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Abstract The conjugate gradient method is a very efficient iterative technique for solving large-scale unconstrained
optimization problems. Motivated by recent modifications of some variants of the method and construction of hybrid
methods, this study proposed four hybrid methods that are globally convergent as well as computationally efficient. The
approach adopted for constructing the hybrid methods entails projecting ten recently modified conjugate gradient methods.
Each of the hybrid methods is shown to satisfy the descent property independent of any line search technique and globally
convergent under the influence of strong Wolfe line search. Results obtained from numerical implementation of these
methods and performance profiling show that the methods are very competitive with well-known traditional methods.
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1. Introduction

From the industrial perspective and the associated processes such as facility location, production, distribution,
logistics, etc, the applications of optimization techniques can not be overemphasized. For instance, their
applications take central place in the well studied vehicle routing problem, a problem frequently encountered
by the distribution units of manufacturing industries (see [2]). Their importance has necessitated the design of
many techniques that can be deployed for solving both constrained and unconstrained optimization problems (see
[11, 12]). In this paper, however, we consider an optimization technique known as the conjugate gradient (CG)
method for solving unconstrained optimization problems of the form

min
x∈Rn

f(x), (1)

where f : Rn → R is a continuously differentiable objective function for which the gradient can be evaluated. The
nonlinear CG methods constitute a class of iterative scheme for solving (1) effectively especially for large values
of n. The CG scheme for (1) can be written as follows:

xk+1 = xk + αkdk, (2)
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where αk is the step-length evaluated by an appropriate line search process, and dk is the search direction given by
the following rules:

d0 = −g0, for k = 0; dk = −gk + βkdk−1, for k ≥ 1, (3)

where gk = g(xk) is the gradient of f at xk, βk is the CG update parameter. Usually βk is chosen such that the
iterative scheme (2) and (3) reduces to the linear CG method when f is a strictly convex quadratic function and αk

is determined by a one-dimensional exact line search technique.
The past few decades have seen many variants of the nonlinear CGM developed, some of which includes

Hestenes and Stiefel (HS) [16], Fletcher and Reeves (FR) [13], Polak, Ribier and Polyak (PRP) [27, 28], Liu and
Storey (LS) [24], Dai and Yuan (DY) [7] and Hager and Zhang (CG DESCENT (N)) [14]. The basic difference
among these methods exists in the value of their as may be observed in their respective value as follows:

βHS
k =

gTk yk
dTk−1yk

, βFR
k =

∥gk∥2

∥gk−1∥2
, βPRP

k =
gTk yk

∥gk−1∥2
,

βLS
k =

gTk yk
−dTk−1gk−1

, βDY
k =

||gk||2

dTk−1yk
, βN

k =

(
yk − 2dk−1

∥yk∥2

dTk−1yk

)T
gk+1

dTk−1yk
,

where ∥ · ∥ denotes the Euclidean norm and yk = gk − gk−1.
Experiments have shown that for strictly convex function f all the above methods are equivalent with exact

line search. However, for non-quadratic objective functions, the βk of these methods perform differently [1, 15].
Establishing the global convergence results of these methods usually requires that the step-length αk satisfies some
inexact line search criteria because most exact line search approaches are computationally expensive. The most
commonly used among the approximate line search criteria is the strong Wolfe line search (SWLS) criterion which
is given as follows:

f(xk−1 + αkdk)− f(xk) ≥ −δαkg
T
k−1dk−1 (4)

and
|gTk dk−1| ≤ −σgTk−1dk−1, (5)

with 0 < δ < σ < 1. The weaker version of this condition combines (4) with

|gTk dk−1| ≥ σgTk−1dk−1 (6)

Dai and Yuan [6] gave a generalization (GWLS) of the above conditions as a combination of (4) and

