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Abstract
The main purpose of this study is the construction of a model of a Gaussian stochastic process with given reliability and
accuracy in some Orlicz spaces. In the paper, a suitable model is presented, conditions for the model parameters are derived,
and some examples of their calculations are given.
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1. Introduction

One of the actual problems of the theory of stochastic processes is the construction of mathematical models
of stochastic processes and studying properties of these models. During the twentieth century a number of
simulation methods were developed, among them the method of minimal transformation, canonical representations,
autoregression, double randomization and the method of partition and randomization of the spectrum. Among
active creators of these new simulation methods we should mention G. A. Mikhailov and his students.

For example, the method of double randomization was analysed in the papers by A. V. Vojtishek [18],
B. A. Kargin and S. M. Prigarin [6]. Other simulation methods were investigated in the papers by V. V. Bykov [3],
N. L. Dergalin and V. V. Romantsev [4], S. M. Ermakov and G. A. Mikhailov [5], T. M. Tovstik [16], A. S. Shalygin
and Y. I. Palagin [15], V. A. Ogorodnikov [14].

Among all papers, dedicated to the problem of simulation of stochastic processes and random fields, the papers
[1], [7] – [11] by Yu. V. Kozachenko and his students should be distinguished. The essential difference in these
works is that the authors not only construct the models of stochastic processes and fields, but also investigate the
accuracy and reliability of these models.

In this paper, we continue the research started in the papers by R. G. Antonini, Yu. V. Kozachenko, A. M. Tegza
[1] and by N. V. Troshki [17]. In the mentioned papers, the reliability and accuracy of the constructed models in
the space LU (T) were investigated. In the current paper, we construct a model of a Gaussian stochastic process
using a modified method of partition and randomization of the spectrum. The modified version of this method was
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proposed in the paper N. V. Troshki [17]. In addition, we investigate the reliability and accuracy of the model in
some Orlicz spaces, which are wider than LU (T).

The main result of this paper is a theorem about the accuracy and reliability of the approximation model of
a Gaussian stochastic process in the Orlicz space. As examples, we consider the problem in some special cases.
In particular, we studied the problem in the case where the covariance function of a process is represented with
the help of the Bessel functions of the first kind. In addition, we managed to find the smallest M such that the
constructed model approximated the Gaussian stochastic process in the Orlicz space of exponential type with
a given accuracy and reliability. Also, the following two cases were considered: in the first case, there were
imposed certain restrictions on the distribution function, and in the second one, this function was not subject to
any restrictions.

The paper consists of the introduction and two sections. The first section provides preliminaries that substantiate
and facilitate understanding of the results obtained in this paper. The main results of the paper are concentrated
in the second section. In addition to the theorem about the approximation of a Gaussian stochastic process in the
Orlicz space, we presented some examples and constructed a model of a Gaussian stochastic process.

2. Construction of the model of Gaussian stochastic process

Let {Ω,B, P} be a standard probability space.

Definition 2.1 ([2]). A random variable ξ is called sub-Gaussian, if there exists a number a ≥ 0 such that the
inequality

E exp{λξ} ≤ exp

{
a2λ2

2

}
.

holds true for all λ ∈ R.

The class of all sub-Gaussian random variables defined on a standart probability space {Ω,B, P} is denoted by
Sub(Ω).

Consider the following numerical characteristic of the sub-Gaussian random variable ξ:

τ(ξ) = inf

{
a ≥ 0 : E exp{λξ} ≤ exp

{
a2λ2

2

}
, λ ∈ R

}
. (1)

We shall call τ(ξ) the sub-Gaussian standard of a random variable ξ. By definition, ξ ∈ Sub(Ω) if and only if
τ(ξ) < ∞. In the book by Buldygin and Kozachenko ([2], 2000) it is shown that the space Sub(Ω) is a Banach
space with the norm τ(ξ).

