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Abstract In this paper, we introduce integral stochastic ordering of two most important classes of distributions that are
commonly used to fit data possessing high values of skewness and (or) kurtosis. The first one is based on the selection
distributions started by the univariate skew-normal distribution. A broad, flexible and newest class in this area is the scale
and shape mixture of multivariate skew-normal distributions. The second one is the general class of Normal Mean-Variance
Mixture distributions. We then derive necessary and sufficient conditions for comparing the random vectors from these two
classes of distributions. The integral orders considered here are the usual, concordance, supermodular, convex, increasing
convex and directionally convex stochastic orders. Moreover, for bivariate random vectors, in the sense of stop-loss and
bivariate concordance stochastic orders, the dependence strength of random portfolios is characterized in terms of order of
correlations.
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1. Introduction

There are numerous situations in which the assumption of normality is not supported by the data. Several examples
of such cases have been provided by Genton [21]. Some families of near normal distributions, which include the
normal distribution and to some extent some of its desirable properties, have played a crucial role in the analysis of
data arising from different fields. A decisive point in the development of such distributions is the paper of Azzalini
[5].

A substantial amount of work on multivariate skew distributions has resulted from the proposal of the
multivariate skew-normal (SN) distribution [6, 8]. In recent years, work on multivariate SN distribution, in both
theoretical and applied studies, has increased substantially.

In this regard, Arellano-Valle et al. [1] introduced a broad and flexible class of multivariate distributions
obtained by both scale and shape mixtures of multivariate skew-normal distributions. This family of multivariate
distributions unifies and extends many existing models in the literature such as scale mixtures of skew-normal
distributions [15] and shape mixtures of skew-normal distributions [2].

Another extension of multivariate normal distribution is the mean-variance mixtures of multivariate normal
distribution. An important case of Normal mean-variance mixtures is Generalized Hyperbolic (GH) distributions
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2 INTEGRAL ORDER OF SSMSN AND NMVM DISTRIBUTIONS

introduced by Barndorff-Nielsen and Blaesild [10]. Recently, GH distributions have been used by many authors to
fit financial data; see, for example, [42, 14, 16].

In a variety of applications, researchers are often interested in comparing treatment groups on the basis of several,
potentially dependent outcomes. The statistical problem of interest is then to compare multivariate distributions of
the outcomes from the control and treatment groups. The theory of stochastic orders provides an useful theoretical
foundation for such comparisons as it facilitates comparing random variables and vectors. The books by Shaked
and Shanthikumar [44, 45] and Müller and Stoyan [35] provide an elaborate discussion on various stochastic orders
and their applications to diverse problems. Belzunce [13] has reviewed some of the main stochastic orders in the
literature and showed relationships between them. He also pointed out some applications of stochastic orders in
several fields such as reliability theory, risk theory, epidemiology, ecology and biology.

Some results on stochastic orderings of multivariate normal distributions can be found in [11], [32] and [43].
Müller [33] hss provided a general treatments to the so-called integral stochastic orders and subsequently Müller
[34] has discussed necessary and sufficient conditions for many important examples of integral stochastic orders
for multivariate normal distributions. Landsman and Tsanakas [29] introduced the convex and concordance orders
of bivariate elliptical distributions. Davidov and Peddada [17] obtained necessary and sufficient conditions for the
usual stochastic ordering of multivariate elliptical random vectors. Pan et al. [38] studied convex and increasing
convex orderings of multivariate elliptical random vectors.

Stochastic ordering for the univariate SN distribution and its extensions have been discussed recently, which
include some reliability orderings for the generalized SN distribution [23], ordering of univariate SN distribution
and general skew-symmetric distributions [9] and characterizations of likelihood ratio order and usual stochastic
order for the univariate skew-symmetric distributions [24]. Jamali et al. [25] extended some orderings in [34] for
the multivariate SN distributions.

In the present paper, we introduce integral stochastic ordering of the general families of multivariate SN scale-
shape mixture and normal mean-variance mixture models. We derive necessary and sufficient conditions for various
types of integral orders such as usual stochastic order, convex order, increasing convex order, directionally convex
order, concordance order and supermodular order. Furthermore, the effect of correlation in the bivariate case is
examined. It is shown that for two bivariate random vectors belonging to Frechet Space [19], the ordering of their
correlation coefficients is equivalent to their concordance order. Moreover, it is shown that, in the stop-loss order
sense, riskiness of a portfolio of two risks with the considered distributions increases in terms of the correlation
coefficient. This is a stronger version of a result obtained by Dhaene and Goovaerts [19] and in the more general
family by Landsman and Tsanakas [29] regarding the skewness.

The remainder of this paper is organized as follows. In Section 2, we introduce briefly the concepts of integral
stochastic order, multivariate SN scale-shape mixtures and multivariate normal mean-variance mixtures. Section
3 describes the univariate stochastic orders which form the basis for all the results established subsequently.
In Section 4, the bivariate concordance order is characterized in terms of the order of correlations of portfolio
risks. Section 5 provides the results of integral orderings as well as necessary and sufficient conditions for
characterizations various orders. Section 6 concludes with a short discussion and some possible directions for
future research.

2. Preliminaries

In this section, we first present a brief overview of integral stochastic orders and the families of distributions that
we are in focus here.

2.1. Integral stochastic orders

Many of the stochastic orders that are in common use are defined as follows. Let (S,A) be some measure space, and
let F be some class of measurable functions f : S → R. Then, a relation ≼F is defined on the set of all probability
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measures on (S,A) by

P ≼F Q if

∫
fdP ≤

∫
fdQ for all f ∈ F,

when the involved integrals exist. It is often helpful to know that it is sufficient to check
∫
fdP ≤

∫
fdQ for all

f ∈ F which are sufficiently smooth. A general study of this type of order has been given by Müller [33]. We
wish to mention some important examples of integral orders. In the following, if f : Rd → R is twice continuously
differentiable, then we write as usual

∇f (x) =

[
∂

∂xi
f(x)

]d
i=1

, Hf (x) =

[
∂2

∂xi∂xj
f(x)

]d
i,j=1

for the gradient vector and the Hessian matrix of f , respectively.