σ1g
T
k−1dk−1 ≤ gTk dk−1 ≤ −σgTk−1dk−1, (7)

where 0 < δ < σ1 < 1 and σ2 ≥ 0. Note that when σ1 = σ2 = σ, (4) and (7) reduces to (4)-(5). Similarly, when
σ1 = σ and σ2 = inf , the combination of (4) and (7) reduces to (4) and (6). In [14], Hager and Zhang introduced
an approximation of the Wolfe conditions by replacing (7) with

σgTk−1dk−1 ≤ gTk dk−1 ≤ (2δ − 1)gTk−1dk−1, (8)

such that 0 < δ < 1
2 and δ < σ < 1. This line search procedure implemented on the CG DESCENT method (See

[14]) is among the fastest known CG algorithm.
However, an important requirement for deploying the above CG variants and others not mentioned here is the

existence of descent property during the implementation of any of the line search techniques described above. A
CG algorithm is said to satisfy the descent property if

gTk dk−1 < 0, ∀ k ≥ 1. (9)

A more natural way of guaranteeing descent for CG algorithms apart from (9) is by using the sufficient descent
property. This is given by

gTk dk−1 ≤ −c∥gk−1∥2, ∀ k ≥ 1. (10)
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where c is a positive constant. For more information on the theories and applications of CG methods, we refer the
reader to [20, 21, 22, 23, 25, 26, 32].

Each CG method has very striking features that makes it adaptable to some sets of unconstrained problems.
For instance, the FR and DY methods have been identified as having the best convergence results (See [3, 8]).
However, for general objective functions, the two methods have poor computational power. Conversely, the HS
and PRP methods have good computational strength even though they exhibit less desirable convergence results.
These contrasting features have led to the development of hybrid methods which are constructed with the aim of
overcoming existing deficiencies in two or more methods. For instance, a well-constructed hybrid method of FR
and PRP should perform well computationally as well as yield good convergence properties. These advantages
associated with hybrid CG methods are the motivations behind this study. In this paper, new hybrid CG methods
are proposed through the combination of recently proposed variants of the PRP and HS methods. Even though the
two methods are specifically known to perform well computation-wise, it is important to note that their hybrids
exhibit strong global convergence properties.

The rest of this paper is organized as follows. In Section 2, a review of some recent methods leading to the
proposed methods is presented. In Section 3, the new methods are highlighted along with a suitable algorithm for
testing their computational strength. The descent and global convergence properties of the proposed methods in
are described in Section 4. Some preliminary numerical results are presented in Section 5, while some concluding
remarks are given in Section 6.

2. Related Studies

In this section, we trace the development of methods that directly relates to the proposed hybrid methods. The PRP
and HS methods form the basic building blocks for all that is discussed hereafter. In [30], a new variant of PRP
method, named VPRP method, was proposed with the CG update parameter βk given by

βV PRP
k =

gTk

(
gk − ∥gk∥

∥gk−1∥gk−1

)
∥gk−1∥2

(11)

The study assumed that the method satisfies (10) and established its global convergence under different line search
techniques, ranging from exact to approximate methods. Specifically, Huang et al. [17] demonstrated the global
convergence of the method under the influence of strong Wolfe line search (SWLS) (4-5) with σ < 1

4 . Motivated by
the results in [30], Shengwei et al. [29] extended the approach to suggest CG variants of the HS and LS methods.
Particularly, their proposed variant of HS method has the value of βk given by

βV HS
k =

gTk

(
gk − ∥gk∥

∥gk−1∥gk−1

)
dTk−1yk

(12)

This method was shown to possess the sufficient descent property and globally convergent with σ < 1
3 . Zhang [34]

modified (11) and (12) to give new variants, which are referred to as MVPRP and MVHS here, respectively, with
the update parameters given as

βMV PRP
k =

∥gk∥2 − ∥gk∥
∥gk−1∥ |g

T
k gk−1|

∥gk−1∥2
(13)

and

βMHS
k =

∥gk∥2 − ∥gk∥
∥gk−1∥ |g

T
k gk−1|

dTk−1yk
(14)

Both methods of (13) and (14) satisfy (10) and were shown to be globally convergent for SWLS (4-5) with σ < 1
2 .

