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Abstract Finding spanning trees under various constraints is a classic problem with applications in many fields. Recently,
a novel notion of “dense” (“sparse”) tree, and in particular spanning tree (DST and SST respectively), is introduced as the
structure that have a large (small) number of subtrees, or small (large) sum of distances between vertices. We show that
finding DST and SST reduces to solving the discrete optimization problems. New and efficient approaches to find such
spanning trees is achieved by imposing certain conditions on the vertex degrees which are then used to define an objective
function that is minimized over all spanning trees of the graph under consideration. Solving this minimization problem
exactly may be prohibitively time consuming for large graphs. Hence, we propose to use genetic algorithm (GA) which is
one of well known metaheuristics methods to solve DST and SST approximately. As far as we are aware this is the first time
GA has been used in this context. We also demonstrate on a number of applications that GA approach is well suited for these
types of problems both in computational efficiency and accuracy of the approximate solution. Furthermore, we improve the
efficiency of the proposed method by using Kruskal’s algorithm in combination with GA. The application of our methods to
several practical large graphs and networks is presented. Computational results show that they perform faster than previously
proposed heuristic methods and produce more accurate solutions. Furthermore, the new feature of the proposed approach is
that it can be applied recursively to sub-trees or spanning trees with additional constraints in order to further investigate the
graphical properties of the graph and/or network. The application of this methodology on the gene network of a cancer cell
led to isolating key genes in a network that were not obvious from previous studies.

Keywords Graphs, dense and sparse spanning trees, degree sequence, global optimization, genetic algorithm, discrete
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1. Introduction

Seeking the spanning tree of a given graph structure is a classic problem that has numerous applications and
variations. For some examples of such study one may see [1, 2, 3, 4, 5, 6, 7, 8, 9]. In a weighted graph, finding the
spanning tree with minimum total weight is known as the minimum spanning tree problem and is probably one of
the most extensively studied problems.

In the case of unweighted graphs, it is of interest to define a formal criterion to distinguish spanning trees (or
sub-structures in general) that are more “compact” or “spread out”. One such criteria can be introduced through the
topological indices defined as graph invariants. The best known distance-based index is the Wiener index [10, 11],
defined as the sum of distances between all pairs of vertices. A counting-based index, sometimes called the subtree
index, is defined as the number of subtrees [12]. It has been observed that in many classes of graphs, the extremal
structure that maximizes the Wiener index usually minimizes the subtree index, and vice versa [13]. Naturally, a
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tree with many subtrees and small Wiener index is considered as “dense” while a tree with few subtrees but large
Wiener index is considered as “sparse”. For example, it is a well known and easily proved fact that among all trees
of a given order, the star is the densest and the path is the sparsest tree (see, for instance, [12]).

In [6] an edge-swap heuristics between two spanning trees that finds dense spanning trees through adjacent
vertex degrees was proposed based on the theoretical analysis of the problem. This topic was further investigated
in [9], where more general degree conditions were proposed as the criteria to judge the denseness of a spanning
tree. The condition is defined as follows. For a vector (of real numbers) j⃗ = ⟨j1, j2, . . . , ji⟩, the condition Cj⃗ is
given by

Cj⃗ = C(⟨j1, j2, . . . , ji⟩) = C1,j1 + C2,j2 + . . .+ Ci,ji

where
Ci,j =

∑
d(u,v)=i

(
(deg(u))j + (deg(v))j

)
is the sum of the j-th power of pairs of degrees of vertices at distance i apart.

Throughout the paper, we use the traditional notations, G, T , E(G), V (G), d(u, v) and deg(u) to denote a graph
G, a tree T , the edge set of G, the vertex set of G, the distance between two vertices u and v, and the degree of a
vertex u, respectively.

In the case of condition C1,1, we simply have the sum of adjacent vertex degrees. A similar expression

Cj⃗ = C(⟨1, 1⟩) =
∑

uv∈E(T )

(deg(u) + deg(v)) +
∑

d(u,v)=2

(deg(u) + deg(v))

is exactly the condition studied in [6] where the Dense Spanning Tree (DST) problem was solved by maximizing
Cj⃗ over the set of all spanning trees in the given graph.

