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Abstract This article extends the fusion among various statistical methods to estimate the mean and variance functions
in heteroscedastic semiparametric models when the response variable comes from a two-parameter exponential family
distribution. We rely on the natural connection among smoothing methods that use basis functions with penalization, mixed
models and a Bayesian Markov Chain sampling simulation methodology. The significance and implications of our strategy
lies in its potential to contribute to a simple and unified computational methodology that takes into account the factors that
affect the variability in the responses, which in turn is important for an efficient estimation and correct inference of mean
parameters without the specification of fully parametric models. An extensive simulation study investigates the performance
of the estimates. Finally, an application using the Light Detection and Ranging technique, LIDAR, data highlights the merits
of our approach.
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1. Introduction

A convenient approach to render a statistical inference in a semiparametric method that combines known parametric
structures with flexible nonparametric components is via a mixed model formulation. From this framework,
penalized splines can be formulated and fit using standard software such as PROC MIXED in SAS [1] and lme(
) in R [2]. Within the mixed model software modeling, the regression function with random effects applies to
responses from the exponential family using generalized linear mixed models (GLMMs) and provides an automatic
smoothing parameter choice by using a restricted maximum likelihood estimation of the variance. The Bayesian
equivalent to inference in a semiparametric regression relies on WinBUGS codes, which have become standard
software for analyses, accompanied by Markov chain Montecarlo MCMC methods [3]. Similar in spirit are the
Bayesian versions of TURBO and CART proposed by [4].

In applied modeling, it has been a common practice either to assume a constant variance of the data or to use
transformations to reduce the variability. However, frequently, homoscedasticity is violated. A typical example
of this issue is given in Figure 1 with LIDAR data obtained from the atmospheric monitoring of pollutants, from
which an ignorance of the heteroskedasticity led to incorrect inferences and an inefficient estimation, which caused
misleading conclusions from hypothesis testing†. In addition, an estimation of the variance function is either of
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intrinsic interest by itself to understand how the variability changes with predictors or plays an important role
in approximating other quantities.Therefore, an estimator of the variance function is required for predicting and
estimating efficiently the mean function.

Different Bayesian and frequentist approaches have been implemented to simultaneously estimate the mean
and variance functions where the intractability of both the likelihood function and the posterior distribution is
the main issue of inference. Even though analytical approximations are faster than numerical approximation
alternatives, there have been extensive research studies that have designed effective Markov chain Monte carlo,
MCMC, algorithms to handle the generalized responses. However, there are two main drawbacks to MCMC fitting
when using standard software. First, major difficulties are associated with assessing the convergence, which can
be slow when samples of the dataset to be analyzed are large or the model to be fitted is complex. Early work
regarding an estimation of the dispersion function in a fully nonparametric fashion dealing with the extended
double exponential family and the use of P-spline approach was proposed by [5]. Likewise, [6] proposed a method
for the mean and variance estimation where the responses were modeled using the double exponential family of the
distributions and the mean and dispersion functions were specified as additive functions of the predictors. On the
other hand, a frequentist iterative approach to heteroscedastic errors with the penalized spline methodology was
developed by [7]. A fully Bayesian approach based on the MCMC algorithm, which provides the joint posterior of
all parameters, was implemented by [8]. A flexible mean and dispersion function estimation in generalized additive
models in the context of semiparametric models was proposed by [6]. [9] proposed a hybrid algorithm based on a
combination of the Metropolis-Hasting algorithm and a Gibbs sampler for semiparametric joint mean and variance
models on the basis of a B-spline approximation of nonparametric components. In large datasets, the problem of
jointly estimating the mean and variance functions is handled by a neural network methodology and variational
Bayesian approach, which avoids the simulation task of the MCMC algorithms and approximates the posterior
distribution with a low bound. This approach has been recently implemented for mixed models and for much more
complex models by [10]. On the other hand, an approximation of the posterior distribution by building transition
distributions based on working variables, which follows from the relationship between the maximum likelihood
estimation by using Fisher scoring and a weighted least squares method in the biparametric exponential family for
the mean and variance function estimation for linear models, was implemented by [11] in a regression context.

