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Abstract The sparsity principle suggests that the number of effects that contribute significantly to the response variable of
an experiment is small. It means that the researchers need an efficient selection procedure to identify those active effects. Most
common procedures can be found in literature work by considering an effect as an individual entity so that selection process
works on individual effect. Another principle we should consider in experimental data analysis is the heredity principle.
This principle allows an interaction effect is included in the model only if the correspondence main effects are there in. This
paper addresses the selection problem that takes into account the heredity principle as Yuan and Lin [23] did using least
angle regression (LARS). Instead of selecting the effects individually, the proposed approach perform the selection process
in groups. The advantage our proposed approach, using genetic algorithm, is on the opportunity to determine the number of
desired effect, which the LARS approach cannot.
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1. Introduction

Fractional-factorial (FF) experiments have been commonly used by researchers in a circumstance where several
number of factors are involved but it is impossible to run all factor-level combinations. The FF experiments are
usually implemented for a screening research and involving factors with two or three levels. Empirically, there
would be only a small portion of effects which are active as stated by the sparsity concept. The active effects could
be in form of main effects of factors, or interaction effects among factors. Wu and Hamada [21] discuss detail on
designing regular FF experiments, while Schoen et. al. [15] provide methodology to generate non-regular designs.
A more specific type of FF experiment is a saturated design where the number of runs is the number of factors
plus one. There is also a super-saturated design whose number of factors exceeds the number of runs. Georgiou [7]
discusses these designs extensively. The use of FF designs in experiments reduce experimental cost. However, a
difficulty rises at the stage of data analysis since the number of runs is not sufficiently large to estimate all possible
effects, even the subset of them.

Suppose we have an FF experiment with k factors, and each with two levels. Further, suppose that we are
interested in the main effects and two-factor interaction effects only. In total, there are k main effects and
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Figure 1. Dependence structure among variables, (a) Group Lasso and (b) Desired dependence structure

(
k
2

)
= k(k − 1)/2 interaction effects that the researcher would like to examine. Due to the limited number of runs,

the number of effects is likely to exeed the number of observations, especially k is large.
In the context of regression analysis, this kind of situation is known as high dimensional problem. Applying

a linear model, it is impossible to include all possible effects in the model because the number of effects to be
estimated is larger than the sample size. Therefore, selection process is needed to identify the the subset of active
effects.

There are several techniques we can find in the discussion of high dimensional regressions that could be used as
alternatives to select active or significant variables. They are included forward selection [14], best subset, LASSO
[16], SCAD [6], and other penalized regression approaches. LASSO has attracted attention of many authors
since the development of least angle regreesion (LARS) algorithm by Efron et. al. [5] which could reduce the
computational effort significantly. Another approach is two-step procedure proposed by Kazemi and Arashi [9].

Those aforementioned approaches could not be directly implemented in the analysis of multi-factor experiment
data because they select the predictor variable individually. We mean ”individually” as a circumstance that the
selection of a variable is performed to one by one variable.

There are several approaches could be found in literatures that work the variables selection in group, such as
Group LASSO [24, 11] and Fused LASSO [17]. In the analysis of experiment data, however, Group LASSO could
not properly meet the need of the modeling since for a certain group of variables, the algorithm would either include
all variables in the group or exclude them all. Figure 1 (a) represents this concept of dependency. The dependence
among variables is depicted by the arrow on the Figure. A variable that is pointed must be included in the model
as long as the variable pointing it is in the model. Suppose that X1 and X2 belong to the same group. It means
that if X1 is included in the model then so is X2, and the other way around if X2 is included in the model then X2

must be included also. Explicitly, we could also said that the variable group in Group LASSO has non-overlapping
properties. Each pair of groups are mutually exclusive. This definition of a group is not appropriate in the modeling
data of factorial experiments as explained below.

Suppose that an experiment includes factors A and B, so that there are three different effects: main effect of A,
main effect of B, and interaction effects of AB. Following the strong heredity principle, if the interaction AB is in
the model then the main effects A and B have to be also in the model. But not vice versa, if the main effects are in
the model, the interaction is not required to be in. Figure 1 (b) depicts this kind of dependence structure between
X1 and X2 where X1 might represent an interaction effect and X2 might represent a main effect. We adopt the
way of representing the dependence structure from Yuan et. al. [23]. By this definition of variable group, the groups
may have overlap. For example, there is a group containing both X1 and X2, but another group only consist of one
variable X2.

