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Abstract In this paper, we propose a new two-parameter biased estimator in gamma regression models when
there is collinearity among the regressors. We investigate the mean squared error properties of the newly proposed
estimator. Moreover, we provide some theorems to compare the new estimators to the existing ones. We conduct
a Monte Carlo simulation study to compare the estimators under different designs of collinearity in the sense of
mean squared error. Moreover, we provide a real data application to show the usefulness of the new estimator.
The simulations and real data results show that the proposed estimator beats other competitor estimators.
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1. Introduction

Gamma regression model is one of the widely applied models for studying several real data problems, such
as medical science, health-care economics, and automobile insurance claims,(see [12], [13] and [23]). The
gamma regression model is used when the values of the response variable under the study is positively
skewed following gamma distribution ([1], [35]).

As in linear regression model, in gamma regression model, it is assumed that there is no correlation
among the explanatory variables. In practice, however, this assumption often not holds, which leads to the
problem of multicollinearity. In the presence of multicollinearity, the maximum likelihood (ML) estimator
of the gamma regression coefficients are usually become unstable with high variance, and therefore low
statistical significance [13] and [23].

Several remedial methods have been proposed to overcome the problem of multicollinearity. The ridge
regression method was proposed by [15] and has been consistently demonstrated to be an attractive and
alternative to the ML estimation method. The ridge estimator was considered in the generalized linear
models (GLM) by [33]. Moreover, [33] and [32] considered the ridge estimator in logistic regression. [25] and
[26] were also adapted the ridge estimator in Poisson regression and negative binomial regression models,
respectively. The well-known Liu estimator [20] has been recently generalized to GLM and application
of gamma distributed response variable was demonstrated by [19]. We also refer to the following papers
for Liu regression: [36], [27], [34]. Another solution to the collinearity problem is the two-parameter
estimator [28]. This estimator was also well studied in the literature and generalized to some models
which are members of GLMs ([16], [11]). On the other hand, several estimators have been proposed for
dealing with the issue of multicollinearity in gamma regression model [24, 29, 8, 21, 9, 6, 7, 3].
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The organization of the paper is as follows: In Section 2, we propose the gamma two-parameter estimator
and investigate its mean squared error (MSE) properties. In Section 3, we conduct a Monte Carlo
simulation study to evaluate the MSE performances of used estimators in the presence of multicollinearity.
Moreover, a real data application is provided to illustrate the benefits of the new estimation technique in
Section 4. Finally, a conclusion is given in Section 5.

2. Theory and Method

Let Y1, Y2, ..., Yn be independent random variables and y1, y2, ...yn be the corresponding observations from
the gamma distribution having the following probability density function

f(yi) =
yv−1
i e−yi/τ

Γ(v)
(τ)v, yi ≥ 0 (1)

where v is the non-negative shape parameter and τ is the scale parameter such that E(Yi) = vτ = θi
which is also known as the canonical parameter and V ar(Yi) = vτ2 = 1/(vθ2i ), θi = exp

(
x⊤
i β

)
where

xi = (xi1, xi2, ..., xip)
⊤, i = 1, 2, ..., n and j = 1, 2, ..., p where n is the sample size and p is the number

of explanatory variables (n > p). Generally, the maximum likelihood estimation is used to obtain the
parameters. To do so, the following log-likelihood function should be maximized with respect to β

l (β) =

n∑
i=1

[(v − 1) log(y)− y/τ − v log(τ)− log(Γ(v))] . (2)

Since the obtained equations are nonlinear in β, we should use some iterative methods to get the solutions.
Therefore, by using the Fisher Scoring method, the following iterations can be defined

βt+1 = βt −
{
E [Hl(β)]β=βt

}−1
[
∂l(β)

β

]
β=βt

(3)

where Hl(β) = − 1
ϕX

⊤WX is the Hessian matrix such that ϕ = 1/v is the dispersion parameter and

∂l(β)