Given the connection between linear mixed models, splines and Bayesian modeling, the goal of this paper is
to extend this statistical partnership to jointly infer the mean and dispersion of response variables originated from
biparametric exponential families. Specifically, the Gaussian model, which belongs to this family, is studied. The
inference is focused on augmenting the vector of the regression coefficient and the design matrix to include random
effects. Although the dimensionality of the parameter space increases dramatically with large datasets, shrinking
by penalizing splines could render this approach practical.

In this paper, we contribute to this work by extending the advantage to the link between smoothing and the
biparametric exponential family to jointly estimate mean and dispersion functions from a Bayesian perspective
based on working variables. The benefits of this heteroskedastic semiparametric strategy lies in its connection
with graphical model representations. Moreover, the systematic part of the mean and dispersion functions could be
extended to take into account non-linearity in the parameters, which are more appropriate for some real applications
in statistics and computing science. Furthermore, the modularity of the approach allows easy extensions to models
with increasing complexity.

Recently, there has been growing interest in semiparametric models when the measurement error in a predictor
distorts the relation to the response, which has led to the presence of intractable integrals in the estimation process.
The Bayesian approach described in this paper is important for implementation. see [12] and [13]. Furthermore,
other extensions that could be also applicable are related to accommodating more complex errors structures such
as those arising in additive models, longitudinal studies or multilevel models [14]. However, new variants of
GLM models where the link function relates the conditional mean of the response variable to a transformation
of predictors using neural nets, which is a powerful tool for functional approximation, is a direction for future
research [15]. Another development will be concerning new challenges to MCMC with better and large databases.
For example, in the divide-and-conquer approach, the whole data set is partitioned into batches and run separately
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with MCMC algorithms independently for each data batch. This methodology combines the simulated parameters
to approximate the original posterior distribution. See [16] for a survey in accelerating MCMC algorithms.

Therefore, sub-models for the mean and variance functions depend on some covariates parametrically and
others nonparametrically. A nonparametric function approximation is reached by the linear combination of the
basis functions keeping the nonparametric regression part relatively simple by using low-rank penalized splines.
Even though the scatterplot smoothing context is utilized in this paper, the methodology could be extended to
allow a more efficient handling of standard and non-standard data such as longitudinal data and spatial correlation.
Additionally, the analyst has to potentially deal with non-Gaussian models in real-world applications. For example,
if the response variable is related to a proportion, then it could have categorical responses, outliers, data sparsity
and missingness, among other issues.

There are two areas of data analytic research that could be used to handle the presence of non-linear relations
that avoid the restrictions posed by parametric models. The first is in the statistics literature and is referred to as
penalized splines, which have become a popular non-parametric tool because they use a low-rank basis and can be
seen as mixed models. See [7] and [17] for an extensive review. it is worth to notice that under this method, the
spline basis is chosen on some sufficiently large set of knots and the unnecessary structure is penalized. The second
is in the computing science and refers to kernel machines as an important tool for classification and regression
problems supported by the theory of reproducing a kernel Hilbert space (RKHS), which can also be formulated as
fits in mixed model representation and the solution come from a minimization problem in a functional space. The
theoretical issues can be found in [18], [19] and [20]. However, a friendly reference for implementing this approach
is in [21]. Moreover, there is a connection between penalized splines and smoothing splines detailed in [22]

The link between penalized spline smoothing and linear mixed models has been studied extensively where an
unknown smoothing function is estimated by replacing the function by a linear combination of the basis functions
and there exists a mixed model representation of a penalized spline that could be implemented for the different
models. Furthermore, generalized mixed models have been a vehicle not only for analyzing data handling grouping
structures but also for using regression models that contain at least one function being modeled nonparametrically.
Many applications of these models handle a range of applications, for example, to account for within-subject
correlation, multilevel models, fixed and random components and smoothing. GLMMs can synthesize a likelihood-
based approach for a variety of outcomes, accommodate the overdispersion, and model the dependence among
outcome variables that are inherent in longitudinal studies or repeated measures designs. In addition, GLMM
analyze complex datasets, and smoothing is derived from the connection between nonparametric models and
mixed models. Nevertheless, a Bayesian modeling approach to semiparametric regression has advantages due
to the attractiveness of the hierarchical Bayesian models for quantifying multiple sources of variability, dealing
with missing data and measurement. Moreover, this approach treats parameters at random and benefits from the
flexibility of nonparametric models and the exact inference provided by the Bayesian approach. The good mixing
properties of the MCMC chains could be generated by using low-rank thin plate splines, which have good numerical
properties because the correlation among parameters is much more smaller than that using another basis function.
Fitting and testing could be conducted through the paradigm of the likelihood.