Alternatively, minimizing a condition such as Cj⃗ can be used to find a Sparse Spanning Tree (SST) in the given
graph. In [9], through computational analysis, it was observed that for

j⃗ = ⟨4, 2, 0, 0⟩ or ⟨4, 2, 2, 0⟩ or ⟨4, 2, 2, 2⟩

the corresponding objective functions∑
d(u,v)=1

(
(deg(u))4 + (deg(v))4

)
+

∑
d(u,v)=2

(
(deg(u))2 + (deg(v))2

)
+ 2 · ℓ3 + 2 · ℓ4, (1)

∑
d(u,v)=1

(
(deg(u))4 + (deg(v))4

)
+

∑
d(u,v)=2

(
(deg(u))2 + (deg(v))2

)
(2)

+
∑

d(u,v)=3

(
(deg(u))2 + (deg(v))2

)
+ 2 · ℓ4

and ∑
d(u,v)=1

(
(deg(u))4 + (deg(v))4

)
+

∑
d(u,v)=2

(
(deg(u))2 + (deg(v))2

)
(3)

+
∑

d(u,v)=3

(
(deg(u))2 + (deg(v))2

)
+

∑
d(u,v)=4

(
(deg(u))2 + (deg(v))2

)
appear to be the most effective when solving DST for most graphs. Here ℓi is the number of pairs of vertices at
distance i from each other.

To understand why these choices of conditions stand out, we will briefly introduce the known extremal facts on
the Wiener index and the number of subtrees. This will also help us understand how we measure the denseness of
a tree. More details of the discussion below can be found in [6].
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Figure 1. A greedy tree.

As mentioned before, the star and path are considered as the densest and the sparsest trees for good reasons.
More interestingly, among tress of given degree sequence, the greedy tree (defined below) was shown to minimize
the Wiener index [14, 15, 16] and maximize the number of subtrees [17]. Here the degree sequence is simply the
nonincreasing sequence of vertex degrees.

Definition 1
Given a degree sequence, the greedy tree is constructed through the following “greedy” algorithm:

i) Start with a single vertex v = v1 as the root and give v the appropriate number of neighbors so that it has the
largest degree;

ii) Label the neighbors of v as v2, v3, . . ., assign to them the largest available degrees such that deg(v2) ≥
deg(v3) ≥ · · · ;

iii) Label the neighbors of v2 (except v) as v21, v22, . . . such that they take all the largest degrees available and
that deg(v21) ≥ deg(v22) ≥ · · · , then do the same for v3, v4, . . .;

iv) Repeat (iii) for all the newly labeled vertices, always start with the neighbors of the labeled vertex with largest
degree whose neighbors are not labeled yet.

For example, Fig. 1 shows a greedy tree with degree sequence

(4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, . . . , 1).

It is useful to compare the greedy trees of different given degree sequences. In particular, for two nonincreasing
sequences π′ = (d′1, · · · , d′n) and π′′ = (d′′1 , · · · , d′′n), π′′ is said to majorize π′ if for k = 1, · · · , n− 1 we have

k∑
i=0

d′i ≤
k∑

i=0

d′′i and
n∑

i=0

d′i =

n∑
i=0

d′′i .

Through the concept of majorization researchers have been able to find the dense structures (with minimal Wiener
index or maximal number of subtrees) under various constraints. See [17] for an example of such discussions.
To find dense spanning trees, our edge-swap heuristic starts with a random spanning tree. We then continuously
remove a “bad” edge and add a “good” edge in order to “improve” the degree sequence by putting large degrees
closer to each other. The corresponding criteria for this procedure are the degree sum conditions discussed earlier.
It also makes sense that our optimal conditions given above put more emphasis on the adjacent degree sums than
others.

