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The Location Parameter Estimation of Spherically Distributions with Known
Covariance Matrices
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Abstract This paper presents shrinkage estimators of the location parameter vector for spherically symmetric distributions.
We suppose that the mean vector is non-negative constraint and the components of diagonal covariance matrix is known. We
compared the present estimator with natural estimator by using risk function. We show that when the covariance matrices are
known, under the balance error loss function, shrinkage estimator has the smaller risk than the natural estimator. Simulation
results are provided to examine the shrinkage estimators.
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1. Introduction

Shrinkage estimation is a method that a naı̈ve or target estimator is improved, in some sense, by combining it
with other information. Location parameter estimation is an important issue in the context of shrinkage estimation,
specially when some components of location vector-parameter are restricted to be situated in a space.

Casella and Strawderman [4] and Bickel [1], studied the problem of location estimation under the mean
constraint |θ| ≤ m in the univariate normal distribution. Also Gatsonis, et al., [11] considered the Bayes estimator
of the restricted normal mean under the same constraint. Kariya [16], Perron and Giri [26] and Marchand [18],
proposed the best equivariant estimator of the mean θ in the spherical distribution under the local constraint
∥θ∥ = (θ′θ)1/2 = λ0. Afterward [20] constructed a restricted estimator for the mean of the multivariate normal
distribution when both mean vector µ and matrixcovariance Σ were unknown; by adopting a constraint of the form
µ′Σ−1µ = λ0. Marchand and Giri [19] took the class of James-Stein type estimators and extended the estimation
of the restricted mean in the class of variance mixture of normal distributions.

Fourdrinier and Ouassou [6] initiated the restricted estimation problem of the mean for the general spherical
model, heuristically within the context of extra observation, by means of considering the spherically symmetric
distributed observation (X,U) around a vector of the form (θ, 0) with dim X = dim θ = p and dim U = dim
0 = k. Wan et al. [30] obtained minimax and Γ-minimax estimators in the Poisson distribution when the parameter
space was restricted by an interval, i.e., θ ∈ [0, β], β > 0. Again Fourdrinier et al. [7], interestingly considered the
restricted estimation in the latter specified general spherical model, under three different constraints. Innovative
approaches in the context of restricted models continued by the work of Marchand and Strawderman [23] for
location families with densities of the form f0(x− θ). They actually dealt with a lower bound constraint of the
form θ > a, while Marchand and Perron [22] extended the result for spherically symmetric distribution under
constrained parameter space Θ(m) = {θ ∈ Rp : ∥θ∥ ≤ m for some fixed m > 0}. Further Fourdrinier et al. [8]
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took the estimation of location parameter into account with restrictions, for spherically symmetric distributions.
Fourdrinier and Marchand [9] studied a constraint of the form

∑p
i=1

(θi−τi)
2

σ2 ≤ m2, with known τ1, . . . , τp, σ2,
and m for observation Xi ∼ N(θi, σ

2), i = 1, . . . , p on spheres of radius α centered at (τ1, . . . , τp). More recently
Kortbi and Marchand [17] exhibited a truncated linear estimator for the constraint ∥θ∥ ≤ m, in the multivariate
normal model and Marchand and Strawderman [24] developed a unified approach for minimax estimation for
restricted parameter space. Karamikabir et al. [14] developed a dominant class of Baranchik-type shrinkage
estimators under the balance loss function, when the mean vector is restricted to lie in a non-negative hyperplane.
Finally Karamikabir and Afshari [15] provided admissible and minimax estimator for p-variate normal distribution
based on shrinkage soft wavelet estimator.

For more details on this topic, see van Eeden [25], Marchand and Strawderman [21], Silvapulle and Sen [29]
and Fourdrinier et al. [10].

Fourdrinier et al. [7] estimated a location parameter vector when some components are non-negative under
quadratic loss function.

This short note is the generalization of Fourdrinier et al. [7] under balance loss function.
The paper is outlined as follows:
In Section 2 we consider the spherical distribution under balance loss function. Section 3 provide shrinkage
estimation of non-negative mean vector under balance loss function with known covariance. The performance
of shrinkage estimations are investigated by a simulation study in Section 4. Finally, In Section 5, we offer some
concluding remarks.

2. Preliminaries

In this section we consider the spherical distribution. We investigated the natural and Baranchik type of shrinkage
estimator under balance loss function. Some examples of spherical distributions are multivariate normal distribution
(Np(0, σ

2Ip)), ε-contaminated normal distribution and multivariate t distribution.