This paper contains six sections apart from this introduction and proceeds as follows. In Section 2, we describe
the double stochastic generalized linear model with splines. In Section 3, we summarize the Bayesian strategy
and describe the main steps involved in the MCMC algorithm to draw the inference from the proposed model.
Furthermore, in Section 4, we present a simulation analysis to study the performance of the Bayesian methodology
compared with those implemented in standard software. In Section 5, we present the results with a real dataset.
Finally, the conclusions are presented in Section 6.

2. Spline Double Generalized Linear Models

Consider the two-parameter exponential family distribution discussed by [23] and [24], which takes into account
the exponential family of two parameters. This family has the following general density function:
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f (y|θ, τ) = b (y) e[θy+τT (y)−ρ(θ,τ)] (1)

where f is a density from the p.d.f. of the parametric family, Pt, with respect to the finite appropriate finite
measure. The function ρ(·) is the cumulant function. On the other hand, these authors stated that if the sufficient
statistic T (y), is convex, then for a common mean, V ar(y) increases in τ . A particular case occurs when τ = 0,
which belongs to the one parametric exponential family of distributions. Distributions that belong to this family
include Gauss, Poisson, and Gamma.

With the regularity conditions of Cramer Rao, the following properties are fulfilled:

δρ

δθ
= E (y|θ, τ) = µ

δ2ρ

δθ2
= V ar (y|θ, τ)

by reparametrizing the density function with respect to the mean, the likelihood function is established in terms
of µ and τ .

The class of doubly semiparametric stochastic generalized linear models with splines as random effects can be
stated as

yi ∼ DE(µi, τi) (2)

h(µi) = x′
iβ + f(xi) (3)

and

g(τi) = z′iγ + l(zi) (4)

where DE(µi, τi) denote the double exponential distribution, f and l are nonlinear functions. A particular case
correspond to the Gauss distribution. Variance function estimation which allows the variance to be a function of
the predictors and consequently treating the variance as if it were a regression function. The approach is penalized
by assuming that the nonlinear coefficients are random effects. Stating the model as a double mixed model

E(y/x) = β0 + β1x+
∑

ukzk

g(τ) = EXP{γo + γ1x+
∑

vkzk}

The entire model

y/u, v ∼ DE (Xβ + Zu, diag{exp(Xγ + Zv})

with the random effect being doubled as well
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[
u
v

]
∼ N

([
0
0

]
,

[
σ2
uI 0
0 σ2

vI

])

The Spline Double Generalized Linear Model, SDGLM, are defined by the following three components:

1. Random component: Let Y1, ..., YN be independent random observations, where Yi conditional to the random
effects comes from the biparametric exponential family distribution with the density function given in (1)
with E(Yi) = µi and V (Yi) = σi

2. The systematic component: Assuming the penalized spline formulation, as adopted in [7], the systematic
component ηi = (η1i, η2i) is given by:

η1i = x′iβ +

Ku∑
k=1

ukz
u
k (x) uk

iid∼ N(0, σ2
u)

η2i = z′iγ +

Kv∑
k=1

vkz
v
k(x) vk

iid∼ N(0, σ2
v)

where β = (β1, β2, ...βp)
′ and γ = (γ1, γ2, ..., γr)

′ are unknown parameter vectors and {zuk : 1 ≤ k ≤ ku}

and {zvk : 1 ≤ k ≤ kv} are set of fixed known knots of size ku and kv, respectively. The truncated polynomial
spline basis is chosen for convenience. Other common basis functions include B-splines, RK basis, depending
on the application.

3. The link functions: The link functions provide the relationship between the random and systematic
components for the mean and dispersion of the bi-parametric family‡:

µi = h−1(η1i)

τi = g−1(η2i)

where h and g are monotonic twice differentiable functions.

