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1. Introduction

The fractional variational calculus is a recent field, started in 1997, where classical variational problems are
considered, but in the presence of fractional derivatives or integrals. In the last years numerous works have
been developed tending to extend the theory of the variational calculus [35] in order to be able to be applied
to problems of fractional variational calculus [1, 8, 10, 11, 18, 23]. This is fundamentally due, on the one hand, to
an important development of the fractional calculus both from the mathematical point of view and its applications
in other areas (electricity, magnetism, mechanics, dynamics of fluids, medicine, etc) [7, 17, 19, 20, 22]; which
has led to an overwhelming growth of its study in recent decades. On the other hand, the fractional differential
equations establish models far superior to those that use differential equations with integer derivatives because
they incorporate into the model issues of memory or later effects that are neglected in the models with classical
derivative [9, 15, 24, 33].

Following [31], we consider here that the highest derivative in the Lagrangian is of integer order. The main
advantage of our formulation, with respect to the pure fractional approach adopted in the literature, is that the
classical results of variational calculus can now be obtained as particular cases. We recall that the only possibility
to obtain the classical derivative y′ from a fractional derivative Dαy, α ∈ (0, 1), is to take the limit when α tends
to one. However, in general such a limit does not exist [34]. Different from [31], where the fractional derivative
are considered in the sense of Riemann-Liouville, here we investigate problems of the calculus of variations with
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integrands depending on the independent variable x, an unknown function y, its integer order derivative y′, and a
fractional derivative CDαy in the sense of Caputo.

Recently, several approaches have been developed in order to generalize the Euler-Lagrange equations to include
fractional derivatives [2, 3, 4, 5, 6, 12, 13, 16, 26, 27, 28, 31]. In all the above mentioned references, the Euler-
Lagrange equations always depend on the Riemann-Liouville or mixed Caputo and Riemann-Liouville derivatives.
For the state of the art of the fractional calculus of variations and respective fractional Euler-Lagrange equations,
see [29].

It is important to remark that while the Riemann-Liouville fractional derivatives [32] are historically the most
studied approach to fractional calculus, the Caputo [14] approach to fractional derivatives is the most popular
among physicists and scientists, because the differential equations defined in terms of Caputo derivatives require
regular initial and boundary conditions. Furthermore, differential equations with Riemann-Liouville derivatives
require nonstandard fractional initial and boundary conditions that lead, in general, to singular solutions, thus
limiting their application in physics and science [21, 22]. On the other hand, within current formulations of the
fractional calculus of variations, even Lagrangians depending only on Caputo derivatives lead to Euler-Lagrange
equations with Riemann-Liouville derivatives [6]. This is a consequence of the Lagrange method to optimize
functionals: application of integration by parts for Caputo derivatives in the Gateaux derivative of the functional
relates Caputo with Riemann-Liouville derivatives.

Following [25], in the present work we obtain an Euler-Lagrange equation in integral form containing only
Caputo derivatives and an Euler-Lagrange fractional differential equation only depending on Caputo derivatives.

The paper is organized as follows: some basic definitions of fractional derivatives are shown in section two.
Section three presents the variational problems, whose Lagrangian depends on Caputo fractional derivative and
the classical derivative. In section four, we obtain the Euler-Lagrange equations in integral form and the fractional
Euler-Lagrange equation with only Caputo derivatives. In section five, a generalization is shown. We end with an
illustrative example of the results of the paper, and with our conclusions.

2. Preliminaries on Fractional Calculus

In this section, we present some definitions and properties of the Caputo and Riemann-Liouville fractional calculus.
For more details on the subject and applications, we refer the reader to [15, 24].

Definition 1
The left and right Riemann-Liouville fractional integral operators of order α ∈ R+ are defined, respectively, by

aI
α
x [f ](x) =

1

Γ(α)

∫ x

a

(x− ξ)α−1f(ξ) dξ (1)

and

xI
α
b [f ](x) =

1

Γ(α)

∫ b

x

(ξ − x)α−1f(ξ) dξ (2)

where a, b ∈ R with a < b. For α = 0, we set aI
0
x = xI

0
b = I , the identity operator.