In this paper, we model finding SST and DST as an optimization problem and solve it using the genetic algorithm
(GA). Solving minimization problem for SST or maximization problem for DST exactly may be prohibitively time
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consuming for large graphs. Hence, the well-known heuristic method, the GA is used because it is well suited to
solve these types of problems. Genetic Algorithm is a metaheuristic optimization method which attempts to find
global maximum or at least its good approximation. This technique can be applied to unconstrained and constrained
problems. In addition, GA is well suited for the problems that are discrete and combinatorial in nature, DST and
SST being good examples. There is an extensive literature on GA of which we mention [18] as a good starting point
for further reading. Furthermore, we improve the efficiency of the proposed method by using Kruskal’s algorithm
in combination with GA. In addition, recursive use of the method to identify certain key nodes (as applied to gene
network) reveals new target genes of potential interest to practical medical research.

The paper is organized as follows. In Section 2, Methodologies, we present the model for finding Dense and
Sparse Spanning Trees in the given graph which is then solved using GA approach. We also present a modification
of the original model in which the feasible minimum spanning trees are found using Kruskal’s algorithm before the
GA is used. Using this approach the feasible set is significantly reduced which results in much faster solution of the
problem. In Section 3, Results, we first use a simple objective function as an example to illustrate the methodology.
We then apply models and methods developed in the Section 2 to several structures from practical applications
and comment on the results. In Section 4, Discussion, we discuss the generalization of this methodology to find
various dense or sparse sub-structures or spanning trees under additional constraints. For a specific application on
the gene networks of a cancer cell, we present a recursive application of our algorithm to quickly obtain deeper
understanding of the graphical properties of a network. Finally, Section 5, Conclusion, contains concluding remarks
and brief discussions on possible directions for further research.

2. Methodologies

Given an undirected graph G, the goal is to find an acyclic subgraph (i.e. a tree) T which contains all of the nodes
in V (G) and optimizes the objective function under consideration. Let N = |V (G)| be the number of nodes in G,
then the number of edges in a spanning tree T is |E(T )| = N − 1. Let all of the edges in E(G) be labeled from
1 to |E(G)|, then any subtree T of G can be represented by a vector of edge labels h⃗ = ⟨hi⟩ (i = 1, . . . , N − 1).
For instance, suppose that we are given the graph containing N = 5 nodes and 9 edges and the edge labels are as
shown in Fig 2A. Then, h⃗ = ⟨1, 3, 4, 6⟩ represents the tree in Fig 2B. Using this representation, we propose two
models in (4) and (5) for finding dense or sparse spanning trees:

Figure 2. Vector representation of trees. (A) Example graph with 5 nodes and 9 edges. (B) Tree represented by h⃗ =
⟨1, 3, 4, 6⟩.
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332 GLOBALLY OPTIMAL DENSE AND SPARSE SPANNING TREES

2.1. Model 1

Formulation
Herein we reduce finding dense or sparse spanning trees problem to the following general form:

min
h⃗

Objective Function(⃗h)

subject to
hi ∈ {1, 2, . . . , |E(G)|} ⊂ Z+, i = 1, . . . , N − 1,

hi ̸= hj , ∀i ̸= j,

h⃗ correspond to a connected acyclic subgraph.

(4)

The objective function in (4) could be one of the objective functions in (1)-(3). More specifically, we search
for an (N − 1)-dimensional vector h⃗ with unique integer components hi such that h⃗ represents a tree that
minimizes the objective function.
Method: Model 1, (4), is solved approximately using a well-known metaheuristic method, called Genetic
Algorithm (GA). Hence, finding an exact global optimum and corresponding global optimizer(s) is not
guaranteed. However, computational experiments show that GA, in most instances, finds global optimum
or a very close approximation of it for these types of problems. The method consists of two phases, “Pre-
optimization” and “Optimization”, described below.

Pre-optimization
1. Create adjacency matrix for G. We use the adjacency matrix to keep track of structure information

and to plot the optimal trees. To illustrate, A1 and A2 below, where A2 is a variation of A1 with
edge labels as nonzero entries, instead of 1s, are the adjacency matrix of the graph in Fig 2A.

A1 =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0
1 1 1 0 0

 A2 =


0 1 4 2 3
1 0 5 6 7
4 5 0 8 9
2 6 8 0 0
3 7 9 0 0


2. Label each edge in E(G) from 1 to |E(G)|.
3. Choose an objective function that will be minimized or maximized. Note that any maximization

problem can be written as a minimization problem by simply taking the negative of the objective
function, and vice versa.