A variable selection approach that is suited to experimental data is the one proposed by Yuan et. al. [23]. This
approach start with identification of groups by dependence structure as introduced previously and then implement
the LARS algorithm to select a group to be included in each step. The group that is selected in each step is the one
that has the largest multiple correlation with the residual of the model in the previous step. Since the group may
contain one, two, three, or more number of effects, then this approach do not have good control in determining
how many effects should be included in the model. The only way to control the complexity is by using the penalty
coefficient.

This paper proposes an alternative algorithm to handle variable selection for experimental data. Our approach
does not takes into account only the heredity principle in forming the groups, but it also allows the number of
effects in the model to be controlled. A genetic algorithm (GA) would be utilized as the optimization technique
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in order to reach the desired result. The use of this algorithm is similar to other metaheuristic algorithms such as
firefly algorithm implemented by Algamal [2].

The paper is organised as follows. Section 2 provides a general discussion about GA and some notes on its
usage in the context of variable selection. Section 3 gives detail on the proposed approach for two-level fractional
factorial experiments. Section 4 explains how to deal with three-level quantitative factors. Some illustrations are
given in those both sections, along with the comparison of the results of the proposed approach to the competing
approaches. A discussion section concludes the paper where some possible extensions are discussed.

2. Genetic Algorithm

The genetic algorithm (GA) is a metaheuristic technique to solve a wide range of optimization problems. The stage
of the algorithm imitates the evolutionary process of life beings with the main idea that only the best individuals
will survive. In the algorithm, an individual is a point in the feasible region of solution and the best individual is
the point which provides optimal solution.

The GA is commonly used in scheduling task to obtain optimum way in completing tasks [3]. The GA is also
popularly used in logistic and transportation field to find the best route. Lesiak and Bojarczyk [10] provide some
examples of logistic and transportation problem handled by the GA.

In general, GA starts with a group of initial solutions called a population that consists of random individuals.
An individual solution is represented by a series of genes forming a chromosome. The value of a gene is defined
as it is needed so that the chromosome can represent well a point in the feasible region. This group of individuals
is known also as a generation. A generation then developed to new generations by a sequence of stages: selection,
cross-over, and mutation.

The selection stage aims to discard ”bad” individuals/chromosomes. Only chromosomes whose best performance
in term of a certain fitness/objective function would be kept and continue to cross-over and mutation stages. In the
optimization term, this process can be seen as selecting the best solution among candidates.

Next, come the cross over stage. The main idea of this stage is to create a better solution by combining two
survived chromosomes. We could choose an arbitrary way of combining two chromosomes as long as it is able to
maintain good properties of the chromosomes. A single-point cross-over works by splitting a chromosome into two
segments, the left and right segments. Next, it crosses the segments from an individual with the segments from other
individual in a cross way. It means that the left segment of an individual is combined with the right segment of the
other one. There are other strategies of crossing over such as two-point, multiple-point, and uniformly cross-over,
as described by Umbarkar and Seth [18].

The last stage in an iteration is the mutation. Within this stage, a few chromosomes are slightly changed. The
changes happen in the values of genes which were randomly picked with a very small probability.

The sequence of selection, cross-over, and mutation stages is running for several generations and it is expected
that in every generation there is a gradual improvement of solution. The algorithm may stop whenever the
improvement is negligible or if the number of generation exceeds a certain number that was previously set.

GA has been widely used in the context of variable selection. Yang and Honavar [22] used GA in selecting
predictor for neural-network classifier. Vafaie and De Jong [19] and Zelenkov et. al. [25] elaborated the possibility
of GA implementation to features selection in pattern recognition and machine learning. The selection was highly
needed to decrease the processing time and GA was helpful in doing selection while maintain the prediction
accuracy. In the field of chemometrics, Broadhurst et. al. [4] discussed how GA contributes in variable selection
for regression model using spectometry data. Aalaei et. al. [1] and Vandewater et. al. [20] implemented GA for
variable selection in the detection of breast cancer and alzheimer, respectively.