Definition 1
([34, 18]) Given two d-dimensional random vectors X and Y and twice differentiable functions f : Rd → R in F,

(i) (Usual order) X ≼st Y if, and only if, E(f(X)) ≤ E(f(Y)) holds for all f ∈ F satisfying ∇f (x) ≥ 0 for all
x ∈ Rd (for all increasing functions f );

(ii) (Convex order) X ≼cx Y if, and only if, E(f(X)) ≤ E(f(Y)) holds for all f ∈ F that Hf (x) is positive
semi-definite for all x ∈ Rd (for all convex functions f );

(iii) (Supermodular order) X ≼sm Y if, and only if, E(f(X)) ≤ E(f(Y)) holds for all f ∈ F satisfying
∂2

∂xi∂xj
f(x) ≥ 0 for all x ∈ Rd and all 1 ≤ i < j ≤ d (for all suprmodular functions f );

(iv) (Increasing convex order) X ≼icx Y if, and only if,E(f(X)) ≤ E(f(Y)) holds for all f ∈ F that ∇f (x) ≥ 0
and Hf (x) is positive semi-definite for all x ∈ Rd (for all increasing-convex functions f );

(v) (Directionally convex order) X ≼dcx Y if, and only if, E(f(X)) ≤ E(f(Y)) holds for all f ∈ F satisfying
∂2

∂xi∂xj
f(x) ≥ 0 for all x ∈ Rd and all 1 ≤ i, j ≤ d (for all directionally-convex functions f ).

The functions in the above definition are generally defined in terms of difference operators. The difference
operator ∆ϵ

i , 1 ≤ i ≤ d, ϵ > 0, for a function f : Rd → R is defined as

∆ϵ
if(x) = f(x+ ϵei)− f(x),

where ei is the i-th unit basis vector of Rd. The function f : Rd → R is said to be ∆-monotone if, for any subset
{i1, ..., ik} ⊆ {1, ..., d} and every ϵi > 0, i = 1, ..., k,

∆
ϵi1
i1
...∆

ϵik
ik
f(x) ≥ 0 for all x ∈ Rd. (1)

The stochastic order generated by ∆-monotone functions is called upper orthant order, since it can be defined
alternatively through a comparison of upper orthants [41]. Now, we recall the definitions of upper orthant and
concordance orders which are studied for comparison of dependence structures.

Definition 2 (i) (Upper orthant order) X ≼uo Y if, and only if, P (X ≥ t) ≤ P (Y ≥ t) for all t ∈ Rd;
(ii) (Concordance order) X ≼conc Y if, and only if, P (X ≥ t) ≤ P (Y ≥ t) and P (X ≤ t) ≤ P (Y ≤ t) for all

t ∈ Rd.

2.2. Some general families of distributions

The following notations will be used throughout this paper: Φ(·) denotes the cumulative distribution function
(cdf) of the univariate standard normal distribution, ϕn(· ;µ,Σ) denotes the probability density function (pdf) of
Nn(µ,Σ) (the n-variate normal distribution with mean vector µ and covariance matrix Σ).
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4 INTEGRAL ORDER OF SSMSN AND NMVM DISTRIBUTIONS

2.2.1. Normal mean-variance mixture distributions Consider the d-dimensional random vector X that can be
expressed as

X
d
= µ+ λW +

√
WZ, (2)

where µ,λ ∈ Rd, Z ∼ Nd (0,Σ) with Σ as a positive definite matrix of order d, and W is an independent
non-negative random variable with cdf H (.;η) and support SH , which is indexed by the parameter vector η.
Then, the random vector X is said to have a normal mean-variance mixture (NMVM) distribution, denoted by
X ∼ NMVMd (µ,Σ,λ, h). The pdf of X can be expressed as

f (x) =

∫
SH
w− d

2 ϕd

(
(x− µ)w− 1

2 − λw
1
2 ;0,Σ

)
dH (w;η) . (3)

The mean vector and the covariance matrix of X are given by

E(X) = µ+ E(W )λ, Cov(X) = V ar(W )λλT + E(W )Σ. (4)

In the following lemma, we extend Slepian’s inequality [46] for NMVM distributions. Let two d-dimensional
random vectors X and Y be distributed as

X ∼ NMVMd (µ,Σ,λ, h) , Y ∼ NMVMd (µ
′,Σ′,λ′, h) (5)

and σ = Diag(Σ)
1
2 and σ′ = Diag(Σ′)

1
2 .

Lemma 1
Let X and Y be the random vectors as given in (5). If µ ≤ µ′, λ ≤ λ′, σ = σ′, σij ≤ σ′

ij for all 1 ≤ i, j ≤ d, then

P (X ≥ t) ≤ P (Y ≥ t) for all t ∈ Rd.

If µi < µ′
i or λi < λ′i for some i or σij < σ′

ij for some (i, j), then the above inequality is in fact strict.

Proof
From (2), we have, for all w ∈ SH ,

P (X ≥ t|W = w) = P (Z ≥ w− 1
2 (t− µ)− w

1
2λ),

P (Y ≥ t|W = w) = P (Z′ ≥ w− 1
2 (t− µ′)− w

1
2λ′),

where Z ∼ Nd(0,Σ) and Z′ ∼ Nd(0,Σ
′). Considering σ = σ′ and σij ≤ σ′

ij , and using Slepian’s inequality, we
have P (Z ≥ u) ≤ P (Z′ ≥ u) for all u ∈ Rd, and the inequality is strict if σij < σ′

ij for some (i, j). It follows from
µ ≤ µ′ and λ ≤ λ′ that

P (X ≥ t) =

∫
SH
P (Z ≥ w− 1

2 (t− µ)− w
1
2λ)dH(w; η),

≤
∫
SH
P (Z′ ≥ w− 1

2 (t− µ′)− w
1
2λ′)dH(w; η)

= P (Y ≥ t)

and the inequality is strict if µi < µ′
i, λi < λ′i or σij < σ′

ij , for some index.