Optimization
1. Define initial values: We first define initial values for the GA, which are population size, number of

variables and variable ranges. Setting population size higher means better chance to obtain globally
optimal solution. The number of variables depends on the number of nodes (N) as explained above.
The variable ranges depend on the number of edges since the edges are labeled from 1 to |E(G)|.

2. Construct the constraints: The first constraint is that the variables are positive integers since they
represent the labels of edges. Secondly, the variables should be unique. More specifically, the
solution vector cannot contain the same value more than once, i.e. hi ̸= hj if i ̸= j. Finally, the
vector h⃗ induces a connected acyclic subgraph. This is controlled by checking the distance between
each pair of nodes in the graph represented by h⃗. If the graph is not connected, then there exists
at least one pair of nodes with infinite distance. In such cases, objective function value of the the
corresponding h⃗ is high and will not survive, that is it will not be included in the next generation
of the GA.

The optimization problem is implemented in MATLAB and solved by using its global optimization
toolbox, i.e. the genetic algorithm function “ga” [19].
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2.2. Model 2

The formulation (4) in Model 1 is applicable not only to relatively small graphs but also to large graphs with
hundreds of nodes and edges. However, to obtain a solution for the large graphs, the population size would need
to be set very high since the dimension of the problem (depending on the numbers of nodes and edges) increases.
Hence, the complexity of the problem increases dramatically in terms of CPU time and number of iterations.

To address this issue, we modify Model 1 by reducing the feasible set in (4) to a set of minimum spanning
trees which are constructed using well-known Kruskal’s algorithm [20, 21]. The modified model, Model 2, (5) is
described below.

min
h⃗

Objective Function(⃗h∗)

subject to
hi ∈ {1, 2, . . . , |E(G)|} ⊂ Z+, i = 1, . . . , N∗,

hi ̸= hj , ∀i ̸= j,

h⃗ containing at least one edge adjacent to each v ∈ V (G),

h⃗∗ = Kruskal(⃗h).

(5)

In this model h⃗∗ denotes the minimum spanning tree obtained from h⃗, which resulted from a subset of E(G),
and N∗ is the size of h⃗. The main idea here is to find a subset h⃗ of E(G) containing at least one edge adjacent to
each node such that the minimum spanning tree h⃗∗ constructed using Kruskal’s algorithm from h⃗ has the optimal
objective function value. The advantage of this approach lies in the fact that we narrow down the search space and
reduce the cost of checking if the selected h⃗ is a tree (as it is guaranteed by the Kruskal’s algorithm). Thus, we
increase the chance of finding a solution with lower population size and consequently reduce the complexity.

The input of the Kruskal’s algorithm is a graph with weighted edges. However, if edges do not have weights,
then each edge is assigned a weight of 1. Consequently, Model 2, (5) can be applied to weighted and unweighted
graphs.

To find the solution we only need to apply the previous method to the formulation (5).

3. Results

3.1. An Introductory Example

In this subsection we provide a brief justification and an additional argument for the validity of the GA approach
described in the previous section. A good way to test our method is to apply it to graphs that contain some obvious
dense or sparse spanning trees. Indeed, among trees of the same order it is well known that the star is the densest
(maximizing the number of subtrees and minimizing the Wiener index) and the path is the sparsest. Fig 3 shows a
randomly generated undirected graph with 10 nodes and 19 edges, containing both the star and the path among its
spanning trees.

The DST of this graph, which is going to be the star, is the global optimal solution of the following Integer Linear
Programming (ILP) problem described below. The SST, which is going to be the path, is obtained by finding the
minimum of the objective function instead of the maximum. To distinguish ILP model from the proposed models
in the previous section, we use the following notation:

Suppose that G represents the undirected graph in Fig 3 with vertex set V = {vj , j = 1..nN} and edge set
E = {yi, i = 1..nE} where nN and nE are the number of nodes and edges respectively. Let Ij be the corresponding
index set of the edges that are connected to vertex vj . Our question can then be formulated as
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max
y

nE∑
k=1

yk(deg(vi) + deg(vj))

subject to

deg(vj) =
∑
i

yi, i ∈ Ij , ∀j = 1, ..., nN ,∑
i

yi ≥ 1, i ∈ Ij , j = 1, ..., nN ,∑
i

yi = nN − 1, i = 1, ..., nE ,

0 ≤ yi ≤ 1, yi, deg(vj) ∈ Z, i = 1, ..., nE , j = 1, ..., nN .