The numerical results reported for these two methods show considerable improvement compared to (11) and (12).
In fact, Du et al. [10] noted that 0 ≤ βMV PRP

k ≤ βFR
k , and thus according to [33], the MVPRP method possesses
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the descent property (9) and is globally convergent under GWLS (4) and (7) with σ1 + σ2 ≤ 1. The equality part
of this inequality suggests that the MVPRP method is guaranteed to converge globally under line search (4-5) with
σ = 1

2 .
A new variant of PRP method was introduced in [18] possessing property (10) and globally convergent for the

SWLS with σ ∈
(
0, 1

2

)
. Their variant, which we shall denote as HPRP, has its βk given as

βHPRP
k =

gTk

(
gk − gT

k gk−1

∥gk−1∥2 gk−1

)
∥gk−1∥2

. (15)

What was said of MVPRP above is also applicable to HPRP since 0 ≤ βHPRP
k ≤ βFR

k . A similar study in [31]
produced a new variant of HS method referred to as WHS method in this study. In this case βk is given as

βWHS
k =

gTk

(
gk − gT

k gk−1

∥gk−1∥2 gk−1

)
dTk−1yk

. (16)

This method satisfies (10) and is globally convergent for the SWLS with σ ∈
(
0, 1

2

)
. Du et al. [10] later showed

that WHS method is very closely related to the DY method. Particularly, they showed that βWHS
k ≤ βDY

k , for all
k ≥ 1 and thus claimed that the method has a similar global convergence property like the DY method. In other
words, the method is a descent method and globally convergent under the Wolfe line search (4) and (6) with σ < 1.

Very recently, Du et al. [10] proposed four modified CG methods. Here, we only mention two, which are of
interest in this paper. The first of these, a variant of the PRP method which we shall refer to as DPRP method, has
its βk value given as follows:

βDPRP
k =

gTk

(
gk − |gT

k gk−1|
∥gk−1∥2 gk−1

)
∥gk−1∥2

(17)

and the second, referred to as DHS method, is a variant of the HS method and has its βk given as follows:

βDHS
k =

gTk

(
gk − |gT

k gk−1|
∥gk−1∥2 gk−1

)
dTk−1yk

. (18)

It was shown that the DPRP and DHS methods possess the sufficient descent property and are globally convergent
under SWLS with 0 < σ < 1

4 and 0 < σ < 1
3 , respectively. It was further shown that the two methods are always

nonnegative under the same assumptions of SWLS and the respective intervals of convergence above.
Next, the newly proposed hybrid methods are presented by projecting the methods described above. The

development of these methods was motivated by the observation that numerical results reported for these methods
revealed that the methods are not so efficient compared to some classical methods, especially the CG DESCENT
method.

3. Hybrid Conjugate Gradient Methods and Implementation Algorithm

In this section, the hybrid methods of PRP, HS, VPRP, VHS, MVPRP, MVHS, HPRP, WHS, DPRP and DHS are
presented. The following are the four proposed hybrid methods:

i. The hybrid of DPRP, DHS, PRP and HS, where βk is given as

βDPH
k =

∥gk∥2 −max{ |gT
k gk−1|

∥gk−1∥2 g
T
k gk−1, g

T
k gk−1}

max{∥gk−1∥2, dTk−1 (gk − gk−1)}
(19)
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ii. The hybrid of DPRP, DHS, HPRP and WHS, where βk is given as