β
= ϕ

n∑
i=1

[
yi

(x⊤
i β)

2
− 1

]
xi. (4)

Therefore, Equation (3) can be written as

βt+1 = βt −
{(

X⊤ŴX
)−1

X⊤Ŵ ẑ

}
β=βt

(5)

where Ŵ = diag
(
θ2i
)

and the ith element of the vector ẑ becomes ẑi = θ̂i +
yi−θ̂i
θ̂2
i

. This iterative

process continues until the successive estimates converges to, say, β̂MLE, then we obtain β̂MLE =(
X⊤ŴX

)−1

X⊤Ŵ ẑ where Ŵ and ẑ are computed at the final iteration.

It is well-known that the covariance matrix of β̂MLE, Cov(β̂MLE) = ϕ
(
X⊤ŴX

)−1

, may be ill-
conditioned so that the variance of the regression coefficients is inflated (see [33], [22]). The mean squared
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error (MSE) of MLE is given by

MSE
(
β̂MLE

)
= E

(
β̂MLE − β

)⊤ (
β̂MLE − β

)
= tr

[
ϕ
(
X⊤ŴX

)−1
]

= ϕ

p∑
j=1

1

λj
(6)

where λj is the jth eigenvalue of the matrix C = X⊤ŴX and tr(.) is the trace of a matrix. Moreover,
the eigenvalue decomposition of the matrix C is also considered as follows: C = QΛQ⊤ such that Q is
the orthogonal matrix consisting of the eigenvectors corresponding to the eigenvalues of C such that
Λ = diag (λ1, λ2, . . . , λp). It is easy to see that if one or some of the eigenvalues are close to zero, then
the MSE of MLE becomes inflated and thus the regression coefficients are affected negatively from this
situation.

2.1. Gamma Ridge Estimator
The well-known ridge estimator was proposed by [33] in the generalized linear models. [2] adapted the
ridge estimator to the gamma regression models. The author defined the gamma ridge estimator (GRE)
as follows

β̂k = (C + kI)
−1

X⊤Ŵ ẑ

bGRE = C−1
k Cβ̂MLE (7)

where k > 0, C = X⊤ŴX and Ck = (C + kI). The covariance matrix and bias vector of GRE can be
obtained respectively by

Cov
(
β̂k

)
= ϕC−1

k CC−1
k (8)

bGRE = bias
(
β̂k

)
= −kCkβ (9)

Thus, matrix MSE (MMSE) and MSE of GRE are obtained as

MMSE
(
β̂k

)
= Cov

(
β̂k

)
+ bGREb

⊤
GRE

= ϕC−1
k CC−1

k + k2C−1
k ββ⊤C−1

k (10)

MSE
(
β̂k

)
= tr

[
MMSE

(
β̂k

)]
= ϕ

p∑
j=1

λj

(λj + k)
2 + k2

p∑
j=1

α2
j

(λj + k)
2 (11)

where α = Q⊤β.

2.2. Gamma Liu Estimator
Another popular estimator which is known as Liu estimator has been adopted to the generalized linear
models by [19] and the authors considered the gamma dependent variable to study the performance of Liu
gamma estimator via Monte Carlo simulation study and real data application. The gamma Liu estimator
(GLE) is defined as

β̂d = Fdβ̂MLE (12)
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where Fd = (C + I)
−1

(C + dI) and 0 < d < 1. The covariance matrix and bias vector of GLE can be
obtained respectively by

Cov
(
β̂d

)
= ϕFdC

−1F⊤
d (13)

bGLE = bias
(
β̂d

)
= −(1− d) (C + I)

−1
β. (14)

Using the covariance and bias of GLE, one can obtain the following MMSE and MSE functions
respectively

MMSE
(
β̂d

)
= Cov

(
β̂d

)
+ bGLEb

⊤
GLE

= ϕFdC
−1F⊤

d + (1− d)2 (C + I)
−1

ββ⊤ (C + I)
−1 (15)