(6)

where vi and vj in the objective function are the two end nodes of yk. Solution of this problem is the vector y whose
entries, i.e. yi’s, are 1 if and only if an edge should remain in the graph and 0 if the ith edge should be removed to
obtain the densest or sparsest tree. Furthermore, each constraints are explained below:

• The first constraint evaluates the degree of each node where deg(vj) is the degree of node vj . Value of deg(vj)
depends yi values (i ∈ Ij). Recall that yi = 1 if the corresponding edge is connected to vj .

• The second constraint states that every node in the graph will be connected to at least one of the other nodes
so that resulting tree will be connected.

• The third constraint makes sure that the number of edges equals to the number of nodes - 1 so that the result
will be a tree. Furthermore, the second and third constraints together makes sure a spanning tree of the graph.

• The last constraint makes sure that the variables are integers and yj ∈ {0, 1}.

The ILP model (6) for the graph in Fig 3A, is then solved using the well known integer linear programming
solver, IBM ILOG Cplex [22], obtaining exact global optimal solution, that is the star in Fig 4. The path is obtained
by minimization version of the model.

The same graph in Fig 3A is then solved, using Model 1 and Model 2 introduced above with the choice of
different objective functions. The GA also finds optimal dense and sparse spanning trees (Fig 4) that are the star
(Fig 4A) and the path (Fig 4B), respectively. Note, as already mentioned, that minimization version of the models
lead to finding SST and maximization versions lead to finding DST. We use the simple objective function

Sp(T ) =
∑

v∈V (T )

(deg(v))p,

where p is a fixed positive real parameter, with p = 2, p = 3, and p = 1/2 for GA. In fact, the objective function
in (6) equals to Sp(T ) for p = 2. The objective values obtained by GA for different p values are summarized in
Table 1.

Although the ILP model (6) guarantees the exact global solution, formulating the model and solving it using
integer programming methods becomes increasingly more difficult and time consuming as the size of the graph
increases rendering it not practical for large graphs. On the other hand, models (4) and (5) are easier to construct
for the relatively large graphs. Furthermore, GA methodology solves these models efficiently even for large graphs
and still provides approximate solutions that are very close to the exact global solutions.
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Figure 3. The random graph with 10 nodes and 19 edges. (A) Randomly generated undirected graph (B) The
“star” highlighted in the graph, i.e. h⃗ = ⟨2, 5, 8, 9, 12, 13, 14, 15, 16⟩. (C) The “path” highlighted in the graph, i.e. h⃗ =
⟨1, 3, 7, 8, 10, 11, 16, 18, 19⟩.

Figure 4. Globally optimal solutions to (4) for each objective function. (A) The star: optimal solution to minimizing W (⃗h),
Sp=1/2(⃗h) and maximizing Sp=2,3(⃗h), i.e. h⃗ = ⟨2, 5, 8, 9, 12, 13, 14, 15, 16⟩. (B) The path: optimal solution to maximizing
W (⃗h), Sp=1/2(⃗h) and minimizing Sp=2,3(⃗h) , i.e. h⃗ = ⟨1, 3, 7, 8, 10, 11, 16, 18, 19⟩. W (⃗h) is Wiener index of the tree
corresponding to h⃗.

Stat., Optim. Inf. Comput. Vol. 8, June 2020



336 GLOBALLY OPTIMAL DENSE AND SPARSE SPANNING TREES

Table 1. Summary of the results for the graph in the Figure 3.