The following lemma provides sufficient conditions for the integral stochastic ordering of the random vectors
from NMVM distributions.

Lemma 2
Let X and Y be the random vectors as given in (5) and ϕp(.|w) = ϕd(.;µp + wλp, wΣp), 0 ≤ p ≤ 1, where

µp = pµ+ (1− p)µ′,
λp = pλ+ (1− p)λ′,
Σp = pΣ+ (1− p)Σ′.

(6)

Further, let f : Rd → R be twice continuously differentiable and, for any w ∈ SH , satisfy the following conditions:

Stat., Optim. Inf. Comput. Vol. 8, March 2020



D. JAMALI, M. AMIRI, A. JAMALIZADEH AND N. BALAKRISHNAN 5

(i) limxj→±∞ f(x)ϕp(x|w) = 0, for all 1 ≤ j ≤ d,
(ii) limxj→±∞ f(x) ∂

∂xi
ϕp(x|w) = 0, for all 1 ≤ i, j ≤ d,

(iii) limxj→±∞ ϕp(x|w) ∂
∂xi

f(x) = 0, for all 1 ≤ i, j ≤ d.

If the following conditions ∑d
i=1(µ

′
i − µi)

∂
∂xi

f(x) ≥ 0,∑d
i=1(λ

′
i − λi)

∂
∂xi

f(x) ≥ 0,∑d
i=1

∑d
j=1(σ

′
ij − σij)

∂2

∂xi∂xj
f(x) ≥ 0

(7)

hold, then E(f(X)) ≤ E(f(Y)).

Proof
From (2) and considering conditions (i)-(iii), then using Theorem 2 of Müller [34] and applying double expectation
formula, we obtain

E(f(Y))− E(f(X)) =
∫
SH

∫ 1

0

∫
Rd

(
(µ′ − µ)

T ∇f (x) + w (λ′ − λ)
T ∇f (x)

+w
2 Trace [(Σ

′ −Σ)Hf (x)]
)
ϕp(x|w)dxdpdH(w;η).

Then, Trace [(Σ′ −Σ)Hf (x)] =
∑d

i=1

∑d
j=1(σ

′
ij − σij)

∂2

∂xi∂xj
f(x) and the conditions in (7) implies the

negativity of E(f(X)− f(Y)).

Remark 1
Let the mixing variable W in (2) follow the generalized inverse Gaussian (GIG) distribution with pdf

h(w;η) =

(
ψ
χ

)λ
2

2Kλ

(√
χψ

)wλ−1e−
1
2 (χw

−1+ψw), w > 0,

where χ > 0, ψ ≥ 0 if λ < 0, χ > 0, ψ > 0 if λ = 0, χ ≥ 0, ψ > 0 if λ > 0 and Kλ (.) being the Bessel function of
the third kind with index λ. Then, the random vector X in (2) follows the d-variate GH distribution. Some important
cases of GH are the Normal Inverse Gaussian distribution when λ = −0.5, the hyperbolic distribution when λ = 1,
variance gamma distribution when λ > 0 and ψ = 0, and the skewed-t distribution with λ < 0 and χ = 0 [31].
Some other examples of NMVM distributions are generalized hyperbolic skew-slash [4] when W ∼ Beta(ν, 1),
normal-mean-variance Birnbaum-Saunders [39] and normal-mean-variance Lindley [36].

2.2.2. Scale-shape mixture of multivariate SN distributions The multivariate SN distribution was originally
introduced by Azzalini and Dalla-Valle [8]. Following Azzalini and Capitanio [6], the pdf of a d-variate SN
distribution, with location vector µ, dispersion matrix Σ and shape/skewness vector α, can be written as

f(x) = 2ϕd(x;µ,Σ)Φ(αTσ−1(x− µ)) for all x ∈ Rd, (8)

and it is denoted by X ∼ SNd(µ,Σ,α).
Now, we consider the multivariate scale-shape mixtures of skew-normal (SSMSN) distributions proposed

recently by Arellano-Valle et al. [1].
Let τ = (τ1, τ2) be an arbitrary bivariate random vector with a joint cdf H(τ ;η) and support SH . Then, a d-

dimensional random vector Y is said to follow the SSMSN distribution, if conditionally on η, it takes on the
form

Y|τ ∼ SNd(µ, a1(τ1)Σ, a2(τ )α), (9)

where a1(τ1) is a positive scale (weight) function and a2(τ1, τ2) is a real-valued shape function which is not
symmetric about zero. Without loss of generality, we suppose that a2(τ ) is a positive function.