3. Proposed Approach for Experiments with All Two-Level Factors

Let us start our by focusing on experiments involving factors, all with two levels. This kind of experiments is
commonly found in a screening research where there are many factors to be examined with the constraint of small
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Figure 2. Dependence structure interaction and main effects of factors whose two levels, A and B

budget. The budget restriction requires researchers not to run all possible level combinations. A certain fractional
factorial design might be implemented and an analysis to identify active effects should follow afterward. The
common situation is that the number of observations would be less than the number of interested effects.

First, let k be the number of factors and all have two levels. Second, we are only interested in main effects and
two-factor interaction (2fi) effects, so that in total we have K = k +

(
k
2

)
effects to be estimated. The total number

of runs in the experiment is n and it is assumed that n < K.
First we define the dependence structure among main effects and 2fi effect as depicted by Figure 2. As previously

discussed this structure suggests that if AB is in the model, then the effects of A and B have to be included also.
However, the existence of A or B does not imply the existence of AB. Therefore, we then have the possible groups
of effects as follows:

• A = {A}
• B = {B}
• AB = {A,B,AB}

To implement the GA, we define a chromosome as an object that represents a certain model containing a set of
effects. Every chromosome consists of a sequence of K binary-genes. Each of the first k genes represents a group
containing a single main effect of k factors, while each other gene represents a group of effects containing a 2fi
effect and two main effects of the factors contribute to the interaction effects.

The binary code of the genes is either 1 or 0, where 1 means that the effect is included in the model and 0 for the
otherwise. Since the group of effects may overlap, the set of effects included in the model is the union of effects
correspond to included genes. Suppose that p is the total effect in the set, then for some sense of effect selection,
we should also add other condition that p ≤ t < (n− 1) where n is the number of observation, and the smaller t
implies the tighter selection process and less number of effects included in the model.

We illustrate the idea of this chromosome representation here. An 8-run experiment involving 5 (five) two-level
factors so that there are in total 15 intersted effects (i.e. 5 main-effects and 10 two-factor interactions effects). A
chromosome that represent a certain model therefore consists of 15 genes. The first five genes would represent 5
groups each of which consists a main effect A, B, C, D, and E, while each of the remaining ten genes represent
the following series of groups of effects {AB,A,B}, {AC,A,C}, {AD,A,D}, {AE,A,E}, {BC,B,C},
{BD,B,D}, {BE,B,E}, {CD,C,D}, {CE,C,E}, and {DE,D,E}. Suppose there is a chromosome in form
of

1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

This chromosome would represent a model containing the following set of effects

{A} ∪ {B} ∪ {AC,A,C} = {A,B,C,AC}.

Other components of GA that we have to define is the fitness function to be optimized. We use PRESS and AIC
(Akaike’s Information Criterion) which consider both the fit of the prediction and the complexity of the model. The
PRESS value is calculated by the following formula

PRESS =
∑

(yi − ŷ[i])
2 (1)
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where yi is the response value of the i-th observation and ŷ[i] is the predicted value for the i-th observation from
a model estimated using the other (n− 1) observations. The AIC value is obtained using the formula of AIC =
−2L+ 2p, where L is the log-likelihood function and p is the number of parameter in the model.

The genetic algorithm to identify active effects was proposed as follows. Initially, a population consisting of
M individual chromosomes is generated. The codes of genes for each chromosome are assigned randomly from
a Bernoulli distribution having a certain probability parameter. In this paper we use the probability parameter of
0.6n/K.

We now begin the selection process. The initial selection process is checking the estimability of the models
represented by the chromosomes. It ensures that all represented model contains less than (n− 1) effects. A
chromosome that does not meet the estimability constraint is immediately removed from the population. The
PRESS (or AIC) values are then calculated for the remaining chromosome. After all chromosomes are assessed,
up to s chromosomes/models with the lowest PRESS (or AIC) values are selected.

Those selected chromosomes are then combined among each other using a single-point cross-over process. The
point location to segment the chromosomes is selected randomly over all possible point along the chromosomes.
For each two parent-chromosomes we could generate two offspring-chromosomes which are formed by combining
the first-part segment from a chromosome with a second-part segment of the other chromosome and in the other
way around. By this cross-over technique, the offspring chromosomes represent a model containing effects that
some are included in a parent model and some others are included in the other parent model. At the end of cross
over process we have s parent chromosomes and s(s− 1) offspring chromosomes, representing s2 candidates
model for further selection.