Dense spanning tree Sparse spanning tree
Objective function Type Objective value Type Objective value

Sp=2(⃗h) max 90 min 34
Sp=3(⃗h) max 738 min 66
Sp=1/2(⃗h) min 12 max 13.3137

For each p, both Model 1 and Model 2 are capable of finding the optimal solution for the given random graph
in Fig 3 as summarized in Table 1. However, the methods differ from each other in their efficiency, as discussed in
the previous section. More specifically, with Model 1 the solutions were found in about 210 seconds whereas with
Model 2 they were found in as quick as 55 seconds for each p (the CPU time may vary depending on the computer
specifications). The reason is due to the fact that in Model 2, we do not need to check if the optimizer h⃗ is a tree or
not by employing Kruskal’s algorithm. For this specific example Model 2 is almost 4 times faster than Model 1.

To further examine how well this approach performs, we compare it with our previously proposed heuristic
algorithm in [6]. The heuristic algorithm in [6] was applied to the US Airports data set, a connected graph of 332
vertices and 2126 edges. For the resulted dense tree, measured by the (small) value of its Wiener index, we obtained
the value of 1412038 [6]. On the other hand, when the GA Model 2 is applied, we found a denser tree with Wiener
index as low as 188200. This result indicates that our new method outperforms the previously established heuristic
algorithm.

3.2. Application to practical structures

We now apply the proposed methods with objective function Cj⃗ for j⃗ = ⟨4, 2, 2, 2⟩ which is defined in (3) and
proposed in [9]. Minimization of −Cj⃗ produces dense spanning trees whereas minimization of Cj⃗ results in
sparse spanning trees. Most of these structures are relatively large graphs, hence, we use our Model 2 in all of
the applications below.

3.2.1. Gene networks The gene network shown in Fig 5 has 93 genes and 295 interactions between them
established in the literature. For simplicity we use an undirected edge (of weight 1) to connect any pair of genes
(nodes) that have interactions. Using Model 2 with the objective function Cj⃗ for j⃗ = ⟨4, 2, 2, 2⟩, we obtain the
dense spanning tree in Fig 6A with objective value 3675370. Gene names and their associated labeles can be found
in Fig 6B.

From Fig 6, it is reasonable to predict the key roles played by CUL7 and SIRT7 in this particular network as the
corresponding nodes are connected to most other vertices. On the other hand, one may also argue that gene ACLY
plays the most important role (in this network) as it connects the two aforementioned genes. Similarly, the sparse
spanning tree in Fig 7 is produced with objective value 109258. We will discuss a more systematic analysis of this
network in a later section.

3.2.2. A brain network Next, we consider a brain network data with 91 nodes and 628 edges [23] where nodes
represent parts of the cortex and the edges represent connections between them. The original network graph is
given in Fig 8A. Model 2 was used with the objective function Cj⃗ for j⃗ = ⟨4, 2, 2, 2⟩. We obtain the dense spanning
tree in Fig 8B and the sparse spanning tree in Fig 8C.

If the high-degree nodes are highlighted in the resulted spanning trees, it is easy to identify the most central
parts of the cortex. This analysis can also be easily employed to study social networks as shown in the next two
applications.

3.2.3. Social networks When applied to a collaboration network with 379 nodes and 914 edges [23, 24] and a
re-tweet network with 96 nodes and 117 edges [23, 25] in Fig 9, our method once again produces the dense and
sparse spanning trees very quickly. As in previous example, if the high-degree nodes are highlighted, it is easy to
identify the centers of these social networks.
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Figure 5. A gene network with 93 genes and 295 interactions.

3.2.4. Road network For the last application of our method, we consider the road network of Chesapeake with
39 nodes and 170 edges [23] in Fig 10A. The nodes in this network represent some locations in Chesapeake area
while the edges represent the roads in between. The results are self-explanatory, identifying the centers of traffic in
the dense spanning tree in Fig 10B.

A summary of the above case studies is provided in Table 2. A comparison between the performance of Model
1 and Model 2 on the cases above could not be performed since the graphs are relatively large and therefore, only
Model 2 is applied.

Table 2. The objective function values of the applications.

Dense spanning tree Sparse spanning tree
Applications Objective value Objective value
Gene Network 3675370 109258
Brain Network 2932444 80012

Collaboration Network 3266670 71764
Re-tweet Network 206158 3088

Chesapeake Road Network 372688 2438
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Figure 6. Dense spanning tree of the given gene network. (A) The dense spanning tree maximizing C
j⃗

for j⃗ = ⟨4, 2, 2, 2⟩.
(B) Names and labels of each node.