Stat., Optim. Inf. Comput. Vol. 8, March 2020



6 INTEGRAL ORDER OF SSMSN AND NMVM DISTRIBUTIONS

Suppose Z1 ∼ N(0, 1) and Z2 ∼ Nd(0,Σ), and assume that Z1 and Z2 are independent. Then, the SSMSN
distribution in (9) has the following selection representation:

Y
d
= µ+

√
a1(τ1)Z2|

(
Z1 ≤ a2(τ )α

Tσ−1Z2

)
. (10)

Now, by using the multivariate SN characteristic function [28], the characteristic function of SSMSN distribution
is given by

Ψ(t) = 2

∫
SH

exp(iµT t− a1(τ1)

2
tTΣt)

{
1 + iδ

(√
a1(τ1)λ

T
τ t

)}
dH(τ ;η), t ∈ Rd, (11)

where

λτ =
a2(τ )√

1 + a22(τ )α
TΣα

σΣ α, δ (u) =
√

2/π

∫ u

0

exp
(
z2/2

)
dz, (12)

with Σ = σ−1Σσ−1. The skewness parameter α in (10) can also be written in terms of λτ in (12) as

α =
(
1− λTτΣ

−1λτ

)−1/2
σΣ−1λτ . (13)

Let X and Y be two d-dimensional random vectors from SSMSN distributions as follows:

X|τ ∼ SNd(µ, a1(τ1)Σ, a2(τ )α),

Y|τ ∼ SNd(µ
′, a1(τ1)Σ

′, a2(τ )α
′).

(14)

The mean vector and the covariance matrix of (14) are given by

E (Y) = µ+
√

2
πE

[
a
1/2
1 (τ1)λτ

]
,

Cov (Y) = E(a1(τ1))Σ− 2
πE

[
a
1/2
1 (τ1)λτ

]
E
[
a
1/2
1 (τ1)λτ

]T
.

(15)

In the following lemma, we establish Slepian’s inequality for SSMSN distributions.

Lemma 3
Let X and Y be the random vectors as given in (14). If µ ≤ µ′, λτ ≤ λ′

τ for all τ ∈ SH , σ = σ′, σij ≤ σ′
ij , for

all 1 ≤ i, j ≤ d, then
P (X ≥ t) ≤ P (Y ≥ t) for all t ∈ Rd.

If µi < µ′
i or λτ ,i < λ′τ ,i for some i or σij < σ′

ij for some (i, j), then the above inequality is indeed strict.

Proof
Let

Zτ ∼ Nd+1

(
0,

(
Σ λτ

λTτ 1

))
, Z′

τ ∼ Nd+1

(
0,

(
Σ′ λ′

τ

λ′T
τ 1

))
.

Then, from (10), we have

P (X ≥ t) = 2

∫
SH
P (Zτ ≥ a1(τ1)

−1/2(t− µ))dH(τ ;η),

P (Y ≥ t) = 2

∫
SH
P (Z′

τ ≥ a1(τ1)
−1/2(t− µ′))dH(τ ;η),

and the result then follows from Slepian’s inequality.

Now, in the following lemma, we provide sufficient conditions for stochastic comparisons of SSMSN
distributions.
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Lemma 4
Let X and Y be the random vectors as given in (14), and

µp = pµ+ (1− p)µ′,
λp = pλτ + (1− p)λ′

τ ,
Σp = pΣ+ (1− p)Σ′,

(16)

for 0 ≤ p ≤ 1. Further, let f : Rd → R be twice continuously differentiable and for all τ ∈ SH , k = 1, 2 satisfy the
following conditions:

(i) limxj→±∞ f(x)φk(x; p|τ ) = 0 for all 1 ≤ j ≤ d, k = 1, 2,
(ii) limxj→±∞ f(x) ∂

∂xi
φ1(x; p|τ ) = 0 for all 1 ≤ i, j ≤ d,

(iii) limxj→±∞ φ1(x; p|τ ) ∂
∂xi

f(x) = 0 for all 1 ≤ i, j ≤ d,

where φ1(x; p|τ ) is the pdf of SNd(µp, a1(τ1)Σp, a2(τ )αp), αp is obtained by using the parameters in (16) in
Equation (13), and φ2(.; p|τ ) = ϕd(.;µp, a1(τ1)[Σp − λpλ

T
p ]). If the following conditions

∑d
i=1(µ

′
i − µi)

∂
∂xi

f(x) ≥ 0,∑d
i=1(λ

′
τ ,i − λτ ,i)

∂
∂xi

f(x) ≥ 0,∑d
i=1

∑d
j=1(σ

′
ij − σij)

∂2

∂xi∂xj
f(x) ≥ 0

(17)

hold, then E(f(X)) ≤ E(f(Y)).

Proof
Suppose Zp, given τ , has the pdf φ1(.; p|τ ). Then,

E(f(Y)− f(X)) =
∫ 1

0

∫
SH

∂
∂pE(f(Zp)|τ )dH(τ ;η)dp

=
∫ 1

0

∫
SH

∫
Rd f(z)

∂
∂pφ1(z; p|τ )dzdH(τ ;η)dp.

(18)

Considering (11), we can write the pdf of Zp, given τ , in terms of its characteristic function, Ψ(.; p|η), as follows:

φ1(z; p|τ ) = (2π)−d/2
∫
Rd

exp(−itT z)Ψ(t; p|τ )dt

= (2π)−d/2
∫
Rd

exp

{
−itT (z− µp)−

a1(τ1)

2
tTΣpt

}{
1 + iδ

(√
a1(τ1)λ

T
p t

)}
dt.

Upon differentiating the above expression with respect to p and then integrating over Rd, we obtain

∂

∂p
φ1 (z; p|τ ) =

a1(τ1)

2

d∑
i=1

d∑
j=1

(
σ′
ij − σij

) ∂2

∂zi∂zj
φ1 (z; p|τ )

−
d∑
i=1

(µ′
i − µi)

∂

∂zi
φ1 (z; p|τ )

− 2a1(τ1)
1/2

√
2π

n∑
i=1

(λ′i − λi)
∂

∂zi
φ2 (z; p|τ ) .
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8 INTEGRAL ORDER OF SSMSN AND NMVM DISTRIBUTIONS

Using the expression above in (18), and integrating by part and using the conditions (1)-(3), we derive the following:

E(f(Y)− f(X)) =

∫ 1

0

∫
SH

∫
Rn

(µ′ − µ)
T ∇f (z)φ1(z; p|τ )dzdH(τ ;η)dp

+

∫ 1

0

∫
SH

∫
Rn

a1(τ1)

2
Trace

[(
Σ′ −Σ

)
Hf (z)

]
φ1 (z; p|τ ) dzdH(τ ;η)dp

+

∫ 1

0

∫
SH

∫
Rn

√
2a1(τ1)

π
(λ′

τ − λτ )
T ∇f (z)φ2 (z; p|τ ) dzdH(τ ;η)dp.