Definition 2.2 ([2]). A stochastic process X = {X(t), t ∈ T}, is called sub-Gaussian if for any t ∈ T, X(t) ∈
Sub(Ω) and sup

t∈T
τ(X(t)) < ∞.

Definition 2.3 ([2]). A continuous even convex function U(·) is called C- function if it is monotone increasing,
U(0) = 0, U(x) > 0, as x ̸= 0.
For example, U(x) = exp{|x|α} − 1, α ≥ 1, is a C-function.

Definition 2.4 ([2]). Let U be a C-function. A family of random variables LU (T) such that for each ξ ∈ LU (T)
there exists a constant rξ > 0 satisfying condition

EU

(
ξ

rξ

)
< ∞

is called Orlicz space of random variables.

Stat., Optim. Inf. Comput. Vol. 8, March 2020



YU.V. KOZACHENKO, A.M. TEGZA AND N.V. TROSHKI 129

The Orlicz space, generated by the function U(x), is defined as the family of functions {f(t), t ∈ T}, where for
each function f(t) there exists a constant r such that∫

T
U

(
f(t)

r

)
dµ(t) < ∞.

The space LU (T) is a Banach space with respect to the norm

∥f∥LU
= inf

{
r > 0:

∫
T
U

(
f(t)

r

)
dµ(t) ≤ 1

}
. (2)

The norm ∥f∥LU is called the Luxemburg norm.Properties of the random processes in the Orlicz space are
described in the paper [12].

Let T be a parametric set and let X = {X(t), t ∈ T} be a real-valued Gaussian centered second-order stochastic
process with the covariance function

R(t, s) =

∞∫
0

g(t, λ)g(s, λ)dF (λ) ,

where F (λ) is a continuous distribution function.

Theorem 2.1 ([7])
Let U = {U(x), x ∈ R} be a C-function such that the function GU (t) = exp

{(
U (−1)(t− 1)

)2}
is convex for

t ≥ 1. Then with probability one X ∈ LU (T) and for all ε such that

ε ≥ max(µ(T), 1) · τ
(
2 +

(
U (−1)(1)

)−2
) 1

2

we have

P {∥X∥LU > ε} ≤
√
e
εU (−1)(1)

µ̂(T) · τ · exp
{
−ε2(U (−1)(1))2

2(µ̂(T))2 · τ2

}
, (3)

where µ̂(T) = max(µ(T), 1).

If {X(t), t ∈ T} is a centered Gaussian stochastic process with given covariance function, then, according to the
Karhunen theorem, the process X(t) can be represented in the following form

X(t) =

∞∫
0

g(t, λ)dη(λ), t ∈ T, (4)

where {η(λ), λ ≥ 0} is a Gaussian process with independent increments such that E(η(b)− η(c))2 = F (b)− F (c),
b > c and Eη(λ) = 0.

Let L > 0 be a given number. Consider the partition Λ = {λ0, . . . , λM} of the set [0, ∞] such that λ0 = 0,
λk < λk+1, λM−1 = L, λM = ∞. Then

X(t) =

M−1∑
k=0

∫ λk+1

λk

g(t, λ)dη(λ), t ∈ T. (5)

Consider the process

XM (t) =

M−1∑
k=0

ηkg(t, ζk), t ∈ T, (6)
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where ηk, ζk are independent random variables, ηk are Gaussian random variables such that Eηk = 0,

Eη2k = F (λk+1)− F (λk) = b2k,

and ζk are random variables that take values on the segments [λk, λk+1] such that

P{ζk < λ} = Fk(λ) =
F (λ)− F (λk)

F (λk+1)− F (λk)

if b2k > 0, and ηk = 0, ζk = 0 with probability 1 if b2k = 0.
The process XM = {XM (t), t ∈ T} is called a model of the Gaussian random process X = {X(t), t ∈ T}.
The covariance function of the process XM coincides with the covariance function of the stochastic process X .

It is clear that different selection of the number M provides different accuracy and reliability of the computer-
simulated models of the process.