Figure 7. Sparse spanning tree of the given gene network.
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Figure 8. The brain network figures. (A) The original graph. (B) The obtained dense spanning tree. (C) The obtained sparse
spanning tree. Nodes of relatively high degree are highlighted in green.

4. Discussion

In the previous section we have applied the new GA based approach to several practical problems. It is important
to note that this method is also applicable to directed graphs and graphs with certain constraints on each node for
incoming and outgoing edges.

In what follows we briefly describe how the new approach, after minor modifications, can be used to solve
similar problems to the ones discussed in the previous section.

• The k-DST: finding the dense or sparse subtree that contains exactly k vertices.
Take, for instance, the random graph in Fig 3A, and assume k = 6. Then, this problem can be solved using
two-stage GA with sufficient constraints. The first stage is to find connected subgraphs with 6 nodes.
In the second stage, we directly apply Model 1 or Model 2 to the subgraphs found in the first stage using
the chosen objective function to find the good approximation of the globally optimal dense spanning tree.
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Figure 9. The collaboration network (left) and the re-tweet network (right). (A) The original graph. (B) The obtained
dense spanning tree. (C) The obtained sparse spanning tree.

The 6-vertex dense subtree in Fig 11 is again obtained using Model 1 or Model 2 by maximizing the simple
objective function Sp=2(⃗h).

• The Steiner DST: finding the dense subtree that connects a given set of terminals.
A similar strategy used for k-DST problem can be applied in this case. We simply need to add constraints
for the terminal nodes so that they are connected in the resulting subgraphs. Then, Model 1 or Model 2 can
be applied directly.
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Figure 10. The Chesapeake road network figures. (A) The original graph. (B) The obtained dense spanning tree. (C) The
obtained sparse spanning tree.

• The DST with conflict pairs: given a collection of conflicting pairs of edges, find dense subtrees which can
contain at most one of the edges from each pair.
To illustrate this case, suppose that the edges labeled by 13 and 16 in Fig 3A are listed as the only conflicting
pair. We just need to assign very high objective values to the subgraphs containing both of these edges so
that they cannot be in the optimal solution. For this example, we have the approximate optimal solution
h⃗ = ⟨2, 5, 8, 9, 11, 12, 14, 15, 16⟩ as shown in Fig 12. Another one is h⃗ = ⟨2, 5, 8, 9, 11, 12, 13, 14, 15⟩.

• Degree constraint DST: finding the densest spanning tree where the maximum vertex degree is bounded by
a certain constant k.
We only need to add the constraint of the maximum degree to the existing set of constraints and apply Model
1 or Model 2.

As we have seen in the multiple examples above, the resulting dense or sparse trees obtained by the new approach
may not be unique. To truly understand a structure, we may recursively apply our algorithm. For example, take the
gene network in Fig 5. The practical question of interest to biologists is usually to identify the key gene or link
in the network. The dense spanning tree shown in Fig 6 seems to suggest the nodes with labels “2” and “49”, and
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Figure 11. Results from solving the 6-DST from the random graph in Fig 3. (A) The optimal solution which is a star
constructed by the 6 nodes of the graph. (B) The optimal solution colored in the graph, with h⃗ = ⟨2, 5, 8, 9, 12⟩.

Figure 12. DST with conflicting pairs. Applied to the random graph in Fig 3 where edges 13 and 16 are conflicting
pairs. (A) The solution containing the edge 16. (B) The solution colored in the graph with h⃗ = ⟨2, 5, 8, 9, 11, 12, 14, 15, 16⟩.

perhaps the node connecting them in the spanning tree, labeled “69” are the key genes. We now further examine
the structure through the following process:

(a) In the resulting dense spanning tree, identify the two nodes with the highest degree and remove the path
connecting them from the original network;

(b) Stop if the new network is disconnected; otherwise, find the dense spanning tree from the new network;
(c) Repeat steps (a) and (b) as needed.