The Riemann-Liouville fractional integrals coincide with the classical definition of these in the case n ∈ N.
Moreover, in the case α ≥ 1 it is obvious that the integrals exist for any integrable function f and for every
x ∈ [a, b]. In the case 0 < α < 1 though, the situation is less clear at first sight. However, it is possible to prove the
convergence (see [15]).

Remark 1
Let n,m ∈ N, with n > m, we have

dn

dxn
◦ aI

n−m
x [f ](x) =

dm

dxm
[f ](x) (3)

This property motivates the following definition.
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Definition 2
The left and right Riemann-Liouville fractional derivative operators of order α ∈ R+ are defined, respectively, by

aD
α
x :=

dn

dxn
◦ aI

n−α
x (4)

and

xD
α
b := (−1)n

dn

dxn
◦ xI

n−α
b (5)

with n = ⌈α⌉, that is

aD
α
x [f ](x) =

1

Γ(n− α)

dn

dxn

∫ x

a

(x− ξ)n−1−αf(ξ)dξ (6)

and

xD
α
b [f ](x) =

(−1)n

Γ(n− α)

dn

dxn

∫ b

x

(ξ − x)n−1−αf(ξ)dξ . (7)

Definition 3
The left and right Caputo fractional derivative operators of order α ∈ R+ are defined, respectively, by

C
a D

α
x := aI

n−α
x ◦ dn

dxn
(8)

and
C
x D

α
b := xI

n−α
b ◦ (−1)n

dn

dxn
(9)

with n = ⌈α⌉, that is
C
a D

α
x [f ](x) =

1

Γ(n− α)

∫ x

a

(x− ξ)n−1−α dn

dξn
f(ξ)dξ (10)

and
C
x D

α
b [f ](x) =

(−1)n

Γ(n− α)

∫ b

x

(ξ − x)n−1−α dn

dξn
f(ξ)dξ . (11)

Now we will see some different properties of the Riemann-Liouville and Caputo derivatives.

Remark 2
Let 0 < α < 1. Assume that f is such that aD

α
x [f ], xD

α
b [f ],

C
a D

α
x [f ] and C

x D
α
b [f ] exist, then:

C
a D

α
x [f ](x) = aD

α
x [f ](x)−

f(a)

1− α
(x− a)−α (12)

and
C
x D

α
b [f ](x) = xD

α
b [f ](x)−

f(b)

1− α
(b− x)−α (13)

so we have that if f(a) = 0 then
C
a D

α
x [f ](x) = aD

α
x [f ](x) (14)

and we have that if f(b) = 0 then
C
x D

α
b [f ](x) = xD

α
b [f ](x) . (15)

Remark 3
An important difference between Riemann-Liouville derivatives and Caputo derivatives is that, being K an arbitrary
constant, is

C
a D

α
xK = 0 , C

x D
α
b K = 0 , (16)

however

aD
α
xK =

K

Γ(1− α)
(x− a)−α , xD

α
b K =

K

Γ(1− α)
(b− x)−α , (17)
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aD
α
x (x− a)α−1 = 0 , xD

α
b (b− x)α−1 = 0 . (18)

In this sense, the Caputo fractional derivatives are similar to the classical derivatives. In some cases it is easier
to solve differential equations with Caputo derivatives instead of equations involving both Caputo and Riemann-
Liouville derivatives. Therefore in this work, we will state and prove equations with only derivatives of Caputo.

Theorem 1
Let α > 0 and f ∈ L1([a, b]), then we have

aD
α
x aI

α
x [f ](x) = f(x), xD

α
b xI

α
b [f ](x) = f(x) (19)

and
C
a D

α
x aI

α
x [f ](x) = f(x), C

x D
α
b aI

α
x [f ](x) = f(x) (20)

almost everywhere.