MSE
(
β̂d

)
= tr

[
MMSE

(
β̂d

)]
= ϕ

p∑
j=1

(λj + d)
2

λj (λj + 1)
2 + (1− d)2

p∑
j=1

α2
j

(λj + 1)
2 . (16)

2.3. Gamma Two-parameter Estimator
In this paper, we propose to adopt the estimator defined by [28] in the gamma regression model, we call
this estimator as gamma two-parameter estimator (GTPE) which is defined as follows

β̂(k,d) = Ck
−1Ckdβ̂MLE

= Fkdβ̂MLE (17)

where 0 < d < 1, k > 0, Ck = C + kI, Ckd = C + kdI and Fkd = Ck
−1Ckd. We obtain the covariance matrix

and bias vector of GTPE as

Cov
(
β̂(k,d)

)
= ϕFkdC

−1F⊤
kd (18)

bGLTE = bias
(
β̂(k,d)

)
= k(d− 1)Ck

−1β. (19)

Therefore, MMSE and MSE functions of GTPE are respectively computed as

MMSE
(
β̂(k,d)

)
= Cov

(
β̂(k,d)

)
+ bGLTEb

⊤
GLTE

= ϕFkdC
−1F⊤

kd + k2(d− 1)2Ck
−1ββ⊤Ck

−1 (20)

MSE
(
β̂(k,d)

)
= tr

[
MMSE

(
β̂(k,d)

)]
= ϕ

p∑
j=1

(λj + kd)
2

λj (λj + k)
2 + k2(d− 1)2

p∑
j=1

α2
j

(λj + k)
2 . (21)

2.4. Theoretical Comparisons Between Estimators
In this subsection, we provide some theorems comparing the MSE and MMSE functions of the listed
estimators. To do so, we consider the MSE and MMSE differences and investigate under which conditions
they are positive definite. If a matrix A is positive definite, then we write A > 0.

Now, we will present three lemmas and use them to prove some of the theorems given in this section.
Lemma 1
[14] Suppose that M be a positive definite matrix, namely M > 0, α be some vector, then M − αα⊤ ≥ 0
if and only if α⊤M−1α ≤ 1.
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Lemma 2
[31] Let M > 0, N > 0, then M > N , if and only if ηmax

(
NM−1

)
< 1, where ηmax (A) is the maximum

eigenvalue of some matrix A.
Lemma 3
[31] Let β̂j = Ajy, j = 1, 2 be two competing estimator of β. Assume that ∆ = Cov

(
β̂1

)
− Cov

(
β̂2

)
> 0,

then MSEM
(
β̂1

)
−MSEM

(
β̂2

)
> 0 if and only if u⊤

2

(
∆+ u1u

⊤
1

)−1
u2 ≤ 1, where uj denotes the bias

of β̂j .
In the next theorem, we compare MLE and GTPE using the MMSE functions.

Theorem 1
When ηmax

(
FkdC

−1F⊤
kdC

)
< 1 the new estimator GTPE is superior to MLE in the sense of MMSE if and

only if b⊤GLTED
−1
1 bGLTE < 1, where D1 = Cov

(
β̂MLE

)
− Cov

(
β̂(k,d)

)
.

Proof
Let us consider the following MMSE difference

∆1 = MMSE
(
β̂MLE

)
−MMSE

(
β̂(k,d)

)
= ϕ

(
C−1 − FkdC

−1Fkd

)
− bGLTEb

⊤
GLTE (22)

Since the matrices C−1 and FkdC
−1F⊤

kd are positive definite then by Lemma 2, D1 = C−1 − FkdC
−1Fkd > 0

if ηmax

(
FkdC

−1FkdC
)
< 1. Then, by Lemma 1, ∆1 > 0 if and only if b⊤GLTED

−1
1 bGLTE < 1. Thus, the proof

is finished.