In Figure 1, the density function and countour plot of some distributions for µ = (0, 0)T and σ2Ip =

[
2 0
0 2

]
is

plotted. The contour plot of spherical distribution are circular shape. That’s why spherical distribution also called
spherically contoured distribution.

We wish to estimate θ = (θ1, . . . , θp)
T by δ = (δ1, . . . , δp)

T under the balance loss function:

Lω,δ0(θ, δ) = ω∥δ − δ0∥2 + (1− ω)∥δ − θ∥2, 0 ≤ ω < 1. (1)

where δ0 ia a target estimator. The special case of the balanced error loss function is quadratic loss when
ω = 0. The balance loss function was introduced by Zellner [31] to reflect two criteria: goodness of fit and
precision of estimation. Then the associated risk function with respect to equation (1), will be denoted by
R(θ, δ) = Eθ

[
L(θ, δ)

]
. In the context of balance loss function, recently Cao [2], Hu [13], He and Wu [12], Zinodiny

et al. [32], Peng et al. [27], Cao and He [3] and Zinodiny et al. [33] have been working on the balance loss function.
Assume (X,U) is a p+ k random vector having a spherically symmetric distribution around the p+ k vector

(θ, 0) , dim X = dim θ = p and dim U = dim 0 = k. Further, suppose that the scalar variational component σ2 is
known which will be posed to X .

We will propose the result for the cases where a subset of θi ≥ 0, i = 1, . . . , p are non-negative, i.e., θ1 ≥ 0, θ2 ≥
0, . . . , θq ≥ 0 and that θq+1, θq+2, . . . , θp are unrestricted. Suppose we define λq(X) for j = 1, 2, . . . , q as follows:

λq(X) =

{
−Xj , Xj < 0,

0, Xj ≥ 0,
(2)

and λq(X) = 0 if j > q.
In this setting, we consider natural and Baranchik type of shrinkage estimator respectively

δq(X) = X + λq(X). (3)
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Figure 1. density function and countour plot of some spherical distributions

δq(X,U) = X + λq(X) + UTUg(X). (4)

where g(X) is defined as follows:

g(X) = −c r(∥X∥2)
∥X∥2

X. (5)

for some constant c. Furthermore, suppose that the function r : R+ → [0, 1] is twice differentiable and concave.

3. Main Result

In this section we investigate the domination conditions in order that the specified shrinkage estimators outperform
the natural ones in some restrictions. Until the end of the paper, we consider unimodal spherical distributions. We
suppose that target estimator δ0 as the following type:

δ0(X) = X + (1− ω)λq(X). (6)
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We will now be able to express the difference in risk (risk difference) as follows:

∆R = ∆Rω,δ0(θ, δ) = Rω,δ0(θ, δq(X,U))−Rω,δ0(θ, δq(X))

= Eθ

[
ω
(
∥δq(X,U)− δ0∥2 − ∥δq(X)− δ0∥2

)
+(1− ω)

(
∥δq(X,U)− θ∥2 − ∥δq(X)− θ∥2

) ]
= Eθ

[
ω
(
∥X + λq(X) + UTUg(X)− δ0∥2 − ∥X + λq(X)− δ0∥2

)
+(1− ω)

(
∥X + λq(X) + UTUg(X)− θ∥2 − ∥X + λq(X)− θ∥2

) ]
= Eθ

[ (
UTU

)2 ∥g(X)∥2 + 2(1− ω)UTUgT (X)(X − θ)

+2(1− ω)UTUgT (X)λq(X)

+2ωUTUgT (X) (X + λq(X)− δ0)
]
. (7)

Now by replacing estimator δ0(X) in (7), we present the notation of risk difference as follows.

∆R = Eθ

[ (
UTU

)2 ∥g(X)∥2 + 2(1− ω)UTUgT (X)(X − θ)

+2(1− ω)UTUgT (X)λq(X)− 2ω2UTUgT (X)λq(X)
]

= Eθ

[ (
UTU

)2 ∥g(X)∥2 + 2(1− ω)UTUgT (X)(X − θ)

+2(1− ω + ω2)UTUgT (X)λq(X)
]
. (8)

The second term of the expectation in equation (8), depends on θ. To solve this problem, we use the following
lemmas for the multivariate spherical distribution and the special case multivariate normal distribution.