A mutation stage comes next. In this stage, each gene value may change from 0 to 1 or form 1 to 0. It means that
during the mutation stage, a certain effects might be removed from a model, or in contrast, the previously excluded
effects would be included. For this paper, the probability of mutation is set to be 10−3. This means that our initial
selection needs to be very good.

The algorithm is then back to the selection stage, followed by cross-over and mutation stages. This cyclic
procedure is repeated until one of some stopping criteria is satisfied such as the iteration reach the pre-determined
maximum number and the improvement is very small.

Illustration #1

To illustrate how the approach works, we would use a 29−5 experiment described by [12]. It involved nine two-level
factors and only a fraction of 1/32 of the full-factorial design that was tried. The design along with the data are
given in Table 1.

The algorithm started with defining a chromosome as a series of 45 genes, where first nine genes represent nine
main effects and 36 other genes represent groups of three effects (a two-factor interaction effect and two main
effects of the factors). Table 2 shows the effects which were selected by the proposed approach when the maximum
number of effects was restricted to be 5 to 8. Coincidently, the use of both criteria AIC and PRESS resulted in
identical effects for all different constraints of maximum effect numbers.

Interestingly, the selection result is exactly the same as reported by Yuan et. al. [23] using LARS algorithm,
which is also identical as resulted by Raghavarao [12].

Illustration #2

Rais et. al. [13] describes an experiment of sulfated amides of fatty acids derived from olive pomace oil. The
experiment employed a 18-run super saturated design involving 31 two-level factors, U1, . . . , U31. Readers could
find the detail description about the factors in the paper. The authors proposed a sequential method involving ridge
regression, stepwise procedure, best subset, and final effect test based on the projected design. At the end of the
analysis, they suggested that there are nine factors that should be considered in the follow-up experiments. Those
selected factors are U13, U18, U19, U20, U24, U27, U28, U29 and U30.

While Rais et. al. [13] explicitly ignored the possibilities of interaction among factors, we believe that some
degree of interactions exist. The used design implies that some interactions are confounded partially by the factors’
main effects. It means that we might wrongly conclude that a certain factor is active due to the active interaction
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Table 1. Illustration 1

Run A B C D E F G H J Y
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 136.475
2 1 1 −1 1 1 −1 −1 −1 −1 147.775
3 1 −1 −1 1 −1 −1 1 1 −1 142.425
4 1 −1 1 1 1 −1 1 1 1 141.800
5 1 1 1 1 −1 −1 −1 −1 1 136.675
6 −1 1 −1 −1 1 −1 1 1 −1 150.725
7 −1 1 1 −1 −1 −1 1 1 1 142.800
8 −1 −1 1 −1 1 −1 −1 −1 1 135.825
9 1 1 1 −1 −1 1 −1 1 −1 143.476

10 −1 1 −1 1 1 1 1 −1 1 145.150
11 1 −1 1 −1 1 1 1 −1 −1 142.600
12 −1 −1 −1 1 −1 1 −1 1 1 139.375
13 1 1 −1 −1 1 1 −1 1 1 139.650
14 1 −1 −1 −1 −1 1 1 −1 1 144.775
15 −1 −1 1 1 1 1 −1 1 −1 148.275
16 −1 1 1 1 −1 1 1 −1 −1 141.075

Table 2. The selected effects based on AIC and PRESS criteria

max number of effects selected effects
5 E, G, J , EJ , GJ
6 E, G, H , J , EJ , GJ
7 E, G, H , J , EJ , GJ , HJ
8 B, E, G, H , J , EJ , GJ , HJ

effect confounded by the factor. By this reason, we implemented our approach to the data of Rais et. al. [13] with
the constraint that the number of effects in the model is nine.

The result suggests that those nine effects are U4, U19, U21, U27, U28, U29, U4 × U27, U19 × U28, and U21 × U29.
The model which contains those nine effects has AIC value of 77.60 and PRESS value of 132.04. Based on both
criteria, this model is far better compared to the result of Rais et. al. [13] which has AIC value of 106.19 and
PRESS value of 502.02.