Theorem 2
The new estimator GLTE is superior to MLE in the sense of MSE if min

{
2ϕλj

λjα2
j −ϕ

}p

j=1
> k(1− d) where

k > 0 and 0 < d < 1.

Proof
The MSE differences of MLE and GTPE is given as

MSE
(
β̂MLE

)
−MSE

(
β̂(k,d)

)
= ϕ

p∑
j=1

1

λj
−

{
ϕ

p∑
j=1

(λj + kd)
2

λj (λj + k)
2 + k2(d− 1)2

p∑
j=1

α2
j

(λj + k)
2

}

=

p∑
j=1

1

λj (λj + k)
2

{
ϕ
[
(λj + k)

2 − (λj + kd)
2
]
− k2(d− 1)2λjα

2
j

}
=

p∑
j=1

k (1− d)

λj (λj + k)
2

{
2ϕλj + ϕk(1− d)− k(1− d)λjα

2
j

}
(23)

The Equation (23) becomes positive if 2ϕλj + ϕk(1− d)− k(1− d)λjα
2
j > 0 which is satisfied if we have

min
{

2ϕλj

λjα2
j −ϕ

}p

j=1
> k(1− d). Thus, the proof is finished.

In the next two theorems, we provide the conditions that GTPE is superior to GRE in both MMSE
and MSE sense respectively.
Theorem 3
When ηmax

(
FkdC

−1CkdC
−1Ck

)
< 1, the new estimator GTPE is superior to GRE in the sense of MMSE

if and only if b⊤GLTE

[
D2 + bGREb

⊤
GRE

]
bGLTE ≤ 1 where D2 = CkC

−1Ck − FkdC
−1Fkd.
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Proof
Now, consider the difference of MMSE functions of GRE and GTPE

∆2 = MMSE
(
β̂k

)
−MMSE

(
β̂(k,d)

)
= ϕ

(
CkCCk − FkdC

−1F⊤
kd

)
+ bGREb

⊤
GRE − bGLTEb

⊤
GLTE (24)

Since CkCCk and FkdC
−1F⊤

kd are positive definite, then by Lemma 2, when

ηmax

(
FkdC

−1Fkd [CkCCk]
−1

)
= ηmax

(
FkdC

−1CkdC
−1Ck

)
< 1,

D2 = CkC
−1Ck − FkdC

−1Fkd > 0. Therefore, by Lemma 3, b⊤GLTE

[
D2 + bGREb

⊤
GRE

]
bGLTE ≤ 1 if and only

if ∆2 > 0. The proof is completed.

Theorem 4
The new estimator GTPE is superior to GRE in the sense of MSE

• if d > 0 and min
{

ϕ(2λj−d)

λjα2
j

}p

j=1
> d+ 2k or

• if d < 0 and max
{

ϕ(2λj−d)

λjα2
j

}p

j=1
< d+ 2k.

where k > 0.

Proof
The MSE differences of GRE and GTPE is obtained as

MSE
(
β̂k

)
−MSE

(
β̂(k,d)

)
=

p∑
j=1

{
ϕλj

(λj + k)
2 +

k2α2
j

(λj + k)
2

}
−

p∑
j=1

{
ϕ (λj + kd)

2

λj (λj + k)
2 +

k2(1− d)2α2
j

(λj + k)
2

}

=

p∑
j=1

1

λj (λj + k)
2

{
ϕλ2

j − ϕ (λj + kd)
2
+ k2λjα

2
j − k2(1− d)2λjα

2
j

}
=

p∑
j=1

1

λj (λj + k)
2

{
k2dλjα

2
j (2− d)− ϕkd (2λj − kd)

}
. (25)

Thus, Equation (25) becomes positive if k > max

{
2ϕλj

2λjα2
j+d(ϕ−λjα2

j)

}p

j=1

.

Finally, in the next theorem, we obtain the conditions that GTPE is better than GLE in the sense of
MMSE.