3. A Bayesian Estimation of the Mean and Dispersion Functions

To fit the submodels under the Bayesian paradigm, we rely on MCMC methods to simulate samples for the joint
posteriors of interest. In this paper, the mean and dispersion regression structures are given by:

h(µi) = x′1iβ +

Ku∑
k=1

uk(xi − kk)
2
+ u ∼ N(0, σ2

c ) k = 1, ...,Ku

g(σ
2

i ) = z′1iδ +

Kv∑
k=1

vk(zi − kvk)
2
+ v ∼ N(0, σ2

v) k = 1, ...,Kv

‡ The dispersion function is modeled as a linear mixed model. The term including the nonlinear term must be penalized to ensure a stable
estimation, assuming that these coefficients are the random effects.
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where β and δ are vectors for the fixed effects for the mean and dispersion functions respectively. h and g being
appropriate real functions and u(·) , v(·) represent the truncated spline line basis. Furthermore

{
Ku

k

}Ku

k=1
and{

Kv
k

}Kv

k=1
are the knots.

According to [25] and [26], from the Bayesian perspective, the submodels can be placed in the mixed form
by augmenting the vector of the regression coefficients and the design matrix with h and g as appropriate real
functions.

β(aug) =


β
u1
...
un

 δ
(aug)

=


δ
v1
...
vn



x
(aug)

=

 1 x1 (x1 − k1)+ . . . (x1 − kk)+
...

. . .
...

1 xn (xn − k1)+ · · · (xn − kk)+



z
(aug)

=

 1 z1 (z1 − kv1)+ . . . (z1 − kvk)+
...

. . .
...

1 zn (zn − kv1)+ · · · (zn − kvk)+


The systematic components of the mean and variance sub-models can be written as:

η1 = x
(aug)

β
(aug)

η2 = z
(aug)

δ
(aug)

To estimate the parameters of these sub-models by using a Bayesian approach, independent normal priors are

assumed for the mean and variance parameters:

β
(aug)

∼ N(b,B)

β(aug) ∼ N((a′, 0′, . . . , 0′)′, (R1,Σ1, . . . ,Σ1))

δ
(aug)

∼ N(g,G)

δ
(aug)

∼ N((d′, 0′, . . . , 0′)′, (R2,Σ2, . . . ,Σ2))

The specification in a vector form is given by:

θ =

(
β(aug)

δ(aug)

)
∼ N

(
θ0 =

[
b0
g0

]
,Σ0 =

[
β0 c
c′ G0

])
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From the Bayes theorem, the joint posterior distribution function is given by:

π(β
(aug)

, δ(aug)|Y ,X,Z) ∼ L(β
(aug)

, δ
(aug)

|Y ,X,Z)P (β
(aug)

, δ
(aug)

)

π
(
β(aug), δ(aug)

)
∼ |Σ|−1/2

exp

{
−1

2

(
Y −X ′β(aug)

)1

Σ−1
(
Y −X ′β(aug)

)
− 1

2

(
θ − (θ − θ0)

1
Σ−1

0 (θ − θ0)
)}

where L(·) denotes the likelihood function and P (·) the joint prior distribution.

Given that π(β
(aug)

, δ(aug)) is analytically intractable and difficult to obtain samples from it, it use conditional
posterior distributions. We propose sampling (β(aug), δ(aug)/Y,X) through an iterative process. Sampling β(aug)

and δ(aug) from the conditional distributions, which are also intractable. Therefore, in order to get samples from
theses conditionals distributions we build transition kernels which allow us to simulate samples that will be part of
the posterior distribution GLM working variables.