Consider

ηΛ(t) = X(t)−XM (t) =

M−1∑
k=0

λk+1∫
λk

(g(t, λ)− g(t, ζk))dη(λ), t ∈ T. (7)

Let the following condition hold for the function g(t, λ):

|g(t, λ)− g(t, u)| ≤ S(|u− λ|) · Z(t), t ∈ T, λ ≥ 0, u ≥ 0,

where {Z(t), t ∈ T} is a continuous function, and the function S(λ) λ ∈ R, monotonically increases, S(λ) → 0 as
λ → 0.

Theorem 2.2 ([17])
The stochastic process {ηΛ(t), t ∈ T} is sub-Gaussian and the following inequality holds:

τ(ηΛ(t)) ≤ Z(t)

[
M−1∑
k=0

b2k sup
m≥1

(
ES2m(|ζk − ζ∗k |)

) 1
m

] 1
2

,

where ζ∗k are random variables independent of ζk but with the same distribution as ζk.

Corollary 2.1 ([17])
If for all λ, u ∈ R+ there exists an absolute constant C > 0 such that

sup
t∈T

|g(t, λ)− g(t, u)| ≤ C,

then we have

τ(ηΛ(t)) ≤

[
M−2∑
k=0

b2k sup
m≥1

(
ES2m(|ζk − ζ∗k |)

) 1
m + C2(1− F (L))

] 1
2

, t ∈ T,

where b2k and ζ∗k are the same as in the previous theorem 2.2.

3. The accuracy and reliability of simulation of Gaussian random processes in the Orlicz space.

Definition 3.1. A model XM = {XM (t), t ∈ T} approximates the process X = {X(t), t ∈ T} with reliability
1− β, 0 < β < 1, and accuracy δ > 0 in the Orlicz space LU (T), if there exists a partition Λ (described above)
such that the inequality

P {∥X(t)−XM (t)∥LU > δ} ≤ β

is fulfilled.
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The above statements are applied to investigate the selection of such a partition of the set [0,∞] that a Gaussian
process X would be approximated by the model XM with a given accuracy and reliability in Orlicz space.

Consider the random process (4) and its model (6). For their difference ηΛ(t) = X(t)−XM (t), t ∈ T, in the
Theorem 2.2, an estimate of the sub-Gaussian standard τ(ηΛ(t)) is obtained.

Let’s denote

τ(L, T ) = sup
t∈T

Z(t)

[
M−1∑
k=0

b2k sup
m≥1

(
ES2m(|ζk − ζ∗k |)

) 1
m

] 1
2

, L > 0, T > 0.

Given the above assessment of sub-Gaussian standard and a similar theorem from the paper [1], we get a statement.

Theorem 3.1
Suppose that in the model XM the partition Λ is such that the next inequalities hold

τ(L, T ) ≤ δ

T̂ ·
(
2 +

(
U (−1)(1)

)−2
) 1

2

,

τ(L, T ) ≤ δU (−1)(1)

T̂ x(β)
,

(8)

where x(β) > 1 is a root of the equation
√
ex · exp

{
−x2

2

}
= β and T̂ = max(T, 1).

Then the model XM approximates the Gaussian process X with reliability β, 0 < β < 1, and accuracy δ > 0
in the Orlicz space LU ([0, T ]), where C-function U satisfies the conditions of Theorem 2.1 (µ(·) is the Lebesgue
measure).

Proof
The statement of this theorem follows from Theorem 2.1. In Theorem 2.1 we take T = [0, T ], τ = τ(Λ, T ), ε = δ,
X = ηΛ. Since the next inequalities hold

U (−1)(1) >

(
2 +

(
U (−1)(1)

)−2
)− 1

2

,

δU (−1)(1)

T̂ · τ(Λ, T )
>

δ

T̂ τ(Λ, T )
(
2 +

(
U (−1)(1)

)−2
) 1

2

> 1,

then we get δ > T̂ · τ(Λ, T ) ·
(
2 +

(
U (−1)(1)

)−2
) 1

2

. This implies that for ε = δ condition (3) holds.