Theorem 5
When µmax

(
FkdC

−1Fkd
⊤ [

FdC
−1F⊤

d

]−1
)
< 1, the new estimator GTPE is better than GLE in MMSE

sense if b⊤GLTE

[
D3 + bGLEb

⊤
GLE

]
bGLTE ≤ 1 where D3 = FdC

−1F⊤
d − FkdC

−1Fkd
⊤.

Proof
Consider the following MMSE difference

∆3 = MMSE
(
β̂d

)
−MMSE

(
β̂(k,d)

)
= ϕ

(
FdC

−1F⊤
d − FkdC

−1Fkd
⊤)+ bGLEb

⊤
GLE − bGLTEb

⊤
GLTE (26)
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Since FdC
−1F⊤

d and FkdC
−1Fkd

⊤ are positive definite, then by Lemma 2, when

µmax

(
FkdC

−1Fkd
⊤ [

FdC
−1F⊤

d

]−1
)
< 1

D3 = FdC
−1F⊤

d − FkdC
−1Fkd

⊤ > 0. Therefore, by Lemma 3, b⊤GLTE

[
D3 + bGLEb

⊤
GLE

]
bGLTE ≤ 1 if and

only if ∆3 > 0. The proof is completed.

2.5. Selection of the biasing parameters k and d
In order to obtain less MSE values and efficient regression coefficients, one needs to estimate the
parameters of GTPE accordingly. Following [15] and [10], the values of k and d may be chosen iteratively
as follows: Firstly, taking derivative of Equation (21) with respect to the parameter k and equating the
resulting quantity to zero then one obtains the following

∂MSE
(
β̂(k,d)

)
∂k

= 2

p∑
j=1

ϕ (λj + kd) (d− 1) + k(d− 1)2λjα
2
j

(λj + k)
3 = 0. (27)

As in [15] and [17], it is possible to equate the numerator of Eq. (27) to zero and solve for each individual
parameter as

kj =
ϕλj

(1− d)λjα2
j − ϕd

(28)

where j = 1, 2, ...p. Since each kj should be positive, we can obtain a condition such that 0 < d < 1 by

d < min

{
λjα

2
j

ϕ+ λjα2
j

}
. (29)

Now, after obtaining an estimate of d using Eq. (29), it is easy to compute the individual parameters
kj ’s. However, we only need an estimate of the parameter k. Therefore, following [10], we propose the
following estimators of k:

• k1 = 1
p

∑p
j=1

{
ϕλj

(1−d)λjα2
j−ϕd

}
which is the arithmetic mean of kj ’s.

• k2 = median
{

ϕλj

(1−d)λjα2
j−ϕd

}
• k3 = min

{
ϕλj

(1−d)λjα2
j−ϕd

}
• k4 = max

{
ϕλj

(1−d)λjα2
j−ϕd

}
• k5 =

{∏p
j=1

{
ϕλj

(1−d)λjα2
j−ϕd

}} 1
p which is the geometric mean of kj ’s.

3. Monte Carlo Simulation

In this section, a Monte Carlo simulation experiment is used to examine the performance of GTPE with
different degrees of multicollinearity.

3.1. Simulation design
The response variable of n observations from gamma regression model is generated by

yi ∼ Gamma(θi, 1.5), (30)
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where θi = exp(x⊤
i β), β = (β1, ..., βp) with

p∑
j=1

β2
j = 1 and β1 = β2 = ... = βp [17]. The explanatory variables

x⊤
i = (xi1, xi2, ..., xin) have been generated from the following formula

xij = (1− ρ2)1l2wij + ρwip, i = 1, 2, ..., n, j = 1, 2, ..., p, (31)

where ρ represents the correlation between the explanatory variables and w′
ijs are independent standard

normal pseudo-random numbers. Because the sample size has direct impact on the prediction accuracy,
three representative values of the sample size are considered: 50, 100 and 150. In addition, the number of
the explanatory variables is considered as p = 4 and p = 8 because increasing the number of explanatory
variables can lead to increase the MSE. Further, since we are interested in the effect of multicollinearity, in
which the degrees of correlation considered to be more important, three values of the pairwise correlation
are taken into account such that ρ = {0.90, 0.95, 0.99}. For a combination of these different values of n, p
and ρ the generated data is repeated 1000 times. For each replication, the MSE is calculated as