π(β
(aug)

|δ
(aug)

,Y ,X,Z)

π(δ
(aug)

|β
(aug)

, Y,X,Z)

To get samples from π(β(aug)/δ(aug), X, Y ) we follow the methodology proposed by [25] and [27] by defining
working observational variables as: ỹi, i = 1, 2, ..., n by:

ỹi = h(µ
(c)

i ) + h′(µ
(c)

i )(yi − µ
(c)

i )

This variable has E(ỹi) = h
(
µ
(c)
i

)
with h

(
µ
(c)
i

)
following the linear structure assumed in the semiparametric

model, which allows us to apply the first-order Taylor approximation of the function h around the current value of
µ
(c)
i . A key advantage of this method is that assuming normal prior distribution for the regression parameters and for

the working variable, a normal transition kernel can be obtained by the combination of the working model and the
prior regression parameter distributions. Additionally, given that the link functions are monotonically differentiable
such as logarithmic and logistic function, a first-order Taylor approximation of h is a good approximation of h
around the current values of θ.
In consequence, if β(aug)(c) is the current value of β(aug), the appropriate working observation variables to sample
β(aug) are:

ỹi = x
′(aug)
i β(aug)(c) + h′(µ

(c)
i )(yi − µ

(c)
i ) i = 1, 2, . . . , n,

for which

E(ỹi) = x
′(aug)
i β(aug)(c)

and at the same time a simple and general expression is obtained for the variance:

V (ỹi) = [h
′
(µ

(c)
i )]2V ar(yi)
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Therefore, the kernel transition function obtained from the combination of prior distribution with the working
observational model, is given by:

q1(β
(aug)

|β
(aug)(c)

, δ
(aug)(c)

) ∼ N(b∗,B∗)

where

b∗ = B∗(B−1b+X ′Σ−1Ỹ ), B∗ = (B−1 +X′ΣX)−1, Σ = diag(σ2
u)

On the other hand, to get samples of the variance parameters, the working variable is given by:

ŷi = g(σ
2(c)

i ) + g′(σ
2(c)

i )(ti − σ
2(c)

i )

where E(ti) = σ2
i and g(σ

2(c)

i ) = z′iγ

ŷi = Z
′(aug)
i δ(aug)(c) + g′(σ

2(c)
i )(ti − σ

2(c)
i ) i = 1, 2, . . . , n

This random variable has mean and working observational variance given by

E(ŷi) = Z
′(aug)
i δ(aug)(c)

V (ŷi) = [g′(σ
2(c)
i )]2v(ti)

Thus, this transition Kernel is given by:

q2(δ
(aug)|δ(aug)(c),β(aug)(c)) ∼ N(g∗,G∗)

where g∗ and G∗ are g∗ = G∗(G−1g +Z ′ψ−1Ỹ ) and G∗ = (G−1 +Z′ψ−1Z)−1, respectively. On the other
hand, the values of g and G are given by the prior distribution δ

(aug) |β(aug) ∼ N(g,G), and ψ = V (Ŷi)

3.1. MCMC algorithm

Using the proposal densities q1 and q2 described, the algorithm consists of updating the mean and dispersion
parameters associated with each q − density until the posterior is approximated. During each step of the
algorithm, the most recent parameters are used. With the sampling proposals derived, we will now provide
the steps to implement an MCMC algorithm based on [27] that considers the joint modeling of the mean and
dispersion parameters in the semiparametric model when the response variable follows the Gaussian distribution.
The implementation for the other distributions of the exponential family, for example, the Poisson and Beta
distributions, is similar. For the purposes of the mean comparison, the root mean squared errors were calculated.
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MCMC Algorithm
The components are updated in these steps:

1. Set the iteration counter chain to j = 1 and give initial values βaug
0 , δaug0 and σ2

vo

2. Propose a new value ξ generated from the proposed density q1(βaug(j−1)|�)
3. Compute the acceptance probability of the movement α(βaug(j−1), ξ). If it is accepted, then
βaug(j) = ξ; otherwise βaug(j) = βaug(j−1)

4. Propose a new value ξ, generated from the proposed density q2(δaug(j−1)|�)
5. Compute the acceptance probability of movement α(δaug(j−1), ξ). If the movement is accepted

then δaug(j) = ξ; otherwise δaug(j) = δaug(j−1)