Theorem 2
Let 0 < α < 1. Let f ∈ C1([a, b]) and g ∈ L1([a, b]). Then,∫ b

a

g(x)Ca D
α
xf(x) dx =

∫ b

a

f(x) xD
α
b g(x) dx+

[
xI

1−α
b g(x)f(x)

] ∣∣b
a (21)

and ∫ b

a

g(x)Cx D
α
b f(x) dx =

∫ b

a

f(x) aD
α
x g(x) dx−

[
aI

1−α
x g(x)f(x)

] ∣∣b
a . (22)

Moreover, if f(a) = f(b) = 0, we have that∫ b

a

g(x)Ca D
α
xf(x) dx =

∫ b

a

f(x) xD
α
b g(x) dx (23)

and ∫ b

a

g(x)Cx D
α
b f(x) dx =

∫ b

a

f(x) aD
α
x g(x) dx. (24)

This theorem is known as Integration by parts and its proof is in [24].

3. Fractional Variational Calculus with Classical Derivatives

We begin with the following problem of the fractional calculus of variations: find a function y ∈ α
aE

′ that optimizes
(minimizes or maximizes) the functional

J(y) =

∫ b

a

L(x, y, y′, C
a D

α
xy) dx (25)

with a Lagrangian L ∈ C1([a, b]×R3) and
α
aE

′ = {y : [a, b] → R : y ∈ C1([a, b]), C
a D

α
xy ∈ C([a, b])}

subject to the boundary conditions: y(a) = ya , y(b) = yb.
We now state the Euler-Lagrange equation for this problem, its proof is in [27].

Theorem 3
If y is a local optimizer to the above problem, then y satisfies the next Euler-Lagrange equation:

∂L

∂y
− d

dx

(
∂L

∂y′

)
+ xD

α
b

∂L

∂ C
a D

α
xy

= 0. (26)

Remark 4
We call these equations involving both Caputo and Riemann-Liouville derivatives.
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4. Fractional Euler-Lagrange Equation with Only Caputo Derivatives

You can find the following lemma in [25], made by Lazo M. and Torres D. (2013).

Lemma 1
Let g be a differentiable function in [a, b] with g(a) = g(b) = 0, and let f ∈ L1([a, b]) be such that there is a number
ϵ ∈ (a, b] with |f(x)| ≤ c(x− a)β for all x ∈ [a, ϵ], where c > 0 and β > −α are constants. We have that,

if aI
α
b

(
f(x)Ca D

α
x g(x)

)
= 0, then f ≡ K

where K is a constant.
This lemma is known as the Dubois-Reymond Fundamental Lemma of the Fractional Calculus of Variations.

Remark 5
Using the definition of the Riemann-Liouville fractional integral (2), we can write the functional J as

J(y) =

∫ b

a

L
(
x, y, y′, C

a D
α
xy

)
dx = Γ(α) aI

α
b

[
(b− x)1−αL

(
x, y, y′, C

a D
α
xy

)]
. (27)

Inspired on the work of [25], we have made the following generalization considering a Langrangian that depends
on the Caputo derivatives and the classical derivative y′.

Theorem 4
Let J be the next functional

J(y) =

∫ b

a

L
(
x, y, y′, C

a D
α
xy

)
dx = Γ(α) aI

α
b

[
(b− x)1−αL

(
x, y, y′, C

a D
α
xy

)]
(28)

defined in the class of functions y ∈ α
aE

′, and where we assume L ∈ C1([a, b)×R3), differentiable with respect
all of its arguments. If y is an optimizer of J , then y satisfies the following fractional Euler-Lagrange integral
equation:

xI
α
b

∂L

∂y
− xI

α
b

d

dx

(
∂L

∂y′

)
+

∂L

∂ C
a D

α
xy

=
K

(b− x)1−α
(29)

for all x ∈ [a, b), where K is a constant.

Proof.: Let y∗ be an optimizer of J . We define the family of functions

y(x) = y∗(x) + ϵη(x) (30)

where ϵ is a constant, and η ∈ C1([a, b]) is an arbitrary function satisfying the boundary conditions η(a) =
η(b) = 0. From (30), η(a) = η(b) = 0, y∗(a) = ya and y∗(b) = yb, we have that the function y is admissible,
that is, y ∈ C1([a, b]), y(a) = ya and y(b) = yb.
From now on, we denote L[y] = L(x, y, y′, C

a D
α
xy).