4. Dealing with Three-Level Quantitative Factors

Now, suppose that in an experiment, instead of involving factors with two levels, we found also some factors with
three levels. For simplicity, let us first assume that those three-level factors are quantitative factors whose levels are
equally spaced. In this circumstance, we might decompose the main effect of a certain factor into two orthogonal
polynomial contrast as follows:

level
contrast 1 2 3
linear −1 0 1
quadratic −1 2 −1
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Figure 3. Dependence structure among two-factor interaction and main effects of two three-level factors, A and B

Further, suppose that A is the factor with three levels so that the main effects of A would be decomposed into
a linear effect A1 and a quadratic effect A2. Similarly, for a three-level factor B whose effects of B1 and B2 for
linear and quadratic effect. The two-factor interaction effect between A and B are then could be splitted into four
components:

• linear-by-linear interaction effect, A1B1

• linear-by-quadratic interaction effect, A1B2

• quadratic-by-linear interaction effect, A2B1

• quadratic-by-quadratic interaction effect, A2B2

Following the heredity principle, Yuan et. al. [23] defined a dependence structure among two-factor interaction
effect and main effects for three-level factors as shown in Figure 3. This structure and the heredity principles imply
that if an effect is included in the model then so are the effects which are pointed by that effect. For example, if
A2B1 is in the model then the model should also include A2 and A1B1. Next, because A2 is included then so is A1,
and the inclusion of A1B1 implies that B1 should be in the model. Therefore, at the end, the selection of A2B1 is
equivalent to the selection of a group of effects {A1, A2, B1, A1B1, A2B1}. The full list of group effects for main
and two-factor interactions generated by the structure of Figure 3 is as follow:

• A1 = {A1}
• A2 = {A1, A2}
• B1 = {B1}
• B2 = {B1, B2}
• A1B1 = {A1, B1, A1B1}
• A1B2 = {A1, B1, B2, A1B1}
• A2B1 = {A1, A2, B1, A1B1}
• A2B2 = {A1, A2, B1, B2, A1B1, A1B2, A2B1, A2B2}

The identification of groups of effects is important because it is needed in defining the chromosome when the
GA is implemented. It is clear that each gene in a chromosome will represent a certain group of effect that may
contain a single effect such as A1 or B1, or may contain two effects such as A2 = {A1, A2}, three effects such
as A1B1 = {A1, B1, A1B1}, and so on. If the chromosome and the genes inside of it are already appropriately
defined, the GA might but submitted to select which effects should be considered to be active or significant.

Illustration #3

As an illustration of the implementation of the proposed approach, we use a blood glucose experiment reported by
Hamada and Wu [8]. The experiment was performed in 18 runs and employed a two-level factor (named A) and
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Table 3. Illustration 3

Run A B C D E F G H Y
1 1 1 1 1 1 1 1 1 97.94
2 1 2 2 2 2 2 1 2 83.40
3 1 3 3 3 3 3 1 3 95.88
4 1 1 1 2 2 3 2 3 88.86
5 1 2 2 3 3 1 2 1 106.58
6 1 3 3 1 1 2 2 2 89.57
7 1 1 2 1 3 2 3 3 91.98
8 1 2 3 2 1 3 3 1 98.41
9 1 3 1 3 2 1 3 2 87.56

10 2 1 3 3 2 2 1 1 88.11
11 2 2 1 1 3 3 1 2 83.81
12 2 3 2 2 1 1 1 3 98.27
13 2 1 2 3 1 3 2 2 115.52
14 2 2 3 1 2 1 2 3 94.89
15 2 3 1 2 3 2 2 1 94.70
16 2 1 3 2 3 1 3 2 121.62
17 2 2 1 3 1 2 3 3 93.86
18 2 3 2 1 2 3 3 1 96.10

seven three-level factors (named B, C, D, E, F , G, and H), so that in total there are eight factors. Table 3 presents
the design along with the response variable values for each run.

All three-level factors are quantitative and almost evenly-spaced so that we could decompose the main effect
into linear and quadratic contrasts. Meanwhile, we used {−1,+1} contrast for the two-level factor.

Using aforementioned setting, we have 1 + 7(2) = 15 main effects, 7(1× 2) = 14 two-factor interaction effects
between A and the other factors, and

(
7
2

)
(2× 2) = 84 two-factor interaction effects among the three-level factors.