Table 3 summarizes the result of this process with all removed high-degree nodes recorded. It is easy to see from
the data that node “10”, corresponding to gene HDAC5, is a third key gene that would not have been obvious from
the first dense spanning tree in Fig 6.

Similar process can be carried out by continuing to remove edges with the highest degree sum from their incident
vertices (in the resulting dense spanning tree) from the network until the network is disconnected. The results are
presented in the Table 4.
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Table 3. Finding key nodes in gene networks. For each pair (x, y) in column 2, x indicates node label and y is the degree
of x in the current network. In case of three nodes with the same highest degree, two are chosen randomly before the path in
between is removed.

Number of runs (Node, Degree) Removed Path
1. (2, 42), (49, 23) None (dense network in Fig 6A)
2. (2, 41), (49, 23) 2 - 69 - 49
3. (2, 40), (29, 15), (10, 13) 2 - 3 - 49
4. (2, 39), (49, 21) 2 - 71 - 29
5. (2, 38), (49, 18) 2 - 12 - 49
6. (2, 37), (49, 17), (10, 15) 2 - 4 - 49
7. (2, 36), (49, 16), (10, 15) 2 - 14 - 49
8. (2, 35), (29, 15), (10, 15) 2 - 16 - 49
9. (2, 34), (29, 15), (10, 15) 2 - 17 - 29
10. (2, 33), (49, 13), (10, 15) 2 - 19 - 29
11. (2, 32), (29, 16), (10, 15) 2 - 25 - 10
12. (2, 31), (49, 18), (10, 16) 2 - 31 - 29
13. (2, 30), (49, 17), (10, 17) 2 - 40 - 49
14. (2, 29), (49, 17), (10, 17) 2 - 55 - 49
15. (2, 28), (49, 17), (10, 18) 2 - 26 - 49
16. (2, 27), (49, 16), (10, 18) 2 - 13 - 10
17. (28, 47), (49, 20) 2 - 70 - 10
18. (28, 46), (49, 15) 28 - 9 - 49
19. (10, 28), (49, 16), (2, 15) 28 - 21 - 49
20. Network is disconnected 10 - 76 - 49

Table 4. Removing edges of high degree sum.

Number of runs Removed Edges
1. None (dense network in Fig 6A)
2. (2 - 69), (2 - 71), (49 - 69)
3. (2 - 11), (2 - 3), (3 - 49)
4. (2 - 25), (2 - 12), (12 - 49)
5. (2 - 13), (2 - 4), (4 - 49)
6. (2 - 19), (2 - 14), (14 - 49)
7. (2 - 6), (2 - 41), (6 - 10)
8. (2 - 16), (2 - 7), (7 - 10)
9. (9 - 28), (28 - 69), (49 - 76)
10. (10 - 12), (10 - 26), (26 - 49)
11. (2 - 17), (2 - 33), (17 - 28)
12. (28 - 47), (28 - 71), (71 - 29)
13. (21 - 28), (10 - 29), (28 - 45)
14. (28 - 25), (10 - 25)
15. (28 - 31), (16 - 28), (16 - 49), network is disconnected

due to removal of: (16 - 28) and (16 - 49)
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5. Conclusion

The novel use of the GA presented in this paper successfully employs the degree conditions as the new criteria to
find dense and sparse spanning trees for any connected, directed or undirected, weighted or unweighted graphs.
Compared with the previously established heuristic algorithm for the same purpose, the GA, in particular Model
2 which is enhanced by the use of Kruskal algorithm is more efficient and obtains approximate solutions that are
much closer to the optimal solutions. In addition to outperforming former algorithms, the proposed approach can
also be easily adapted to solve similar problems under various additional constraints.

We also discuss novel recursive application of the new method to obtain a deeper understanding of the graph
structure. Using gene networks as an example, our approach finds key genes in a network that were not obvious
from previous studies.

We conclude the paper with an important observation: in the above mentioned approaches, the number of runs
it takes to disconnect the network (as recorded in Tables 3 and 4) also measures how strongly the network is
connected. Hence, the “density” of a network can be measured from this novel perspective, which is more accurate
than some other simple criteria such as the number of edges.
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