Because y∗ is an optimizer of the functional J , the Gateaux derivative δJ [y∗] needs to be identically null.

δJ [y∗] = limϵ→0
1
ϵ

(∫ b

a
L[y]dx−

∫ b

a
L[y∗]dx

)
=

∫ b

a

(
η(x)∂L[y∗]

∂y∗ + η′(x)∂L[y∗]
∂y′∗ + C

a D
α
xη(x)

∂L[y∗]
∂ C

a Dα
x y∗

)
dx = 0 .

We define A =
∫ b

a

(
η(x)∂L[y∗]

∂y∗

)
dx, B =

∫ b

a

(
η′(x)∂L[y∗]

∂y′∗

)
dx and C =

∫ b

a

(
C
a D

α
xη(x)

∂L[y∗]
∂ C

a Dα
x y∗

)
dx .

Using the fact that xD
α
b xI

α
b ≡ I , the homogeneity conditions on η and integration by parts we get

A =
∫ b

a

(
η(x)∂L[y∗]

∂y∗

)
dx =

∫ b

a

(
η(x) xD

α
b xI

α
b

∂L[y∗]
∂y∗

)
dx =

∫ b

a

(
C
a D

α
xη(x) xI

α
b

∂L[y∗]
∂y∗

)
dx .
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Similarly,

B =
∫ b

a

(
η′(x)∂L[y∗]

∂y′∗

)
dx = η(x)∂L[y∗]

∂y′∗

∣∣∣b
a
−
∫ b

a

(
η(x) d

dx
∂L[y∗]
∂y′∗

)
dx

= −
∫ b

a

(
η(x) xD

α
b xI

α
b

d
dx

∂L[y∗]
∂y′∗

)
dx = −

∫ b

a

(
C
a D

α
xη(x) xI

α
b

d
dx

∂L[y∗]
∂y′∗

)
dx .

And we get,

A+B + C =

∫ b

a

C
a D

α
xη(x)

[
xI

α
b

∂L[y∗]

∂y∗
− xI

α
b

d

dx

∂L[y∗]

∂y′∗
+

∂L[y∗]

∂ C
a D

α
xy

∗

]
dx .

Writing this otherwise, we obtain for the first variation the following expression:

Γ(α) aI
α
b

[
C
a D

α
xη(x)

(
xI

α
b

∂L[y∗]

∂y∗
− xI

α
b

d

dx

∂L[y∗]

∂y′∗
+

∂L[y∗]

∂ C
a D

α
xy

∗

)
(b− x)1−α

]
= 0.

We define

f(x) =

(
xI

α
b

∂L[y∗]

∂y∗
− xI

α
b

d

dx

∂L[y∗]

∂y′∗
+

∂L[y∗]

∂ C
a D

α
xy

∗

)
(b− x)1−α

As L ∈ C1([a, b)×R3), we have that f is bounded in a sufficiently small neighborhood of a and taking
β = 0 > −α, the hypotheses of the Lemma are verified so it exists K constant such that(

xI
α
b

∂L[y∗]

∂y∗
− xI

α
b

d

dx

∂L[y∗]

∂y′∗
+

∂L[y∗]

∂ C
a D

α
xy

∗

)
(b− x)1−α = K

and we obtain the desired equation,

xI
α
b

∂L

∂y
− xI

α
b

d

dx

(
∂L

∂y′

)
+

∂L

∂ C
a D

α
xy

=
K

(b− x)1−α

�

In the following theorem we will see a new version of the Euler-Lagrange equation. Its proof follows the same
guidelines of the paper [25].