βDHW
k =

∥gk∥2 −max{ |gT
k gk−1|

∥gk−1∥2 g
T
k gk−1,

(
gT
k gk−1

∥gk−1∥

)2

}

max{∥gk−1∥2, dTk−1 (gk − gk−1)}
(20)

iii. The hybrid of DPRP, DHS, VPRP and VHS, where βk is given as

βDV
k =

∥gk∥2 −max{ |gT
k gk−1|

∥gk−1∥2 g
T
k gk−1,

∥gk∥
∥gk−1∥g

T
k gk−1}

max{∥gk−1∥2, dTk−1 (gk − gk−1)}
(21)

iv. The hybrid of DPRP, DHS, MVPRP and MVHS, where βk is given as

βDM
k =

∥gk∥2 −max{ |gT
k gk−1|

∥gk−1∥2 g
T
k gk−1,

∥gk∥
∥gk−1∥ |g

T
k gk−1|}

max{∥gk−1∥2, dTk−1 (gk − gk−1)}
(22)

These methods exhibit the properties of both PRP and HS methods, and the analyzes that follow in the next
sections specifically show that the proposed methods are always descent independent of the step-length line
search procedure adopted. Based on (19)-(22), the following algorithm is proposed for the analyzes and numerical
implementation of the methods.

Algorithm 1: Hybrid Conjugate Gradient Algorithm
1 Given x0 ∈ Rn, ϵ > 0; set g(x0) = g0, d0 = −g0, k = 0;
2 Obtain αk such that conditions (4-5) are satisfied and evaluate xk+1 = xk + αkdk;
3 while ∥gk∥ ≤ ϵ do
4 gk = g(xk) = ∇f(xk);
5 βk = βk = {βDPH

k , βDHW
k , βDV

k , βDM
k };

6 dk = −gk + βkdk−1;
7 k = k + 1;
8 end

4. Descent and Global Convergence Properties of Algorithm 1

In this section, the properties of Algorithm 1 are presented. The analyzes begin by establishing the descent
properties of each method followed by their global convergence results. The results that follow establish the descent
properties of the sequence of search directions generated by Algorithm 1. Interestingly, these results were obtained
independent of any line search procedure.

Theorem 1
Suppose that f(x) in (1) is a smooth function and dk is generated by Algorithm 1. Then gTk dk < 0 for each k ≥ 0.

Proof
Clearly, gT0 d0 = ∥g0∥2 for k = 0. By assumption, let gTk dk < 0 holds for k ≥ 1. To show that gTk dk < 0 for all k,
the proof is divided into four different cases for each of the hybrid method. Note that if βk = 0, then, from (3),
dk = −gk + βkdk−1 = −gk → gTk dk = −∥g0∥2 < 0. Thus, it is assumed that βk ̸= 0 in all the cases.

DPH Method
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Case I: If gTk gk−1 <
(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1 (gk − gk−1) ≥ ∥gk−1∥2, then from (19), βDPH

k = βDHS
k .

Notably, since ∥gk∥2 > 0, the denominator of βDHS
k , that is, dTk−1 (gk − gk−1) > 0. Hence, starting with (3), we

have

gTk dk = gk
(
−gk + βDHS

k dk−1

)
= −∥gk∥2 +

∥gk∥2 − |gT
k gk−1|
∥gk∥2 gTk gk−1

dTk−1 (gk − gk−1)

 gTk dk−1 = −∥gk∥2 +
∥gk∥2gTk dk−1

dTk−1 (gk − gk−1)

−
|gT

k gk−1|
∥gk∥2 gTk gk−1

dTk−1 (gk − gk−1)
gTk dk−1 =

−∥gk∥2dTk−1 (gk − gk−1) + ∥gk∥2gTk dk−1

dTk−1 (gk − gk−1)
−

|gT
k gk−1|
∥gk∥2 gTk gk−1

dTk−1 (gk − gk−1)
gTk dk−1

=
∥gk∥2gTk dk−1

dTk−1 (gk − gk−1)
−

|gT
k gk−1|
∥gk∥2 gTk gk−1

dTk−1 (gk − gk−1)
gTk dk−1 <

∥gk∥2gTk−1dk−1

dTk−1 (gk − gk−1)
< 0

(23)
In (23), the first equality was obtained by finding the inner product of (3) and substituting βDHS