6. Finally, update the counter from j to j + 1 and return to step 2.

4. Simulation Study

To confirm the effectiveness of the proposed Bayesian algorithm for general heteroscedastic semiparametric models
where the true model is known, we conducted a comprehensive simulation study. As seen from Table 1, a set of four
mean and standard deviation functions with different patterns was generated according to model (1). There were
n=500 replications for each simulation, and the predictor x ∼ U(0, 1). In the four experiments advocated by [10],
the functions chosen for mean and dispersion provide different patterns of evolution. In setting A the mean function
follow a smooth sinusoidal pattern and the standard deviation take a double u form. Next, the setting B generate a
mean with rapid rise, followed by a steep fall at the end of the simulation. The standard deviation function decline
smoothly with some jumps. Next, the mean from setting C presents one section that remained steady and the
other that exhibit a declining pattern. Finally, the mean function from setting D fluctuated widely and the standard
deviation present two clusters. In other words, these mean and standard deviation functions display different non-
linearities that can be estimated in a semiparametric fashion. On the other side, following standard assumptions
about the hyper-parameters. [8] The fixed effects parameters for the mean function are assumed apriori independent
with a very large variance. That is, βi ∼ N(0, 106). Moreover, for the fixed effects used in the dispersion model,
we also employed independent N(0, 106).
We compared the mean function for our method with those that include spline and the RK basis in the customized
software PROC MIXED from SAS. The results presented here are based on P-splines but the checks show that
smoothing splines provide a similar result when 200 simulated samples were generated.

Setting f(x) log g(x)

A sin(3πx2) 0.1 + cos(4πx)
B −1.02x+ 0.018x2 + 0.4ϕ(x; 0.38, 0.08) −0.5− Φ(x; 0.2, 0.1) + 0.3x2

+0.08ϕ(x; 0.75, 0.03)
C 0.35ϕ(x; 0.01, 0.08) + 1.9ϕ(x; 0.45, 0.23) 0.3ϕ(x; 0, 0.2) + 0.4ϕ(x; 1, 0.1)

+1.8{1− ϕ(x; 0.7, 0.14)}
D sin(3πx2)− 1.02x+ 0.018x2 cos(4πx)− 0.4 + 0.3x2

+0.4ϕ(x; 0.38, 0.08) −Φ(x; 0.2, 0.1)
Table 1: data were simulated according to model (1) with n=500 and x ∼ U(0, 1), ϕ(·, µ, σ2) and Φ(·, µ, σ2) represent the density and

distribution functions of the Normal distribution
Source: [10].

In each panel of Figure 1, all curve estimates in the interior are visually similar . However, the P-splines have a
tendency to deviate from the underlying curve in settings (b) and (d). Moreover, a potentially serious problem with
smoothing splines is a lack of spatial adaptivity, which is the ability to impose less smoothing where the regression
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function exhibits a sharp curvature. An attractive advantage of penalized splines compared to smoothing splines is
the ease at which MCMC schemes fit semiparametric models with reduced basis functions.
We will compare the frequentist properties of the proposed Bayesian algorithm with two classical models that
incorporate the spline and RK basis in the architecture of the mixed models customized software. The mixed model
software provides an automatic smoothing parameter choice via the restricted maximum likelihood of variance
components. We now examine how well the underlying curve is recovered for each simulation setting with the
three smoothing models described. For all the simulations settings, we evaluated the quality of the obtained fits
via the mean squared error, MSE. That is, between the true curve and the fits from the proposed MCMC algorithm
and the P-spline and RK mixed model respectively. The results are summarized in each panel of Figure 2. The
box plots shows the distributions, over 500 samples, of differences in MSE between each method. We found that
in the simulation settings A,B,C,D, our MCMC algorithm has lower or equal MSE than the competing methods.
However, RK has a substantial tail of poor fits. Note also the skew in the comparisons: this seems that MCMC
and P-spline share similar results. Summarizing, the simulation evidence supports that MCMC may have practical
advantages over P-spline and RK for estimating the mean function.

According to the proposed Bayesian statistical inference procedure, we generated 10,000 samples of the fixed
parameters for both the mean and dispersion functions. We discard the first 1,000. Figures 3 and 4 give the sample
autocorrelation functions, the trajectories of the sample, and the posterior densities for the fixed parameters β
and γ from model (1). After disposing of the training period, it is observed that the trajectories are stable, which
indicates that the chains produced non-correlated samples for the fixed parameters. We computed other diagnosis
of convergence such as the CD statistics and the inefficiency factor, which are available upon request. Based on this
evidence, we concluded that the posterior sampling is efficient and consequently the fitted obtained by the MCMC
proposed is accurate and credible.