MSEi

(
β̂
)
=

(
β̂ − β

)⊤ (
β̂ − β

)
, i = 1, 2, ..., 1000, (32)

where β̂ is defined as

• β̂MLE

• β̂k with k̂ = ϕ̂
α̂T α̂

, α̂j = Q⊤β̂MLE and ϕ̂ is the estimated dispersion parameter which is computed as

ϕ̂ = (n− p)−1
n∑

i=1

(yi − µ̂i/µ̂i )
2, (Pearson residual [18]).

• β̂d with an optimal d value as in [27], d = max(0,max(λj(α̂
2
j − ϕ̂)/(ϕ̂+ λjα̂

2
j ))).

• β̂(k,d) with the optimal d (Eq. (29)) after substituting k = k̂ , λj = λ̂j , αj = α̂j , and ϕ = ϕ̂.

The averaged performance from 1000 simulations are summarized in terms of the MSE. All the
computations are done using R programming language [30].

3.2. Simulation results
The average MSE values of the MLE, GRE, GLE, and GTPE are presented in Tables 1-3 for n = 50,
n = 100, and n = 150, respectively. We may observe that the MSE of GTPE in all situations of selecting
k is less than the other used estimators, which clearly shows that the GTPE outperforms the MLE, GRE,
and GLE in all of the cases. It is clearly seen that the optimal selection k3 in GTPE works fine comparing
with k1, k2, k4, and k4 with respect to MSE.

Further, the MSE values clearly increase when p increases. However, there is a clear advantage of the
GTPE over the other competitor estimators. In addition, it is clear that increasing the n values leading
to decreasing in MSE. For the large n, however, there is a clear advantage of using the GTPE.

Regarding the degree of correlation, the MSE increases monotonously when the correlation between
the explanatory variables increasing. The GTPE again outperforms the MLE, GRE, and GLE.

4. A Real Data Application

To further demonstrate the usefulness of the GLTE in real application, we present here a chemistry
dataset with (n, p) = (65, 15), where n is representing the number of imidazo[4,5-b]pyridine derivatives,
which are used as anticancer compounds. While, p is denoting the number of molecular descriptors,
which are treated as explanatory variables [4]. The response of interest is the biological activities (IC50).
Quantitative structure-activity relationship (QSAR) study has become a great deal of importance in
chemometrics. The principle of QSAR is to model several biological activities over a collection of chemical
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Table 1. Averaged MSE values when n = 50

p ρ MLE GRE GLE GTPE
k1 k2 k3 k4 k5

4 0.90 4.311 4.091 1.834 1.138 1.379 1.126 1.148 1.412
0.95 4.567 4.394 1.954 1.159 1.411 1.142 1.163 1.444
0.99 6.993 4.737 2.283 1.181 1.439 1.146 1.168 1.472

8 0.90 4.348 4.746 1.874 1.245 1.488 1.243 1.265 1.521
0.95 4.891 4.843 1.987 1.253 1.569 1.255 1.276 1.602
0.99 10.417 4.877 2.775 1.255 1.605 1.259 1.28 1.638

Table 2. Averaged MSE values when n = 100

p ρ MLE GRE GLE GTPE
k1 k2 k3 k4 k5

4 0.90 4.281 4.071 1.814 1.118 1.359 1.106 1.128 1.392
0.95 4.547 4.374 1.934 1.14 1.391 1.122 1.143 1.425
0.99 6.973 4.717 2.264 1.161 1.419 1.127 1.148 1.452