k for βk. The
first inequality is obvious because

(
|gTk gk−1|/∥gk∥2

)
> 1 from the first assumption above, while the second was

obtained from the fact that gTk−1dk−1 < 0.
Case II: If gTk gk−1 <

(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1 (gk − gk−1) < ∥gk−1∥2, then (19) yields βDPH

k =

βDPRP
k . Notice that the second assumption implies that gTk dk−1 − ∥gk−1∥2 < gTk−1dk−1. Thus, starting from (3),

we obtain the following result:

gTk dk = gk
(
−gk + βDPRP

k dk−1

)
= −∥gk∥2 + {

[
∥gk∥2 −

(
|gTk gk−1|
∥gk∥2

)
gTk gk−1

]
∥gk∥2}gTk dk−1

= −∥gk∥2 +
∥gk∥2gTk dk−1

∥gk−1∥2
−

(
|gT

k gk−1|
∥gk−1∥2

)
gTk gk−1

∥gk−1∥2
gTk dk−1 =

(
gTk dk−1 − ∥gk−1∥2

)
∥gk∥2

∥gk−1∥2

−

(
|gT

k gk−1|
∥gk−1∥2

)
gTk gk−1

∥gk−1∥2
gTk dk−1 <

(
gTk dk−1 − ∥gk−1∥2

)
∥gk∥2

∥gk−1∥2
<

∥gk∥2

∥gk−1∥2
gTk−1dk−1 < 0

(24)

Case III: If gTk gk−1 ≥
(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1 (gk − gk−1) ≥ ∥gk−1∥2, then from (19), βDPH

k =

βHS
k . Proceeding from the inner product of (3) with gk gives

gTk dk = gk
(
−gk + βHS

k dk−1

)
= −∥gk∥2 +

∥gk∥2 − gTk gk−1

dTk−1 (gk − gk−1)
gTk dk−1 =

∥gk∥2gTk−1dk−1 − gTk gk−1 · gTk dk−1

dTk−1 (gk − gk−1)

=
∥gk∥2gTk−1dk−1

dTk−1 (gk − gk−1)
− gTk gk−1 · gTk dk−1

dTk−1 (gk − gk−1)
<

∥gk∥2gTk−1dk−1

dTk−1 (gk − gk−1)
< 0

(25)
Case IV: If gTk gk−1 ≥

(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1 (gk − gk−1) < ∥gk∥2, then from (19), βDPH

k = βPRP
k .

The second assumption in this case allows us to set gTk dk−1 − ∥gk∥2 < gTk−1dk−1 and beginning from (3) as in
other cases, we obtain

gTk dk = gk
(
−gk + βPRP

k dk−1

)
= −∥gk∥2 +

∥gk∥2 − gTk gk−1

∥gk−1∥2
gTk dk−1 =

(
gTk dk−1 − ∥gk∥2

)
∥gk∥2

∥gk−1∥2

− gTk gk−1 · gTk dk−1

∥gk−1∥2
<

∥gk∥2
(
gTk dk−1 − ∥gk∥2

)
∥gk−1∥2

<
∥gk∥2

∥gk−1∥2
gTk−1dk−1 < 0

(26)

The descent property is satisfied in (23)-(26). Hence, the sequence of search directions generated by the DPH
method satisfies the descent property.
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DHW Method

Case I: If
(
gTk gk−1/ ∥gk−1∥

)2
<

(∣∣gTk gk−1

∣∣ / ∥gk−1∥2
)
gTk gk−1 and dTk−1 (gk − gk−1) ≥ ∥gk−1∥2, then (20) yields

βDHW
k = βDHS

k . Clearly, this result may be established as in Case I of the DPH method.

Case II: If
(
gTk gk−1/ ∥gk−1∥

)2
<

(∣∣gTk gk−1

∣∣ / ∥gk−1∥2
)
gTk gk−1 and dTk−1 (gk − gk−1) < ∥gk−1∥2, then (20)

yields βDHW
k = βDPRP

k . The proof of this result is similar to Case II in the DPH method.