5. The LIDAR Monitoring of Air Pollutants

In this section, we illustrate the flexible estimation method based on a typical real dataset. The LIDAR data was
obtained from atmospheric monitoring of pollutants. This technique refers to the Light Detection and Ranging
technique used for monitoring the distribution of meteorological parameters and several atmospheric species of
importance. This application is discussed in [28]. The LIDAR equation deterministically describes the received
signal power P (λ, x) as function of range x and wavelength λ; it relates the concentration of mercury at range
x. A typical LIDAR dataset is shown in panel 1a) of Figure 5. This result is an example where a log or power
transformation will not stabilize the variance since the variance does not depend on the mean but rather on the
range variable. In addition, the panel 1b) of Figure 5 provides evidence that the linear model does not help to
remove the heteroscedasticity according to the residual plot.

The fits from the MCMC algorithm and the P-spline and RK mixed model strategy are depicted in figure 6.
The MCMC algorithm provided reliable results and is reasonably fast for any sample size. The difference in run
times is important in MCMC algorithms that require a large number of iterations for complex simulations. In this
paper we rely on SAS/IML software and its power lies in faster run time for these repetitions. Although run times
for experiments with less than 10,000 samples are similar, for simulations beyond 10,000, SAS/IML is the unique
software that remain stable. However, more in-depth research into run times would need to take further conclusions.
see [29] for the figures of the comparisons.

We implemented our algorithm from scratch using the software SAS-IML. With the proposals stated, the
acceptance rates were reported between 30% and 50%.

6. Conclusions

In this paper, we have proposed a flexible Bayesian framework for modeling the mean and variance functions
for heteroscedastic semiparametric models where the response comes from the biparametric exponential family.
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Figure 1. Comparison of MCMC and PROC MIXED with P-splines and RKHS basis in each of the four simulations settings

Our MCMC simulation algorithm provided reliable results and is reasonably fast for any sample size. The MCMC
and mixing properties were assessed by both visual inspection and diagnostic tests of the chain histories of the
parameters of interest. We compared the frequentist properties of the Bayesian methodology with two classical
models that incorporate the spline and RKHS basis in the architecture of the mixed model’s customized software
(PROC MIXED). The results of this study indicate that our method is comparable with the mean function fit.
Furthermore, the Bayesian approach could display the estimation of the variance function. Future research could
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Figure 2. Box plots of the RMSE for the simulation setting

be extended to models with measurement error problems and models that allow complex error structures, including
additive models, longitudinal studies and multilevel models.

Stat., Optim. Inf. Comput. Vol. 9, June 2021



HCTOR ZRATE, EDILBERTO CEPEDA 363

0 2000 4000 6000 8000 10000

ITERATIONS

-5

-3

-1

1

3

5

b
e
ta
0
1

(a)

1 56 111 166 221 276 331 386 441 496 551 606 661 716 771

Lag

-0.2

-0.1

0.0

0.1

0.2

F
A

C
 b

e
ta

0
1

CorrelationsBand

(b)

-2 0 2 4

0

2

4

6

8

P
e
rc
e
n
t

Kernel

(c)

0 2000 4000 6000 8000 10000

ITERATIONS

-70

-62

-54

-46

-38

-30

-22

-14

-6

2

10

18

26

34

42

50
b
e
ta
0
2

(d)

1 56 111 166 221 276 331 386 441 496 551 606 661 716 771

Lag

-0.2

-0.1

0.0

0.1

0.2

F
A

C
 b

e
ta

0
2

CorrelationsBand

(e)

-80 -60 -40 -20 0 20 40

beta02

0

2

4

6

8

P
e
rc
e
n
t

Kernel

(f)

Figure 3. Trace plot, sample autocorrelation function and kernel estimates of the posterior density of β coefficients
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Figure 4. Trace plot, sample autocorrelation function and kernel estimates of the posterior density of γ coefficients
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Figure 5. LIDAR regression and residuals
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Figure 6. Comparison among MCMC, P-splines and RK-splines
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