8 0.90 4.328 4.726 1.854 1.225 1.468 1.224 1.245 1.501
0.95 4.871 4.823 1.967 1.233 1.549 1.235 1.257 1.583
0.99 10.398 4.858 2.755 1.235 1.585 1.239 1.261 1.618

Table 3. Averaged MSE values when n = 150

p ρ MLE GRE GLE GTPE
k1 k2 k3 k4 k5

4 0.90 4.228 4.018 1.761 1.066 1.306 1.054 1.075 1.34
0.95 4.495 4.322 1.881 1.087 1.339 1.069 1.091 1.372
0.99 6.921 4.664 2.211 1.108 1.366 1.074 1.095 1.404

8 0.90 4.275 4.673 1.802 1.172 1.415 1.171 1.192 1.448
0.95 4.818 4.771 1.914 1.182 1.497 1.183 1.204 1.532
0.99 10.345 4.805 2.702 1.182 1.532 1.186 1.208 1.565

compounds in terms of their structural properties [5]. Consequently, using of multiple regression model is
one of the most important tools for constructing the QSAR model. A description of the used explanatory
variables is provided in Table 4. All the variables are numerical.

First, to check whether the response variable belongs to the gamma distribution, Chi-square test is
used. The result of the test equals to 9.3657 with p-value equals to 0.4534. It is indicated form this result
that the gamma distribution fits very well to this response variable.

Second, to check whether there is a relationship among the explanatory variables or not, Figure 1
displays the correlation matrix among the 15 explanatory variables. It is obviously seen that there are
correlations greater than 0.90 among MW, SpMaxA_D, and ATS8v (r = 0.96), between SpMax3_Bh(s)
and ATS8v (r = 0.92), and between Mor21v and Mor21e (r = 0.93).

Third, to test the existence of multicollinearity, the eigenvalues of the matrix X⊤ŴX are obtained
as 2.14× 109,3.85× 106, 2.42× 105, 1.26× 104, 1.29× 103, 2.14× 109,9.01× 102, 4.71× 102, 1.71× 102,
5.93× 101, 3.24× 101, 2.77× 101, 1.78× 101, 9.56, and 1.23. The determined condition number CN =√

λmax/λmin of the data is 41652.77 indicating that the severe multicollinearity issue exists.
The estimated gamma regression coefficients and MSE values for the MLE, GRE, GLE, and GTPE

using k3 estimators are listed in Table 5. According to Table 5, it is clearly seen that the GTPE shrinkages
the value of the estimated coefficients efficiently. Additionally, in terms of the MSE, there is an important
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Table 4. Description of the used explanatory variables

Variable name’s description
MW molecular weight
IC3 Information Content index (neighborhood symmetry of 3-order)
SpMaxA_D normalized leading eigenvalue from topological distance matrix
ATS8v Broto-Moreau autocorrelation of lag 8 (log function) weighted by van der Waals volume
MATS7v Moran autocorrelation of lag 7 weighted by van der Waals volume
MATS2s Moran autocorrelation of lag 2 weighted by I-state
GATS4p Geary autocorrelation of lag 4 weighted by polarizability
SpMax8_Bh(p) largest eigenvalue n. 8 of Burden matrix weighted by polarizability
SpMax3_Bh(s) largest eigenvalue n. 3 of Burden matrix weighted by I-state
P_VSA_e_3 P_VSA-like on Sanderson electronegativity, bin 3
TDB08m 3D Topological distance based descriptors - lag 8 weighted by mass
RDF100m Radial Distribution Function - 100 / weighted by mass
Mor21v signal 21 / weighted by van der Waals volume
Mor21e signal 21 / weighted by Sanderson electronegativity
HATS6v leverage-weighted autocorrelation of lag 6 / weighted by van der Waals volume

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
M
W

IC
3

S
pM
ax
A
_D

AT
S
8v

M
AT
S
7v

M
AT
S
2s

G
AT
S
4p

S
pM
ax
8_
B
h.
p.