Theorem 5
Let y be an optimizer of J in α

aE
′ with L ∈ C2

(
[a, b]×R3

)
subject to boundary conditions y(a) = ya , y(b) = yb,

then y satisfies the fractional Euler-Lagrange differential equation

∂L

∂y
− d

dx

(
∂L

∂y′

)
+ C

x D
α
b

∂L

∂ C
a D

α
xy

= 0 . (31)

4.1. The Fractional Isoperimetric Problem

We now consider the following isoperimetric problem of the fractional calculus of variations: find a function
y ∈ α

aE
′ that optimizes the functional

J(y) =

∫ b

a

L(x, y, y′, C
a D

α
xy) dx (32)

with a Lagrangian L ∈ C1([a, b]×R3) and

α
aE

′ = {y : [a, b] → R : y ∈ C1([a, b]), C
a D

α
xy ∈ C([a, b])}
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subject to the boundary conditions y(a) = ya, y(b) = yb, and an integral constraint

I(y) =

∫ b

a

G(x, y, y′, C
a D

α
xy) dx = c,

where G ∈ C1([a, b]×R3) and c ∈ R.
Such variational problems have found a broad class of important applications throughout the centuries, with

numerous useful implications in astronomy, geometry, algebra, and engineering. For references and recent
advancements on the subject, we refer the reader to [16, 30].

We now state the Euler-Lagrange equation for this problem, its proof is in [27].

Theorem 6
If y is a local optimizer to the above problem, and suppose further that y does not anulate the Gateaux’s derivative
of the functional I . Then there exists a constant λ such that y satisfies the next Euler-Lagrange equation:

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ xD

α
b

∂F

∂ C
a D

α
xy

= 0 (33)

where F = L+ λG.

Theorem 7
Let J and I be the above functionals, defined in the class of functions y ∈ α

aE
′, and where L,G ∈ C1([a, b)×R3)

are differentiable with respect all of its arguments. If y is an optimizer of J and it does not anulate the Gateaux’s
derivative of the functional I then y satisfies the following fractional Euler-Lagrange integral equation:

xI
α
b

∂F

∂y
− xI

α
b

d

dx

(
∂F

∂y′

)
+

∂F

∂ C
a D

α
xy

=
K

(b− x)1−α
(34)

for all x ∈ [a, b), where K is a constant and F = L+ λG.

Proof.: Consider η1, η2 ∈ α
aE

′ two functions such that η1(a) = η1(b) = η2(a) = η2(b) = 0, and |ϵ1| ≪ 1,
|ϵ2| ≪ 2.

We define

j(ϵ1, ϵ2) =

∫ b

a

L(x, y + ϵ1η1 + ϵ2η2, y
′ + ϵ1η

′
1 + ϵ2η

′
2,

C
a D

α
xy + ϵ1

C
a D

α
xη1 + ϵ2

C
a D

α
xη2) dx

and

i(ϵ1, ϵ2) =

∫ b

a

g(x, y + ϵ1η1 + ϵ2η2, y
′ + ϵ1η

′
1 + ϵ2η

′
2,

C
a D

α
xy + ϵ1

C
a D

α
xη1 + ϵ2

C
a D

α
xη2) dx− c

As y does not anulate the Gateaux’s derivative of the functional I , then there is a function η2 such that,

∂i

∂ϵ2

∣∣
(0,0) ̸= 0

and using the implicit function theorem, there exists a function ϵ2(.) ∈ C1, defined in a neighborhood of zero
such that

i(ϵ1, ϵ2(ϵ1)) = 0.

Applying the rule of Lagrange multipliers, there exists λ constant so that ∇(j(0, 0) + λi(0, 0)) = (0, 0).
Therefore,

∂j

∂ϵ1
(0, 0) + λ

∂i

∂ϵ1
(0, 0)︸ ︷︷ ︸

(A)

= 0 and
∂j

∂ϵ2
(0, 0) + λ

∂i

∂ϵ2
(0, 0)︸ ︷︷ ︸

(B)

= 0. (35)
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Then, we have
∂j

∂ϵ1
(0, 0) =

∫ b

a

∂L

∂y
η1 +

∂L

∂y′
η′1 +

∂L

∂ C
a D

α
xy

C
a D

α
xη1 dx,

∂i

∂ϵ1
(0, 0) =

∫ b

a

∂g

∂y
η1 +

∂g

∂y′
η′1 +

∂g

∂ C
a D

α
xy

C
a D

α
xη1 dx.

