) (0.5770) (1.3436) (153.8349) (41.2595)

MOEBS 1.9735 13.8678 17.1905 - -
(0.5232) (7.7663) (10.0909) - -

KBS 11.3624 6.5795 11.1898 72.6776 -
(6.0551) (7.5249) (2.3506) (102.1419) -

GBS 5.6073 1.3777 3.6317 - -
(1.8869) (0.9472) (0.5234) - -

BBS 15.6640 3.9207 31.7249 17.4625 -
(17.9647) (5.5777) (49.6707) (36.5502) -

EBS 4.8477 3.8141 5.7211 - -
(3.0942) (5.1989) (1.8078) - -

BS 1.6778 64.0791 - - -
(0.2218) (14.5028) - - -

EGBS 2.9735 3.6443 0.4016 2.8424 -
(3.1871) (5.0218) (0.7579) (3.1811) -

TBS 1.8724 38.9182 -0.8772 - -
(0.3739) (13.9326) (0.1766) - -

Table 3. Values of −2ℓ̂, AIC, CAIC, K-S and its p-value for the first data.

Model −2ℓ̂ AIC BIC CAIC K-S p-value
WBS 352.8431 360.8431 366.4479 362.4431 0.1685 0.3618
McBS 357.8659 367.8659 374.8719 370.3659 0.2273 0.0899
MOEBS 363.1652 369.1652 373.3688 370.0883 0.1854 0.2536
KBS 362.5005 370.5005 376.1053 372.1005 0.2054 0.1591
BBS 366.5623 374.5623 380.1671 376.1623 0.2075 0.1510
GBS 367.4188 373.4188 377.6223 374.3418 0.2213 0.1058
EBS 368.9539 374.9539 379.1575 375.8770 0.2043 0.1635
BS 385.5103 389.5103 392.3127 389.9547 0.3218 0.0040
EGBS 368.6722 376.6722 382.277 378.2722 0.2059 0.1568
TBS 376.2326 382.2326 389.8374 383.8326 0.2507 0.0459
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Table 4. MLEs and their standard errors in parentheses for the second data.

Model α β a b c

WBS 0.2007 3.4802 0.1185 0.2323 -
(0.1271) (0.6266) (0.0729) (0.2552) -

McBS 10.8469 0.0311 21.5229 51.3146 59.8247
(0.3520) (0.0016) (4.1772) (0.1028) (0.1186)

MOEBS 0.5269 2.1087 74.3785 - -
(0.1009) (0.4566) (0.0050) - -

KBS 7.7703 0.1109 23.9059 63.4929 -
(2.8922) (0.0834) (3.4606) (0.0374) -

GBS 4.5864 0.0160 11.6225 - -
(0.0924) (0.0027) (1.9661) - -

BBS 10.9655 0.0655 64.5533 15.7442 -
(11.8708) (0.1504) (1.9297) (4.1212) -

EBS 5.1071 0.0493 41.1747 - -
(12.3684) (0.2397) (17.0774) - -

BS 0.4139 5.7538 - - -
(0.0463) (0.3684) - - -

EGBS 1.9061 180.0445 117.7479 0.4835 -
(2.0911) (324.5630) (91.0577) (0.2421) -

TBS 0.4225 5.0407 -0.6554 - -
(0.0511) (0.3978) (0.2282) - -

Table 5. Values of −2ℓ̂, AIC, CAIC, K-S and its p-value for the second data.

Model −2ℓ̂ AIC BIC CAIC K-S p-value
WBS 157.1875 165.1875 171.9431 166.3304 0.0778 0.9685
McBS 164.9313 174.9313 183.3757 176.696 0.1066 0.7535
MOEBS 167.0805 173.0805 178.1472 173.7472 0.0909 0.8958
KBS 166.1958 174.1958 180.9513 175.3387 0.1119 0.6976
BBS 173.0616 181.0616 187.8172 182.2045 0.1205 0.6067
GBS 173.4768 179.4768 184.5434 180.1435 0.1199 0.6136
EBS 180.8146 186.8146 191.8812 187.4813 0.1607 0.2531
BS 182.7348 186.7348 190.1125 187.0591 0.1653 0.2243
EGBS 175.4848 183.4848 190.2403 184.6276 0.1585 0.2671
TBS 178.7209 184.7209 193.4764 185.8637 0.13808 0.4306
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Figure 5. TTT-transform plot for (a) first data, (b) second data.
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Figure 7. P-P plots for the first data set.
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Figure 8. Histogram and the estimated densities of the second data set.
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Figure 9. P-P plots for the second data set.

Stat., Optim. Inf. Comput. Vol. 9, March 2021



L. BENKHELIFA 79

7. Conclusion

In this paper, we have proposed a new four-parameter model, referred to as the Weibull Birnbaum-Saunders
(WBS) distribution. The proposed distribution gives a more flexible model since it appropriate for modeling
highly skewed and heavy-tailed data sets and and has the capability to capture decreasing, increasing, bathtub,
unimodal (upside-down bathtub) and modified unimodal shaped hazard rates. The properties of the new distribution
including expansions for the density function, moments, generating function, order statistics, quantile function,
mean deviations and reliability are provided. We have estimated the model parameters by maximum likelihood and
determined the observed information matrix. We have shown, by simulation study, that the maximum likelihood
method performs well for estimating the parameters. We have also shown that the new model fits two well-known
data sets better than existing other extensions of the BS distribution. A possible future works are to: (i) introduce
a new multivariate WBS distribution, (ii) introduce a new linear or nonlinear regression model based on the
WBS distribution, (iii) estimate the parameters of the new model using Bayesian technique, and (iv) estimate
the parameters of the new distribution under various types of censoring mechanisms.
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Appendix