Case III: If
(
gTk gk−1/ ∥gk−1∥

)2 ≥
(∣∣gTk gk−1

∣∣ / ∥gk−1∥2
)
gTk gk−1 and dTk−1 (gk − gk−1) ≥ ∥gk−1∥2, then (20)

yields βDHW
k = βWHS

k . Starting from (3) yields the following result:

gTk dk = gTk
(
−gk + βWHS

k dk−1

)
= −∥gk∥2 +

∥gk∥2 −
(
gTk gk−1/ ∥gk−1∥2

)
dTk−1 (gk − gk−1)

· gTk dk−1

=
−∥gk∥2

(
gTk dk−1 − gTk−1dk−1

)
+ ∥gk∥2 gTk dk−1 −

(
gTk gk−1/ ∥gk−1∥2

)
gTk dk−1

dTk−1 (gk − gk−1)

=
∥gk∥2

dTk−1 (gk − gk−1)
gTk−1dk−1 −

(
gTk gk−1/ ∥gk−1∥2

)
dTk−1 (gk − gk−1)

gTk dk−1 <
∥gk∥2

dTk−1 (gk − gk−1)
gTk−1dk−1 < 0

(27)

The first inequality was obtained from the fact that gk − gk−1 ≥ |gk − gk−1| (from the first assumption) and
dTk (gk − gk−1) > 0 (the second assumption). These two inequalities enforced the positivity of the second term in
the expression of the last equality. The last inequality was obtained from the fact that gTk−1dk−1 < 0.

Case IV: Let
(
gTk gk−1/ ∥gk−1∥

)2 ≥
(∣∣gTk gk−1

∣∣ / ∥gk−1∥2
)
gTk gk−1 and dTk−1 (gk − gk−1) < ∥gk−1∥2. In this case,

betak is computed as βDHW
k = βHPRP

k . The inner product of (3) and after some algebra give

gTk dk = gTk
(
−gk + βHRP

k dk−1

)
= −∥gk∥2 +

∥gk∥2 −
(
gTk gk−1/ ∥gk−1∥2

)
∥gk−1∥2

· gTk dk−1

=
−∥gk∥2 ∥gk−1∥2 + ∥gk∥2 gTk dk−1 −

(
gTk gk−1/ ∥gk−1∥2

)
gTk dk−1

∥gk−1∥2
=

∥gk∥2
(
gTk dk−1 − ∥gk−1∥2

)
∥gk−1∥2

−

(
gTk gk−1/ ∥gk−1∥2

)
∥gk−1∥2

gTk dk−1 <
∥gk∥2

∥gk−1|∥
gTk−1dk−1 −

(
gTk gk−1/ ∥gk−1∥2

)
∥gk−1∥2

gTk dk−1

<
∥gk∥2

∥gk−1∥2
gTk−1dk−1 < 0

(28)

Therefore, since gTk dk < 0 for all k ≥ 1 in all the cases, the DHW method generates descent directions.

DV Method

Case I: Suppose (∥gk∥/∥gk∥) gTk gk−1 <
(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1(gk − gk−1) ≥ ∥gk∥2, betaDV

k in (21)
reduces to betaDHS

k . The proof of the descent property of dk in this case is similar to Case I of the DPH and DHW
methods.
Case II: Suppose (∥gk∥/∥gk∥) gTk gk−1 <

(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1(gk − gk−1) < ∥gk−1∥2, then βk is

yielded by (17). The proof of the descent property of in this case is also similar to Case II of the DPH and DHW
methods.
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Case III: Let (∥gk∥/∥gk∥) gTk gk−1 ≥
(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1(gk − gk−1) ≥ ∥gk−1∥2. These

conditions yield betaDV
k = betaV HS

k and beginning with (3), the following result is obtained.