Now, by using the conditions in (17), we obtain the required result.

Remark 2
Observe that the conditions (i)-(iii) in Lemmas 2 and 4 are weak regularity conditions, which assure the existence
of all occurring integrals. They are always fulfilled if the function f , together with its first derivatives, fulfils a
polynomial growth condition at infinity [34].

Remark 3
The family of SSMSN distributions is quite large, and contains several subfamilies of asymmetric distributions
discussed considerably in the literature due to some desirable properties. Some well-known SSMSN subfamilies
are as follows:

1. Scale mixture of SN distribution [15] when a2(τ ) = 1. For a1(τ) = τ−1, we have the multivariate skew-t
[7] when τ ∼ Gamma(ν/2, ν/2) and skew-Cauchy when ν = 1, the multivariate skew-slash [47] when τ ∼
Beta(ν, 1), the skew-contaminated-normal [30] when τ has a discrete distribution with support SH = {γ, 1},
finite mixture of SN distributions [15] when τ has a discrete distribution with support SH = {τ1, ..., τk};

2. Shape mixture of SN distribution when a1 = 1 and a2(τ ) = s(τ). The multivariate skew-generalized-normal
[3] when s(τ) = τ ∼ N(1, a), the multivariate skew-normal-Cauchy [27] when s(τ) = |τ | and τ ∼ N(0, 1);

3. If a2(τ) =
√
a1(τ), then two examples are the multivariate skew-t-normal and multivariate skew-slash-

normal distributions, when τ ∼ Gamma(ν/2, ν/2) and τ ∼ Beta(ν, 1), respectively [20]. If a1(τ1) = τ−1
1

and a2(τ ) = τ
−1/2
2 , where τi are independent and τi ∼ Gamma(νi/2, νi/2) , i = 1, 2, we have the skew-t-t

distribution [26].

3. Univariate stochastic orders

Some results on the univariate stochastic ordering of random variables with NMVM and SSMSN distributions are
briefly presented here. We will use them later on for the proofs of necessity parts.

Let X1 and X2 be random variables with pdfs f1 and f2, cdfs F1 and F2, and survival functions F 1 = 1− F1

and F 2 = 1− F2, respectively. An equivalent condition in Definition 1 for the usual stochastic order X1 ≼st X2

is that F 1(t) ≤ F 2(t) for all t ∈ R. The following Lemma provides necessary and sufficient conditions for the
comparison of the general class of univariate SSMSN distribution [26].

Lemma 5
Let X1 and X2 be two SSMSN random variables given by

Xi|τ ∼ SN1(µi, a1(τ1)σ
2
i , a2(τ )αi), i = 1, 2. (19)

Then, X1 ≼st X2 if and only if µ1 ≤ µ2, σ1 = σ2 and α1 ≤ α2 (λτ ,1 ≤ λτ ,2).

Proof
The sufficiency of µ1 ≤ µ2, σ1 = σ2 and α1 ≤ α2 (λτ ,1 ≤ λτ ,2) follows from Slepian’s inequality in Lemma 3.
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Figure 1. Plots of survival functions of (i) skew-t-normal distribution and (ii) skew-Cauchy distribution.

On the other hand, X1 ≼st X2 can only hold if

limt→+∞(f2(t)− f1(t)) =
∫
SH limt→+∞D(t; τ )dH(τ ;η) ≥ 0,

limt→−∞(f2(t)− f1(t)) =
∫
SH limt→−∞D(t; τ )dH(τ ;η) ≤ 0,

(20)

where D(t; τ ) = f2(t|τ )− f1(t|τ ). With g (t; τ ) = f2(t|τ )
f1(t|τ ) , from (8), we then get

g (t; τ ) =
σ1
σ2

exp

[
1

a1(τ )

[(
1

σ2
1

− 1

σ2
2

)
t2

2
+

(
µ2

σ2
2

− µ1

σ2
1

)
t+

(
µ2
2

σ2
2

− µ2
1

σ2
1

)]]

×
Φ

(
a2(τ )α2

σ2

√
a1(τ1)

(t− µ2)

)
Φ

(
a2(τ )α1

σ1

√
a1(τ1)

(t− µ1)

) .
Suppose α1α2 ≥ 0 and conditions µ1 ≤ µ2, σ1 = σ2 and α1 ≤ α2 (λτ ,1 ≤ λτ ,2) hold. Otherwise, for τ ∈ SH
we have limt→−∞ g(t; τ ) = +∞ implying D(t; τ ) > 0 for sufficiently large negative t, or limt→+∞ g(t; τ ) = 0
implyingD(t; τ ) < 0 for sufficiently large positive t. Then, the necessary conditions in (20) will not be established.
Similarly, suppose α1α2 < 0, it would follow α1 ≤ 0 ≤ α2, µ1 ≤ µ2 and σ1 = σ2.

To illustrate the result of Lemma 5, the survival functions for two special cases of univariate SSMSN distributions
are plotted in Figure 1: (i) the skew-t-normal distributions [22] denoted by STN(µ, σ, α, ν), and (ii) the skew-
Cauchy distribution [12] denoted by SC(µ, σ, α). Distributions whose parameters satisfy the conditions of
Lemma 5 are stochastically ordered. Otherwise, their survival functions intersect each other and are therefore
not stochastically ordered.