The elements of the observed information matrix J(ξ) for the parameters (α, β, a, b) are

Lαα =
n

α2
+

6n

α4
− 3

α4

n∑
i=1

(
ti
β
+

β

ti

)
+

2(b− 1)

α2

n∑
i=1

viϕ(vi)

Φ(vi)
− 2(b+ 1)

α2

n∑
i=1

viϕ(vi)

1− Φ(vi)

+
(b− 1)

α3
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i=1

{
v4i ϕ(vi)

Φ(vi)
− αv2i ϕ

2(vi)

Φ2(vi)

}
− (b+ 1)

α3
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v4i ϕ(vi)

1− Φ(vi)
− αv2i ϕ

2(vi)

[1− Φ(vi)]2

}

+
ab

α2

n∑
i=1

viϕ(vi)Φ
b−1(vi)

[1− Φ(vi)]b+1
+

ab

α2

n∑
i=1

vi(v
2
i − 1)ϕ(vi)Φ

b−1(vi)

[1− Φ(vi)]b+1
+ (b− 1)

n∑
i=1

viϕ
2(vi)Φ

b−2(vi)

[1− Φ(vi)]b+1

+ (b+ 1)

n∑
i=1

viϕ
2(vi)Φ

b−1(vi)

[1− Φ(vi)]b+2
,

Lαβ = − 1

βα3

n∑
i=1

(
ti
β
+

β

ti

)
+

(b− 1)

2βα2

n∑
i=1

{
αviϕ(vi)

Φ(vi)
+

v4i ϕ(vi)

Φ(vi)
− αv2i ϕ

2(vi)

Φ2(vi)

}

− (b− 1)

2βα2

n∑
i=1

{
αviϕ(vi)

1− Φ(vi)
+

v4i ϕ(vi)

1− Φ(vi)
− αv2i ϕ

2(vi)

[1− Φ(vi)]2

}

+
ab

2βα2

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)(v

2
i ϕ(vi)− 1)Φb−1(vi)

[1− Φ(vi)]b+1

− ab(b− 1)

2βα2

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)Φ

b−2(vi)

[1− Φ(vi)]b+1
− ab(b+ 1)

2βα2

n∑
i=1

τ
(√

ti/β
)
viϕ

2(vi)Φ
b−1(vi)

[1− Φ(vi)]b+2
,
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Lββ =
n

2β2
−

n∑
i=1

1

(ti + β)2
− 1

α2β3

n∑
i=1

ti +
(b− 1)

2αβ2

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)

Φ(vi)

+
(b− 1)

4αβ2

n∑
i=1

αviϕ(vi)

Φ(vi)
−

viτ
2
(√

ti/β
)
ϕ(vi)

αΦ(vi)
−

viτ
2
(√

ti/β
)
ϕ2(vi)

αΦ2(vi)


− (b+ 1)

4αβ2

n∑
i=1

 αviϕ(vi)

1− Φ(vi)
−

viτ
2
(√

ti/β
)
ϕ(vi)

α[1− Φ(vi)]
+

viτ
2
(√

ti/β
)
ϕ(vi)

α[1− Φ(vi)]2


− ab

2αβ2

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)Φ

b−1(vi)

[1− Φ(vi)]b+1
− (b+ 1)

2αβ2

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)

1− Φ(vi)

+
ab

2α2β2

n∑
i=1

ϕ(vi)Φ
b−1(vi)

[1− Φ(vi)]b+1

{
τ2
(√

ti/β
)
(vi)ϕ(vi)−

√
ti/β +

√
β/ti

}

− ab(b− 1)

2α2β2

n∑
i=1

τ2
(√

ti/β
)
ϕ2(vi)Φ

b−1(vi)

[1− Φ(vi)]b+1
+

ab(b+ 1)

2α2β2

n∑
i=1

τ2
(√

ti/β
)
ϕ2(vi)Φ

b−1(vi)

[1− Φ(vi)]b+2
,

Lβb =
1

2βα

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)

Φ(vi)
+

1

2βα

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)

1− Φ(vi)

− 1

2βα

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)Φ

b−1(vi)

[1− Φ(vi)]b+1

{
1 + b log

[
Φ(vi)

1− Φ(vi)

]}
,

Lαb =
1

α

n∑
i=1

viϕ(vi)

Φ(vi)[1− Φ(vi)]
− a

α

n∑
i=1

viϕ(vi)Φ
b−1(vi)

[1− Φ(vi)]b+1

{
1 + b log

[
Φ(vi)

1− Φ(vi)

]}
,

Lαa =
b

α

n∑
i=1

viϕ(vi)Φ
b−1(vi)

[1− Φ(vi)]b+1
, Lβa =

b

2βα

n∑
i=1

τ
(√

ti/β
)
ϕ(vi)Φ

b−1(vi)

[1− Φ(vi)]b+1
, Laa = − n

a2
,

Lab = −
n∑

i=1

[
Φ(vi)

1− Φ(vi)

]b
log

[
Φ(vi)

1− Φ(vi)

]
,

and

Lbb = − n

b2
− a

n∑
i=1

[
Φ(vi)

1− Φ(vi)

]b(
log

[
Φ(vi)

1− Φ(vi)

])2

.
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