gTk dk = gTk
(
−gk + βV HS

k dk−1

)
= −∥gk∥2 +

∥gk∥2 − (∥gk∥ / ∥gk−1∥) gTk gk−1

dTk−1 (gk − gk−1)
· gTk dk−1

=
∥gk∥2 gTk−1dk−1

dTk−1 (gk − gk−1)
− (∥gk∥ / ∥gk−1∥) gTk gk−1

dTk−1 (gk − gk−1)
· gTk dk−1 =

∥gk∥2 gTk−1dk−1

dTk−1 (gk − gk−1)

− ∥gk∥2 cos θk
dTk−1 (gk − gk−1)

· gTk dk−1 <
∥gk∥2 gTk−1dk−1

dTk−1 (gk − gk−1)
− ∥gk∥2 cos θk

dTk−1 (gk − gk−1)
· gTk−1dk−1

=
∥gk∥2 (1− cos θk)

dTk−1 (gk − gk−1)
gTk−1dk−1 < 0

(29)

This result is explained as follows: the first supposition holds if gTk gk−1 > 0, and so we have 0 < cos θk < 1,
where θk is the angle between gk and gk−1. Thus, it is easy to see that (∥gk∥ / ∥gk−1∥) gTk gk−1 = ∥gk∥2 cos θk, thus
establishing the last equality.
Case IV: Suppose (∥gk∥/∥gk∥) gTk gk−1 ≥

(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1(gk − gk−1) < ∥gk−1∥2, then

βDV
k = βV PRP

k and beginning with (3), the following result is obtained.

gTk dk = gTk

(
−gk + βV PRP

k dk−1

)
= −∥gk∥2 +

∥gk∥2 − (∥gk∥ / ∥gk−1∥) gTk gk−1

∥gk−1∥2
gTk dk−1

= −∥gk∥2 +
∥gk∥2 − ∥gk∥2 cos θk

∥gk−1∥2
gTk dk−1 = −∥gk∥2 +

∥gk∥2 (1− cos θk)

∥gk−1∥2
gTk dk−1

< −∥gk∥2 +
∥gk∥2 (1− cos θk)

∥gk−1∥2
(
∥gk−1∥2 + gTk−1dk−1

)
< −∥gk∥2 cos θk

+
∥gk∥2 (1− cos θk)

∥gk−1∥2
gTk−1dk−1 <

∥gk∥2 (1− cos θk)

∥gk−1∥2
gTk−1dk−1 < 0

(30)

Results in (29) and (30) together with cases I and II show that the DV method generates descent directions.

DM Method

Case I: If (∥gk∥/∥gk∥) |gTk gk−1| <
(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1(gk − gk−1) ≥ ∥gk−1∥2, then

βDM
k = βDHS

k .In this case, gTk gk−1 < 0, similar to results in Cases I of the DPR, DHW and DV methods
above.

Case II: If (∥gk∥/∥gk∥) |gTk gk−1| <
(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1(gk − gk−1) < ∥gk−1∥2, then

βDM
k = βDPRP

k .In this case also gTk gk−1 < 0 as in Cases II of the DPR, DHW and DV methods as earlier
proved.

Case III: If (∥gk∥/∥gk∥) |gTk gk−1| ≥
(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1(gk − gk−1) ≥ ∥gk−1∥2, then βk is

yielded by βMVHS
k as in (14). It is clear that |gTk gk−1| > 0, and so βMVHS

k < βDY
k . This and the inner product

of (3) with gk give

gTk dk = gTk
(
−gk + βMHS

k dk−1

)
= −∥gk∥2 +

∥gk∥2 − (∥gk∥ ∥gk−1∥)
∣∣gTk gk−1

∣∣
dTk−1 (gk − gk−1)

gTk dk−1

≤ −∥gk∥2 +
∥gk∥2

dTk−1 (gk − gk−1)
gTk dk−1 =

−∥gk∥2
(
gTk dk−1 − gTk−1dk−1

)
+ ∥gk∥2 gTk dk−1

dTk−1 (gk − gk−1)
< 0

(31)
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The last inequality follows as dTk−1(gk − gk−1) > 0 since ∥gk−1∥2 > 0.