We now explore the conditions for the usual stochastic ordering in the univariate NMVM distributions. Let X1

and X2 be two random variables from NMVM distribution in (2) as follows:

Xi ∼ NMVM1(µi, σ
2
i , λi, h) for i = 1, 2. (21)

Considering the conditions µ1 ≤ µ2, σ1 = σ2 and λ1 ≤ λ2 and then using Slepian’s inequality in Lemma 1, we
conclude thatX1 ≼st X2. Unfortunately, we are not able to show that these conditions are necessary forX1 ≼st X2,
and so we are unable to provide necessary and sufficient conditions for the usual stochastic order of univariate
NMVM distributions. However, in the special cases when µ1 = µ2 and λ1 = λ2, we can characterize the usual
stochastic order.
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Figure 2. Plots of survival functions of univariate GH distributions with W ∼ Exp(1) and (i) µ1 = µ2 = 0, (ii) λ1 = λ2 = 1.

Lemma 6
Let X1 and X2 be the random variables as given in (21).

(i) If µ1 = µ2, then X1 ≼st X2 if and only if σ1 = σ2 and λ1 ≤ λ2;
(ii) If λ1 = λ2, then X1 ≼st X2 if and only if σ1 = σ2 and µ1 ≤ µ2.

Proof
The sufficiency parts of (i) and (ii) are obvious. Now, let X1 ≼st X2. Then, we must have

limt→+∞(f2(t)− f1(t)) =
∫
SH limt→+∞D(t;w)dH(w;η) ≥ 0,

limt→−∞(f2(t)− f1(t)) =
∫
SH limt→−∞D(t;w)dH(w;η) ≤ 0,

(22)

where D(t;w) = ϕ(t;µ2 + wλ2, wσ
2
2)− ϕ(t;µ1 + wλ1, wσ

2
1). Let

g(t;w) =
ϕ(t;µ2 + wλ2, wσ

2
2)

ϕ(t;µ1 + wλ1, wσ2
1)

=
σ1
σ2

exp

{
w−1

[(
1

σ2
1

− 1

σ2
2

)
t2

2
+

(
µ2 + wλ2

σ2
2

− µ1 + wλ1
σ2
1

)
t

]}
× exp

{
w−1 (µ2 + wλ2)

2

σ2
2

− w−1 (µ1 + wλ1)
2

σ2
1

}
.

In both cases (i)-(ii), we claim σ1 = σ2. If not, σ1 < σ2 implies g(t;w) goes to infinity as t→ −∞ and σ1 > σ2
implies g(t;w) goes to 0 as t→ +∞. So, for all w ∈ SH , D(t;w) will be positive for large enough positive t and
will be negative for large enough negative t. This violates the necessary conditions in (22). In a similar way, we can
show that λ1 ≤ λ2 if µ1 = µ2 and µ1 ≤ µ2 if λ1 = λ2.

To illustrate the result of Lemma 6, we consider the special case of univariate NMVM distributions with
W ∼ Exp(1), which is a univariate generalized hyperbolic distribution (hyperbolic distribution) introduced by
[10], denoted by GH(µ, σ, λ). Plots of the survival functions of two cases of GH distribution with common
locations (i) and GH distribution with common skewness parameters (ii) are shown in Figure 2. Distributions
whose parameters satisfy the conditions of Lemma 6 are stochastically ordered, and are not ordered otherwise.

We now consider the increasing convex ordering in the univariate case. An equivalent condition for the increasing
convex order X1 ≼icx X2 is that [35]

Stat., Optim. Inf. Comput. Vol. 8, March 2020



D. JAMALI, M. AMIRI, A. JAMALIZADEH AND N. BALAKRISHNAN 11

E[(X1 − t)+] ≤ E[(X2 − t)+] for all t ∈ R.

In economics literature, the increasing convex order is commonly referred to as stop-loss order. It corresponds to
the notion of second order stochastic dominance [40], while in insurance terms it is interpreted as a comparison of
the stop-loss premiums of risks for any given retention. In the univariate case studied here, ≼sl is used to denote
the stop-loss order.

We consider the univariate SSMSN distributions in (19) with a2(τ ) = 1, which belongs to scale mixtures of
SN distributions introduced by Branco and Dey [15]. In this case, the parameter λτ in (12) does not depend on τ
and so we remove it from the index. In the following lemma, we derive conditions for increasing convex order of
random variables from univariate SSMSN distributions with common locations.

Lemma 7
Let the random variables X1 and X2 distributed as

Xi|τ ∼ SN1(µi, a1(τ)σ
2
i , αi), i = 1, 2. (23)

If µ1 = µ2, then X1 ≼icx X2 if and only if λ1 ≤ λ2 and σ1 ≤ σ2, where λi = σiαi√
1+α2

i

.

Proof
For the if part, let f : R → R be an increasing convex function. Then, conditions µ1 = µ2, λ1 ≤ λ2 and σ1 ≤ σ2
provides the conditions in (17) in Lemma 4, and so we haveX1 ≼icx X2. To show the only if part, let us assume that
X1 ≼icx X2. Then, E(X1) ≤ E(X2), and so using (15) and considering µ1 = µ2, we have λ1 ≤ λ2. Let us assume
that σ1 > σ2. Then, limt→+∞ f2(t; τ)/f1(t; τ) = 0 for all τ ∈ SH (see the proof of Lemma 5), and therefore

E(X1 − t)+ =

∫ +∞

t

F 1(x|τ)dx >
∫ +∞

t

F 2(x|τ)dx = E(X2 − t)+

for sufficiently large t, which is a contradiction to X1 ≼icx X2.

We now get the the same result in the above lemma for the univariate NMVM distributions.

Lemma 8
Let the random variables X1 and X2 be distributed as

Xi ∼ NMVM1(µi, σ
2
i , λi, h), i = 1, 2. (24)

If µ1 = µ2, then X1 ≼icx X2 if and only if λ1 ≤ λ2 and σ1 ≤ σ2.