Thus,

(A) =

∫ b

a

∂L

∂y
η1 + λ

∂g

∂y
η1 +

∂L

∂y′
η′1 + λ

∂g

∂y′
η′1 +

∂L

∂ C
a D

α
xy

C
a D

α
xη1 + λ

∂g

∂ C
a D

α
xy

C
a D

α
xη1 dx

defining F = L+ λg, we can write (A) as:

(A) =

∫ b

a

∂F

∂y
η1 +

∂F

∂y′
η′1 +

∂F

∂ C
a D

α
xy

C
a D

α
xη1 dx.

Similarly,

(B) =

∫ b

a

∂F

∂y
η2 +

∂F

∂y′
η′2 +

∂F

∂ C
a D

α
xy

C
a D

α
xη2 dx.

Integrating by parts as in Theorem (4), we obtain:

(A) =

∫ b

a

C
a D

α
xη1(x)

[
xI

α
b

∂F

∂y
− xI

α
b

d

dx

∂F

∂y′
+

∂F

∂ (Ca D
α
xy)

]
dx = 0,

(B) =

∫ b

a

C
a D

α
xη2(x)

[
xI

α
b

∂F

∂y
− xI

α
b

d

dx

∂F

∂y′
+

∂F

∂ (Ca D
α
xy)

]
dx = 0.

Writing this differently,

(A) = Γ(α) aI
α
b

[
C
a D

α
xη1(x)

(
xI

α
b

∂F

∂y
− xI

α
b

d

dx

∂F

∂y′
+

∂F

∂ (Ca D
α
xy)

)
(b− x)1−α

]
= 0,

(B) = Γ(α) aI
α
b

[
C
a D

α
xη2(x)

(
xI

α
b

∂F

∂y
− xI

α
b

d

dx

∂F

∂y′
+

∂F

∂ (Ca D
α
xy)

)
(b− x)1−α

]
= 0.

Note that if we proceed analogously to Theorem (4) and the condition (35) we get the same result

xI
α
b

∂F

∂y
− xI

α
b

d

dx

(
∂F

∂y′

)
+

∂F

∂ C
a D

α
xy

=
K

(b− x)1−α

for all x ∈ [a, b), where K is a constant.

�

In the following theorem we will see a new version of the Euler-Lagrange equation on isoperimetric problems.
Its proof follows the same guidelines of paper [25].

Theorem 8
Let y be an optimizer of J in α

aE
′ with L,G ∈ C2

(
[a, b]×R3

)
subject to boundary conditions

y(a) = ya y(b) = yb, then if y does not anulate the Gateaux’s derivative of the functional I , it satisfies the fractional
Euler-Lagrange differential equation:

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ C

x D
α
b

∂F

∂ C
a D

α
xy

= 0 (36)

where F = L+ λG.
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5. A Lagrangian with classical higher order derivatives

Let us consider the following problem: find a function y ∈ α
aE

n that optimizes the functional

J [y] =

∫ b

a

L
(
x, y, y′, y′′, ..., yn, C

a D
α
xy

)
dx (37)

with a Lagrangian L ∈ C1([a, b]×Rn+2) and

α
aE

n = {y : [a, b] → R : y ∈ Cn([a, b]), C
a D

α
xy ∈ C([a, b])}

subject to the boundary conditions:

y(a) = ya, y(b) = yb, y
′(a) = y′a, y

′(b) = y′b, ... y
(n−1)(a) = y(n−1)

a , y(n−1)(b) = y
(n−1)
b . (38)

Theorem 9
Let J be the following functional

J(y) =

∫ b

a

L
(
x, y, y′, y′′, ..., y(n), C

a D
α
xy

)
dx = Γ(α) aI

α
b

[
(b− x)1−αL

(
x, y, y′, y′′, ..., y(n), C

a D
α
xy

)]
(39)

defined in the class of functions y ∈ α
aE

n, and where we assume L ∈ C1([a, b)×Rn+2), differentiable with respect
all of its arguments. If y is an optimizer of J , then y satisfies the following fractional Euler-Lagrange integral
equation:

xI
α
b

∂L

∂y
+

n∑
j=1

(−1)j xI
α
b

dj

dxj

(
∂L

∂y(j)

)
+

∂L

∂ C
a D

α
xy

=
K

(b− x)1−α
(40)

for all x ∈ [a, b), where K is a constant.