It means that in total we should consider 113 effects to be examined and a chromosome in the GA procedure would
consist of 113 genes.

Table 4 presents the effects selected by GA method when the number of effects in the model were restricted at
most 1 to 13. Those results were produced by using AIC as the fitness value. The table also provides the effects
obtained by Yuan et. al. [23] using the LARS/LASSO approach.

As previously mentioned in the introduction section, LARS in Yuan et. al. [23] works by entering a single group
of effect on each of its iteration. Since the group sizes vary, we could not control the total number of effects which
entered in the model. It explains why we do not have the result in most rows of Table 4 . From the table, we observe
that when the number of effects was restricted to be 3, 4, and 5, the proposed approach produced identical results
with what Yuan et. al. [23] had. The selected effects included main effects of E and F , and also liner-by-linear
interaction of both factors. LARS methodology was only able to select all eight main effects and interaction effects
of B and H at their next iteration so that in total there are 13 effects. It is obvious why LARS did not produce
models with 6 to 12 effects.

When we executed the GA methodology with at most 13 effects, we ended up with quite different result.
All effects of B and H are there, but the other effects differ from what Yuan et. al. [23] produced. In term of
AIC and PRESS the linear model including effects that the GA produced is better. Respectively, it has AIC and
PRESS of 43.29 and 150.98, while the model with effects resulted by LARS methodology has AIC = 89.43 and
PRESS=510.22.
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Table 4. Selected effects in blood glucose experiment

maximum number selected effect result of
of effects [23]
1 G not available
2 F, F 2 not available
3 E,F,E1F 1 E,F,E1F 1

4 E,F,E2, E1F 1 E,F,E2, E1F 1

5 E,F,E2, F 2, E1F 1 E,F,E2, F 2, E1F 1

6 B,G,H,H2, B1H1, B1H2 not available
7 B,G,H,G2,H2, B1H1, B1H2 not available
8 B,H,B2,H2, B1H1, B1H2, B2H1, B2H2 not available
9 B,F,H,B2, H2, B1H1, B1H2, not available

B2H1, B2H2

10 B,F,H,B2, H2, B1F 1, B1H1, not available
B1H2, B2H1, B2H2

11 B,D,F,H,B2,H2, F 1H1, not available
B1H1, B1H2, B2H1, B2H2

12 B,C, F,H,B2,H2, B1C1, not available
B1F 1, B1H1, B1H2, B2H1, B2H2

13 A,B,C, F,H,B2,H2, B1C1, B,E, F,H,B2, E2, F 2,H2,
B1F 1, B1H1, B1H2, B2H1, B2H2 E1F 1, B1H1, B1H2, B2H1, B2H2

5. Conclusion

This current paper discusses an alternative approach to identify active effects based on a fractional factorial
experiment data. The existing of heredity principle insist us not to utilize ordinary variable selection approaches
since they perform the selection of variable individually. By applying the dependence structure of effects explained
in Yuan et. al. [23], we propose to use GA to find effects that optimize a certain model selection criterion. In
this paper, AIC and PRESS were chosen because both are considering goodness of fit of the prediction as well
as preventing models to be too complicated. The proposed approach offers some benefit. It could well handle the
conformity to the heredity principle by carefully define the group of effects represented by each gene. Also, it
gives an opportunity to determine the number of effects to be selected. Both advantages might be useful for most
researchers and make this approach as a competitive method.

However, because the optimization algorithm employs the GA, we suggest that the users should run the algorithm
several times and pick the best result among those trials. The different results for one try to other tries might happen
because of the different random initial population. This possibility would commonly occur when the number of
effects is very large.

We demonstrated how this approach works when the model have to satisfy the strong heredity principle. We
aware that it is possible that some analyst may work with the weak heredity principle instead. A modification
of dependence structure should be defined based on that and the GA method could work without any difference.
Yuan et. al. [23] discussed the dependence structure for this principle and readers could adopt it literally. Even
we only discussed the algorithm for two-level factors and quantitative three-level factors, this approach could also
be implemented for other situations such as factors with three or more levels, no matter whether they are either
quantitative or qualitative ones.
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