The function f(x) =
√
ex exp

{
−x2

2

}
decreases as x > 1, f(1) = 1. So, from (3) follows that

P {∥ηΛ(t)∥LU > δ} ≤
√
e
δU (−1)(1)

T̂ · τ(Λ, T )
· exp

{
− δ2(U (−1)(1))2

2T̂ 2 · τ2(Λ, T )

}
= β.

The inequality above holds true if δU(−1)(1)

T̂ ·τ(Λ,T )
≥ x(β), that is, when conditions in (8) are satisfied. Theorem is

proved.

Consider special cases.

Example 3.1. Let the covariance function have the representation:

R(t, s) =

∞∫
0

cosλt cosλsdF (λ), t, s ∈ T.
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Then the corresponding Gaussian process has the form

X(t) =

∞∫
0

cosλtdη(λ), t ∈ T.

Let T = [0, T ], and suppose that for the function {F (x), x ≥ 0} the following condition holds: F (+∞)−
F (L) ≤ 1

Lα , where 0 ≤ α ≤ 1, L > 1. Then, using results of Example 2.1 from [17], we have that

τ2 (ηΛ(t)) ≤ 41−αt2α
(

L2α

(M − 1)2α
+

4

Lα

)
.

The right part of the resulting inequality reaches its minimum value at L = 2
1
3α (M − 1)

2
3 . Substituting this value

in the inequality above, we get the following estimate:

τ (ηΛ(t)) ≤
√
6Tα

2α−
1
3 (M − 1)

α
3

= τ(Λ, T ), t ∈ [0, T ]. (9)

Let T = 1, α = 0.5, accuracy δ = 0.01, reliability 1− β = 0.99. Then in Theorem 3.1 the root of the
corresponding equation is equal to xβ = 3.58. We take the following C-function: U(x) = ex

2 − 1. Then the inverse
function is U (−1)(1) =

√
ln 2, and the system of inequalities (8) is of the form

√
6

6
√

2(M−1)
≤ 0.01

(2+(ln 2)−1)
1
2
,

√
6

6
√

2(M−1)
≤ 0.01

√
ln 2

3.58 .

Solving it, we get

M ≥ 63

2 · 0.00236
+ 1 ≈ 7.296 · 1017.

If the accuracy and reliability are weakened, for example δ = 0.1, 1− β = 0.9, then xβ = 2.78 and we get
M ≥ 1.48 · 1011.
Example 3.2. Let the covariance function have the same representation as in Example 1, but we have no restrictions
on the function {F (x), x ≥ 0}. Then

τ2(ηΛ(t)) ≤ 41−αt2α

(
F (L)

(
L

M − 1

)2α

+ 4(1− F (L))

)
, t ∈ [0, T ].

Consider special cases:

1. F (L) = 1− e−L, T = 1, α = 0.5, accuracy δ = 0.1, reliability 1− β = 0.99, xβ = 3.58, C-function U(x) =

ex
2 − 1, U (−1)(1) =

√
ln 2. Then

τ(ηΛ(t)) ≤ τ(L, 1) =

√
2
(1− e−L)L

M − 1
+ 8e−L,

and the system of inequalities (8) is of the form:
√

2 (1−e−L)L
M−1 + 8e−L ≤ 0.1

(2+(ln 2)−1)
1
2
≈ 0.054,√

2 (1−e−L)L
M−1 + 8e−L ≤ 0.1

√
ln 2

3.58 ≈ 0.023.

Solving it, we get

M ≥ 2(1− e−L)L

0.0232 − 8e−L
+ 1.
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The right-hand side of this inequality acquires the smallest value at L = 12.2 and is approximately equal to
49924. Consequently, we can assert that for M ≥ 49924 the model XM approaches the Gaussian process X
with the reliability 0.99 and accuracy 0.1 in the Orlicz space LU ([0, 1]).