Proof
The proof is similar to that of Lemma 7 and is therefore not presented here for the sake of brevity.

Remark 4
Results of usual stochastic order in Lemma 5 can be applied for the univariate version of the distributions in Remark
3. The stop-loss order in Lemma 7 can be used to order the random variables from the univariate distributions in
Case 1 of Remark 3. Also, the usual stochastic order in Lemma 6 and stop-loss order in Lemma 8 can be used to
order all of the univariate versions of distributions in Remark 1.

4. Concordance order and portfolio risk

In this section, it is shown that for bivariate SMSSN and NMVM distributed random vectors, the concordance
ordering is equivalent to the ordering of correlation coefficients. We note that a similar result has been proved for
the normal [35] and elliptical [29] families of distributions.

Consider risks X1
d
= Y1 and X2

d
= Y2 with probability distributions F1 and F2, respectively, where d

= denotes
the equality in distribution. The random vectors (X1, X2) and (Y1, Y2) are then different only in the way that their
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elements depend on each other. The Frechet Space ℜ2(F1, F2) is defined as the space of two-dimensional random
vectors with fixed marginals F1 and F2 [19]. Concordance order can also be understood via the following result
[19, 35].

Lemma 9
Consider the random vectors (X1, X2), (Y1, Y2) ∈ ℜ2(F1, F2). Then, (X1, X2) ≼conc (Y1, Y2) if and only if

Cov(h1(X1), h2(X2)) ≤ Cov(h1(Y1), h2(Y2))

for all increasing functions h1 and h2, when the involved covariances exist.

Firstly, suppose X = (X1, X2) and Y = (Y1, Y2) belong to ℜ2(F1, F2) and

X|τ ∼ SN2(µX, a1(τ)ΣX,αX), Y|τ ∼ SN2(µY, a1(τ)ΣY,αY). (25)

To deal with cases when the covariance matrix does not exist, a generalized correlation coefficient for bivariate
vectors in (25) with

ΣX =

[
σX,11 σX,12
σX,21 σX,22

]
, ΣY =

[
σY,11 σY,12
σY,21 σY,22

]
,

is defined as
ρX =

σX,12√
σX,11σX,22

, ρY =
σY,12√

σY,11σY,22
. (26)

Of course, the generalized correlation coefficients coincide with the usual (Pearson) correlation coefficient if
covariance matrices exist. From Lemma 3, we immediately have the following results.

Corollary 1
Consider the bivariate SSMSN random vectors X and Y in (25). Then, X ≼conc Y if and only if ρX ≤ ρY.

Corollary 2
Consider the bivariate NMVM random vectors X,Y ∈ ℜ2(F1, F2) as

X ∼ NMVM2(µX,ΣX,λX, h), Y ∼ NMVM2(µY,ΣY,λY, h). (27)

Then, X ≼conc Y if and only if ρX ≤ ρY.

It is apparent from Lemma 9 that concordance order is invariant under monotone transformations of the random
variables considered. This implies that concordance order relates only to the copulas of the random vectors. Copulas
are joint distributions with uniform marginals, which summarize the dependence structure of random vectors [37].
It is noted that, in the two-dimensional case, concordance order is equivalent to the supermodular order [35]. Hence,
in higher dimensions, the supermodular order can be viewed as a generalization of the concordance order.

Dhaene and Goovaerts [19] showed that a portfolio consisting of two positive random variables becomes more
risky in the stop-loss order sense when the two risks become more concordant. Landsman and Tsanakas [29] proved
this result for the elliptical family. A stronger version can be obtained for SSMSN and NMVM distributed risks, as
established below.

Proposition 1
Consider X,Y ∈ ℜ2(F1, F2), where X and Y are random vectors for both cases (25) and (27). Then, X1 +
X2 ≼icx Y1 + Y2 if and only if ρX ≤ ρY.

Proof
By Lemma 7 and (11), and Lemma 8 and (2), respectively, for the cases (25) and (27), we haveX1 +X2 ≼icx Y1 +
Y2 if and only if σX,11 + σX,22 + 2σX,12 ≤ σY,11 + σY,22 + 2σX,12. Since σX,11 = σY,11 and σX,22 = σY,22, it
becomes equivalent to ρX ≤ ρY, as required.

Remark 5
By Proposition 1, we can order the portfolio risks in the sense of stop-loss order, by ordering the correlations when
the risks jointly follow bivariate versions of the distribution families discussed in Remark 1 and Case 1 of Remark
3.
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5. Multivariate stochastic orders

Now, we focus our attention on the integral stochastic orderings of the multivariate case.

Corollary 3
Let the random vectors X and Y be as given in (5) and (14).

(i) If µ ≤ µ′, Σ = Σ′ and λτ ≤ λ′
τ for all τ ∈ SH (λ ≤ λ′), then X ≼st Y;

(ii) If µ = µ′, Σ′ −Σ is positive semi-definite and λτ = λ′
τ for all τ ∈ SH(λ = λ′), then X ≼cx Y;

(iii) If µ ≤ µ′, Σ′ −Σ is positive semi-definite and λτ ≤ λ′
τ for all τ ∈ SH(λ ≤ λ′), then X ≼icx Y;

(iv) If µ = µ′, σij ≤ σ′
ij and λτ = λ′

τ for all τ ∈ SH(λ = λ′), then X ≼dcx Y and X ≼sm Y.

Again, we note that when a2(τ ) = 1, the index τ in λτ will be removed.
we now consider the necessary and sufficient conditions for the characterization of the integral order of the

SSMSN and NMVM families of distributions. To begin with, we consider the usual stochastic order.