Lemma 1
For every weakly differentiable function g : Rp → Rp, for every integer q and for every θ ∈ Rp we have

Eθ[(U
TU)qg(X)T (X − θ)] =

1

k + 2q
Eθ[(U

TU)q+1∇ · g(X)],

provided these expectations exist.

Proof
See Fourdrinier and Strawderman [5].

Lemma 2
Suppose that X ∼ Np(θ, σ

2Ip) and g : Rp → Rp with known σ2, then

Eθ[(X − θ)T g(X)] = σ2E[∇ · g(X)].

Proof
See Stein [28].

Taking q = 1 in Lemma 1, for weakly differentiable function g, the risk difference in equation (8) becomes as the
following:

∆R = Eθ[
(
UTU

)2 ∥g(X)∥2 + 2(1− ω)

k + 2
(UTU)2∇ · g(X)

+2(1− ω + ω2)UTUgT (X)λq(X)]. (9)
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Lemma 3
If r is a non-negative, differentiable and concave real-valued function, then r is nondecreasing on R+ and the
function r(t)/t is nonincreasing on R+. Furthermore, if in addition r is twice differentiable, then the function
r(∥x∥2)/∥x∥2 is super-harmonic for p ≥ 4.

Proof
See Fourdrinier et al. [7].

Lemma 4
Assume X is a real-valued random variable with symmetric unimodal distribution about θ ∈ R+. If f is a non-
negative function on R+, then

Eθ

[
f(X2)X2I[X<0]

]
≤ 1

2
Eθ

[
(X − θ)2f(X2)

]
.

Proof
See Fourdrinier et al. [7].

Lemma 5
If g is a super-harmonic function on Rp and Z is a random variable with a uniform distribution on the sphere
centered at the origin and of radius τ then, for any θ ∈ Rp the expectation E[g(θ + Z)] is a nonincreasing function
of τ .

Proof
See Fourdrinier et al. [7].

Theorem 1
Suppose (X,U) is a p+ k random vector having a spherically symmetric unimodal distribution around the p+ k
vector (θ, 0). we assume that scale matrix σ2Ip under balance loss function. if the following condition holds

1. k > 4(1−w)(p−2)+2(1−ω+ω2)q
2(1−w)(p−2)−(1−ω+ω2)q ,

2. 0 < c ≤
(
2(1− ω) p−2

k+2 − (1− ω + ω2) q
k−2

)
.

Then the shrinkage estimator δq(X,U) dominates the natural estimator δq(X) for target estimator δ0(X).

Proof
Since 0 ≤ r(·) ≤ 1 is a non-negative, differentiable and concave function by Lemma 3, we have r′(·) ≥ 0, also
using Lemma 1 for risk differences ∆R(1), we have the following inequality:

Eθ

[
c2

(
UTU

)2 r2(∥X∥2)
∥X∥2

− 4c
(1− ω)

k + 2

(
UTU

)2
r′(∥X∥2)

−2c(1− ω)
(p− 2)

(
UTU

)2
r(∥X∥2)

(k + 2)∥X∥2

+2c(1− ω + ω2)(UTU)
r(∥X∥2)
∥X∥2

q∑
i=1

X2
i I[Xi≤0]

]

≤ Eθ

[(
UTU

)2 r(∥X∥2)
∥X∥2

c
(
c − 2(1− ω)

p− 2

k + 2

+2(1− ω + ω2)

∑q
i=1 X

2
i I[Xi≤0]

UTU

)]
. (10)

Now we suppose that Xq
1 = (X1, . . . , Xq), η = (θ1, . . . , θq), Xp

q+1 = (Xq+1, . . . , Xp) and µ = (θq+1, . . . , θp)

also Z = σ−1(X − θ), V = (Z1, . . . , Zq) and T = (Zq+1, . . . , Zp) in other words V = σ−1(Xq
1 − η) and T =
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σ−1(Xp
q+1 − µ). Since ∥X∥2 = ∥Xq

1∥2 + ∥Xp
q+1∥2 thus Xq

1 = σV + η and Xp
q+1 = σT + µ. Furthermore let

W 2 = V TV + UTU , by assuming σ = 1, an upper bound on the conditional expression (10) by Lemma 4 is the
following:

Eθ

[
(W 2 − V TV )2

r(∥Xq
1∥2 + ∥Xp

q+1∥2)
∥Xq

1∥2 + ∥Xp
q+1∥2

×c
(
c− 2(1− ω)

p− 2

k + 2
+ (1− ω + ω2)