2. F (L) = 1− 1
(1+L)3 , T = 1, α = 0.5, accuracy δ = 0.1, reliability 1− β = 0.9, U (−1)(1) =

√
ln 2. Then

τ(L, 1) =

√(
1− 1

(1 + L)3

)
2L

M − 1
+

8

(1 + L)3
.

Substituting this expression in the system of inequalities (8) and solving the system, we get√(
1− 1

(1 + L)3

)
2L

M − 1
+

8

(1 + L)3
≤ 0.03.

Hence, M should be as follows:

M ≥ 2L(1 + L)3 − 2L

0.0009(1 + L)3 − 8
+ 1.

The right-hand side of the inequality above acquires the smallest value at L = 31.6 and is approximately
equal to 94454.

Example 3.3. Let a covariance function have the following representation

R(t, s) =

∞∫
0

Jl(tλ)Jl(sλ)dF (λ), t, s ∈ T,

where Jl(u) =
1
π

π∫
0

cos(lϕ− u sinϕ)dϕ is the Bessel function of the first kind.

Then the corresponding Gaussian process has the form X(t) =
∞∫
0

Jl(λt)dη(λ). Since |Jl(λt)− Jl(tu)| ≤ t|u−λ|√
π

(see work [17]), Z(t) = t√
π
, S(λ) = |λ|, C = 2, then, using the result of Corollary 2.1, we derive that

τ2 (ηΛ(t)) ≤
t2

π

(
L2

(M − 1)2
F (L) + 4(1− F (L))

)
.

Consider partial cases:

1. F (L) = 1− e−L, T = 1, accuracy δ = 0.01, reliability 1− β = 0.99, xβ = 3.58, C-function U(x) = ex
2 −

1, U (−1)(1) =
√
ln 2. In this case

τ(ηΛ(t)) ≤ τ(L, 1) =
1√
π

√
(1− e−L)L2

(M − 1)2
+ 4e−L,

and substituting this estimate to the system of inequalities (8), we get the common part

1√
π

√
(1− e−L)L2

(M − 1)2
+ 4e−L ≤ 0.01

√
ln 2

3.58
≈ 0.0023

Solving this inequality, we derive the condition for M :

M ≥
√

(1− e−L)L2

π0.00232 − 4e−L
+ 1.

The right-hand side of the inequality above attains the smallest value at L = 14.8 and is approximately equal
to 4451. Substituting the number M into the model (6) and computing the random variables ηk, ζk with
k = 0,M − 1, we can obtain a graphical representation of the model of Gaussian process.
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Figure 1. Model of Gaussian random process, with F (L) = 1− e−L and J2(u) =
1
π

π∫
0

cos(2ϕ− u sinϕ)dϕ.

2. F (L) = 1− 1
1+L5 , T = 1, accuracy δ = 0.1, reliability 1− β = 0.99, xβ = 3.58, C-function U(x) = ex

2 −
1, U (−1)(1) =

√
ln 2. Then

τ(ηΛ(t)) ≤ τ(L, 1) =
1√
π

√
(1− 1

1+L5 )L2

(M − 1)2
+

4

1 + L5
,

and, substituting this estimate in the system of inequalities (8), we get the common part:

1√
π

√
(1− 1

1+L5 )L2

(M − 1)2
+

4

1 + L5
≤ 0.1

√
ln 2

3.58
≈ 0.023.

Solving this inequality, we obtain

M ≥

√
L7

π0.0232(1 + L5)− 4
+ 1.

The right-hand side of the last inequality acquires (in the domain of its definition) the smallest value at
L = 4.46 and equals approximately 217.

4. Conclusions

In this paper we presented results of the investigations of the accuracy and reliability of the approximation model
of a Gaussian stochastic process in some Orlicz spaces. We presented some examples of calculations of the model
parameters. In one of the considered cases, the corresponding model of a Gaussian stochastic process is constructed
and the graphical illustration is given.
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