S
pM
ax
3_
B
h.
s.

P
_V
S
A
_e
_3

TD
B
08
m

R
D
F1
00
m

M
or
21
v

M
or
21
e

H
AT
S
6v

MW

IC3

SpMaxA_D

ATS8v

MATS7v

MATS2s

GATS4p

SpMax8_Bh.p.

SpMax3_Bh.s.

P_VSA_e_3

TDB08m

RDF100m

Mor21v

Mor21e

HATS6v

1 0.86

1

0.96

0.89

1

0.96

0.86

0.96

1

0.67

0.66

0.6

0.65

1

−0.29

−0.51

−0.31

−0.23

−0.36

1

−0.36

−0.21

−0.25

−0.26

−0.48

0.01

1

0.85

0.72

0.86

0.92

0.49

−0.07

−0.25

1

0.14

0.11

0.17

0.16

0

0.41

−0.06

0.18

1

0.77

0.61

0.63

0.67

0.54

−0.23

−0.54

0.6

0.03

1

0.29

0.02

0.1

0.23

0.2

0.16

−0.39

0.31

0.21

0.49

1

0.61

0.49

0.54

0.6

0.41

−0.17

−0.35

0.55

0.07

0.57

0.48

1

−0.72

−0.6

−0.78

−0.8

−0.4

0.08

0

−0.75

−0.05

−0.3

0.02

−0.43

1

−0.78

−0.62

−0.82

−0.83

−0.46

0.09

0.11

−0.79

−0.06

−0.39

−0.02

−0.4

0.93

1

0.15

0.3

0.06

0.05

0.49

−0.56

−0.14

−0.15

−0.12

0.24

0.04

0.1

0.19

0.19

1

Figure 1. Correlation matrix of the real data.

reduction in favor of the GTPE. Specifically, it can be seen that the MSE of the GTPE was about 46.11%,
31.09%, and 26.40% lower than that of MLE, GRE, and GLE, respectively.

5. Conclusion

In this paper, gamma two-parameter estimator is proposed to overcome the multicollinearity problem
in the gamma regression model. According to Monte Carlo simulation studies, the GTPE has better
performance than MLE, GRE, and GLE estimators, in terms of MSE. Additionally, a real data application
is also considered to illustrate benefits of using the GTPE in the context of gamma regression model.
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Table 5. The estimated coefficients and MSE values of the listed estimators

MLE GRE GLE GTPE (k3)
β̂MW 1.0383 0.7773 0.8713 0.7703
β̂IC3 1.2733 1.0133 1.1063 1.0053
β̂SpMaxA_D -1.0657 -1.3267 -1.2327 -0.8657
β̂ATS8v -1.3427 -1.6037 -1.5097 -1.1427
β̂MATS7v -1.1827 -1.4437 -1.3497 -0.9827
β̂MATS2s -1.1787 -1.4397 -1.3457 -0.9787
β̂GATS4p -1.2007 -1.4617 -1.3687 -1.0007
β̂SpMax8_Bh(p) 2.5423 2.2813 2.3753 2.7433
β̂SpMax3_Bh(s) 2.1053 1.8443 1.9383 2.3053
β̂P_VSA_e_3 2.0373 1.7753 1.8693 2.2363
β̂TDB08m -2.0667 -2.3287 -2.2337 -1.8667
β̂RDF100m 1.6073 1.3453 1.4393 1.8063
β̂Mor21v -2.3977 -2.6587 -2.5647 -2.1987
β̂Mor21e -2.3157 -2.5767 -2.4827 -2.1157
β̂HATS6v 2.2473 1.9863 2.0803 2.4473
MSE 4.075 3.187 2.984 2.196

The superiority of the GTPE based on the resulting MSE was observed and it was shown that the results
are consistent with Monte Carlo simulation results. In conclusion, the use of the GTPE is recommended
when multicollinearity is present in the gamma regression model.
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