Proposition 2
Suppose X and Y are SSMSN distributed random vectors as given in (14). Then, X ≼st Y if and only if µ ≤ µ′,
Σ = Σ′ and λτ ≤ λ′

τ for all τ ∈ SH .

Proof
The if part follows immediately from Corollary 3. Conversely, X ≼st Y implies Xi ≼st Yi and Xi +Xj ≼st
Yi + Yj for all 1 ≤ i, j ≤ d. Then, we can deduce from Lemma 5 that we must have µi ≤ µ′

i, σii = σ′
ii, λτ ,i ≤ λ′τ ,i

and then σij = σ′
ij for i ̸= j.

Proposition 3
Suppose X and Y are the NMVM distributed random vectors as given in (5).

(i) If µ = µ′, then X ≼st Y if and only if λ ≤ λ′ and Σ = Σ′;
(ii) If λ = λ′, then X ≼st Y if and only if µ ≤ µ′ and Σ = Σ′.

Proof
The result can be proved along the lines of Proposition 2, but we refrain from the presenting proof here for the sake
of brevity.

In what follows, we consider the random vectors in (14) with a2(τ ) = 1 and use λ instead of λτ . Using (12),
we have

λ =
(
1 +αTΣα

)−1/2
σΣα.

So, we consider the following random vectors:

X|τ ∼ SNd(µ, a1(τ1)Σ,α), Y|τ ∼ SNd(µ
′, a1(τ1)Σ

′,α′). (28)

It is evident from Definition 1 and (1) that every ∆-monotone function is supermodular, and so it is clear that the
supermodular order is stronger than the upper orthant order. Also, the super modular order is stronger than the
concordance order. In the following proposition, we characterize the supermodular ordering of random vectors in
(2) and (28) by comparing their covariances.

Proposition 4
Suppose the random vectors X and Y are as given in both cases (2) and (28). Then, X ≼sm Y if and only if X and
Y have the same marginals (Xi

d
= Yi ,i = 1, ..., d) and σij ≤ σ′

ij for any 1 ≤ i ̸= j ≤ d.

Proof
Suppose X ≼sm Y. It can only hold if the random vectors have the same marginals. Then, using Lemmas 1 and 3,
we can conclude that σij ≤ σ′

ij . Then, Corollary 3 yields the converse, and hence the result.
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The convex order and its extensions, like directionally convex and increasing convex orders, have assumed great
interest, recently. Müller [34] derived necessary and sufficient conditions for these orders in the case of multivariate
normal distribution and Pan et al. [38] derived the result in the case of multivariate elliptical distributions. Here,
we now establish necessary and sufficient conditions for the case of more general NMVM and SSMSN families.

Proposition 5 (i) If µ = µ′, then X ≼cx Y if and only if λ = λ′ and Σ′ −Σ is positive semi-definite;
(ii) If λ = λ′, then X ≼cx Y if and only if µ = µ′ and Σ′ −Σ is positive semi-definite.

Proof
The sufficiency parts of both cases (i) and (ii) immediately follow from the stated conditions and Corollary 3. To
show the converse, let us suppose X ≼cx Y. Hence, E(X) = E(X), using (4) and (15), for part (i) λ = λ′ and for
part (ii) µ = µ′ follow. Now, we claim that Σ′ −Σ should be positive semi-definite. Since otherwise, there exists
some a ∈ Rd such that aT (Σ′ −Σ)a < 0. Let f(X) =

(
aTX

)2
, which is convex. Again, for both cases (i) and

(ii), using (4) and (15), respectively, we can get the contradiction E(f(X))− E(f(Y)) > 0.

Proposition 6 (i) If µ = µ′, then X ≼dcx Y if and only if λ = λ′ and σij ≤ σ′
ij for all 1 ≤ i ̸= j ≤ d;

(ii) If λ = λ′, then X ≼dcx Y if and only if µ = µ′ and σij ≤ σ′
ij for all 1 ≤ i ̸= j ≤ d.

Proof
The sufficiency parts of (i) and (ii) follow from the stated conditions and Corollary 3. Conversely, let us assume
X ≼dcx Y. It follows E(X) = E(X), and then using (4) and (15) for cases (i) and (ii), respectively, we conclude
λ = λ′ and µ = µ′. Consider the directionally convex function f(X) = xixj . Then, from E(XiXj) ≤ E(YiYj),
relations (4) and (15) for cases (i) and (ii), respectively, it follows that σij ≤ σ′

ij .

Remark 6
All the ordering results in Section 5 can be used to compare random vectors from the multivariate distributions
in Remark 1 with common location vectors or common skewness vectors. Characterization of usual stochastic
order in Proposition 2 can be applied in the general form of multivariate families in Remark 3, and the two orders
coincide in these families. The result of supermodular order in Proposition 4, convex order in Proposition 5 and
directionally convex order in Proposition 6 can all be used for comparing all the multivariate distributions in Case
1 of Remark 3 with common location vectors or common skewness vectors.

6. Concluding remarks

By considering random vectors from the multivariate NMVM and SSMSN distributions, we have established
necessary and sufficient conditions for comparing the vectors using integral orders. We have derived necessary
and sufficient conditions for the usual order in the case of SSMSN families in general. By considering the random
vectors with common locations or with common skewness vectors, we have characterized the integral orders in
the NMVM and SSMSN families. For stochastic orderings here, we use the integral orders of the usual stochastic,
concordance, supermodular, convex, increasing convex and directionally convex orders. We show that for bivariate
random vectors, the riskiness and dependence strength of random portfolios, in the sense of stop-loss and bivariate
concordance stochastic orders, respectively, can be simply characterized in terms of the order of correlations. It
will be of great interest to extend the results established here to some other general families such as unified skew-
normal, unified skew-elliptical and selection distributions. We are currently working on this problem and hope to
report the findings in a future paper.
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