Theorem 10
Let y be an optimizer of J in α

aE
n with L ∈ C2

(
[a, b]×Rn+2

)
subject to boundary conditions (38), then y satisfies

the fractional Euler-Lagrange differential equation

∂L

∂y
+

n∑
j=1

(−1)j xI
α
b

dj

dxj

(
∂L

∂y(j)

)
+ C

x D
α
b

∂L

∂ C
a D

α
xy

= 0. (41)

Remark 6
The above theorems can be performed analogous to isoperimetric problems. Its proofs are similar to the case with
n = 1.

6. An Example

Consider the following fractional isoperimetric problem J(y) =
∫ 1

0

[
y(x)y′(x) +

(
C
0 D

α
x [y]

)2
(x)

]
dx, I(y) =∫ 1

0
[y(x)] dx = 1, and the boundary conditions y(0) = 0, y(1) = 0.

Then, F = y(x)y′(x) +
(
C
0 D

α
x [y]

)2
(x) + λy(x), and the Euler-Lagrange equation (using only Caputo

derivatives) states
C
x D

α
1

[
C
0 D

α
x [y]

]
(x) = −λ

2
.

Using the property
C
x D

α
1

[
(1− x)β

]
=

Γ(1 + β)

Γ(1 + β − α)
(1− x)β−α
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we obtain
C
0 D

α
x [y] (x) = −λ

2

1

Γ(1 + α)
(1− x)α + c1.

We can write

−λ

2

1

Γ(1 + α)
(1− x)α = −λ

2

1

Γ(1 + α)

∞∑
n=0

(−1)n
n−1∏
j=0

(α− j)

n!
xn.

And consider
C
0 D

α
x

[
xβ

]
=

Γ(1 + β)

Γ(1 + β − α)
xβ−α

to obtain the solution

y(x) = −λ

2

1

Γ(1 + α)

∞∑
n=0

(−1)nΓ(α)

n!Γ(α− n+ 1)

Γ(1 + n)

Γ(1 + n+ α)
xn+α + c̃1x

α + c2.

Using the definition of the Hypergeometric function of parameters a, b and c:

2F1(a, b, c, x) =

∞∑
n=0

Γ(a+ n)Γ(b+ n)Γ(c)

Γ(a)Γ(b)Γ(c+ n)

xn

n!

and the property
(−1)nΓ(α)

Γ(α− n+ 1)
=

Γ(n− α)

αΓ(−α)
,

we can write the solution as

y(x) = − λ

2α

xα

Γ(1 + α)2
2F1(1,−α, 1 + α, x) + c̃1x

α + c2.

Taking into account that y(0) = 0 , y(1) = 0 and I(y) =
∫ 1

0
[y(x)] dx = 1 , we obtain

y(x) = (α+ 1)(2α+ 1)[2 2F1(1,−α, 1 + α, x)− 1]xα.

When taking the limit α → 1, we have y(x) = −6x2 + 6x, which is the solution to the classical problem

J(y) =

∫ 1

0

[
y(x)y′(x) + y′2(x)

]
dx

subject to

I(y) =

∫ 1

0

[y(x)] dx = 1, y(0) = 0 and y(1) = 0.

7. Conclusion

The generalized version of the fundamental lemma of the variational calculus of DuBois-Reymond enabled us
to prove a fractional Euler-Lagrange equation in integral form only containing fractional derivatives of Caputo’s
type. We have done this for variational and isoperimetric problems in which the Lagrangian depends not only on
the fractional derivatives of Caputo but also on derivatives in the classical sense. Furthermore, we also showed
that when the Lagrangian is a C2 function, we can obtain a fractional Euler-Lagrange differential equation only
depending on Caputo derivatives. The advantage of this is that Caputo derivatives are superior to Riemann-Liouville
derivatives in some cases. Finally, we obtained an exact solution of a particular isoperimetric problem, where the
classical solution is recovered when α → 1.
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