V TV

W 2 − V TV

)]
. (11)

Using Lemma 3,
r(∥Xq

1∥
2+∥Xp

q+1∥
2)

∥Xq
1∥2+∥Xp

q+1∥2 for p ≥ 4 is super-harmonic and as a result, in ∥X∥2 is nondecreasing. Hence

the conditional risk difference (11) given W 2 and T is the following:

cEθ

[
(W 2 − V TV )2

r(∥Xq
1∥2 + ∥Xp

q+1∥2)
∥Xq

1∥2 + ∥Xp
q+1∥2

×
(
c− 2(1− ω)

p− 2

k + 2
+ (1− ω + ω2)

V TV

W 2 − V TV

) ∣∣∣∣∣W 2, T

]

≤ cEθ

[
(W 2 − V TV )2

r(∥Xq
1∥2 + ∥Xp

q+1∥2)
∥Xq

1∥2 + ∥Xp
q+1∥2

∣∣∣∣∣W 2, T

]

×Eθ

[(
c− 2(1− ω)

p− 2

k + 2
+ (1− ω + ω2)

V TV

W 2 − V TV

) ∣∣∣∣∣W 2, T

]
. (12)

In above inequality we have by covariance inequality and in addition to for fixed W 2 and T ,

Eθ

[
r(∥Xq

1∥
2+∥Xp

q+1∥
2)

∥Xq
1∥2+∥Xp

q+1∥2

∣∣∣∣∣W 2, T

]
is nonincreasing in V TV by Lemma 5. Hence, again it suffices to show that the

second conditional expectation in equation (12) is nonpositive. On the other hand, since UTU has distribution χ2
k

and V TV has distribution χ2
q therefore (V TV )/W 2 has distribution Beta( q2 ,

k
2 ) and we can write as follows:

E[V TV/(W 2 − V TV )] = q/(k − 2).

So the risk difference is non-positive if

0 < c ≤
(
2(1− ω)

p− 2

k + 2
− (1− ω + ω2)

q

k − 2

)
.

A simple calculation shows that the c is positive if and only if

k >
4(1− w)(p− 2) + 2(1− ω + ω2)q

2(1− w)(p− 2)− (1− ω + ω2)q
,

and complete the proof.

As mentioned in the introduction, the multivariate normal distribution Np(θ, σ
2Ip) is a member of spherically

family distributions. The following result is expressed in relation to multivariate normal distribution.

Corollary 1
Suppose that the distribution is a p-variate normal distribution Np(θ, σ

2Ip) with known σ2. we assume that scale
matrix σ2Ip under balance loss function. if the following conditions are hold:
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1. p > (1−ω+ω2)q
2(1−ω) + 2,

2. 0 < c ≤
(
2(1− ω)(p− 2)− (1− ω + ω2)q

)
.

Then the shrinkage estimator δq(X) = X + λq(X) + g(X) where g(X) = − cσ2 r(∥X∥2)
∥X∥2 X , dominates the natural

estimator δq(X) = X + λq(X) for target estimator δ0(X).

Proof
The proof is similar to Theorem 1, but instead of Lemma 1, Lemma 2 should be used.

4. Simulation

In this section we are comparing risk difference between shrinkage estimator and natural estimator in the
multivariate normal distribtion.

Risk values ??were obtained from 1000 Monte Carlo replications for Np(θ, 2Ip). Shrinkage and natural
estimators curve is plotted in Figure 2. Curves are plotted for the target estimators δ0(X), p = 10 and for different
values of q and w.

In Figures, shrinkage estimator curve is below the natural estimator curve. This means that the shrinkage
estimator dominates the natural estimator. Since the risk of shrinkage estimator for all ∥θ∥ values is less than
the risk of natural estimator. As it is shown in Figure 2, with the increasing amount of w, the risk difference is
increasing and as a result, the shrinkage estimator is better and better than the natural estimator.
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Figure 2. Risk curve for δ0(X), p = 10, black line for q = 3 and red line for q = 7 for different values of ω.

5. Conclusion

In this paper we considered the shrinkage estimator of the location parameter vector for spherically symmetric
distributions. According to the risk function, we conclude that the shrinkage estimator has the smaller risk than the
natural estimator under the balance loss function, when the covariance matrices are known. The results of the paper
are examined by simulation study.
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