Case IV: If (∥gk∥/∥gk∥) |gTk gk−1| ≥
(
|gTk gk−1|/∥gk∥2

)
gTk gk−1 and dTk−1(gk − gk−1) < ∥gk−1∥2, then βDM

k =

βMV PRP
k . Starting from (3) yields

gTk dk = gTk
(
−gk + βMV PRP

k dk−1

)
= −∥gk∥2 +

∥gk∥2 − (∥gk∥ / ∥gk−1∥)
∣∣gTk gk−1

∣∣
∥gk−1∥2

gTk dk−1

≤ −∥gk∥2 +
∥gk∥2

∥gk−1∥2
gTk dk−1 < −∥gk∥2 +

∥gk∥2

∥gk−1∥2
(
∥gk−1∥2 + gTk−1dk−1

)
=

∥gk∥2

∥gk−1∥2
gTk−1dk−1 < 0

(32)

The first inequality follows the fact that βMV PRP
k ≤ βFR

k as ∥gk−1∥2 > 0, and the second inequality holds
according to the second assumption. Hence, the DM method is a descent method. Therefore, the descent property
is satisfied for all the methods.

The following important result can easily be inferred from Theorem 1. This result is important in establishing the
global convergence of the Hybrid Algorithm. The result is shown for only the DPH method as the same approach
is valid for the other three methods.

Lemma 1
The inequality 0 ≤ βk ≤ gT

k dk

gT
k−1dk−1

always holds for every k ≥ 1, where βk = {βDPH
k , βDHW

k , βDV
k , βDM

k }.

Proof
From (19) it is known that βDPH

k ≥ 0, which establishes the first part of the inequality. Now, suppose βDPH
k = 0

and gk ̸= 0, then gT
k dk

gT
k−1dk−1

> 0 since gTk dk and gTk−1dk−1 (both from Theorem 1). By assuming βDPH
k > 0, the

following four cases are established.
Case I: If gTk gk−1 <

|gT
k gk−1|

∥gk−1∥2 g
T
k gk−1 and dk−1 (gk − gk−1) ≥ ∥gk−1∥2, then (19) yields βDPH

k = βDHS
k . Hence,

Theorem 1 together with (23) gives

βDPH
k =

∥gk∥2 − |gT
k gk−1|

∥gk−1∥2 g
T
k gk−1

dk−1 (gk − gk−1)
<

∥gk∥2

dk−1 (gk − gk−1)
<

gTk dk
gTk−1dk−1

(33)

Case II: If gTk gk−1 <
|gT

k gk−1|
∥gk−1∥2 g

T
k gk−1 and dk−1 (gk − gk−1) < ∥gk−1∥2, then (19) yields βDPH

k = βDPRP
k . Hence,

Theorem 1 together with (24) gives

βDPH
k =

∥gk∥2 − |gT
k gk−1|

∥gk−1∥2 g
T
k gk−1

∥gk−1∥2
<

∥gk∥2

∥gk−1∥2
<

gTk dk
gTk−1dk−1

(34)

Case III: If gTk gk−1 ≥ |gT
k gk−1|

∥gk−1∥2 g
T
k gk−1 and dk−1 (gk − gk−1) ≥ ∥gk−1∥2, then (19) yields βDPH

k = βHS
k . Hence,

Theorem 1 together with (25) gives

βDPH
k =

gTk (gk − gk−1)

dk−1 (gk − gk−1)
<

∥gk∥2

dk−1 (gk − gk−1)
<

gTk dk
gTk−1dk−1

(35)

Case IV: If gTk gk−1 ≥ |gT
k gk−1|

∥gk−1∥2 g
T
k gk−1 and dk−1 (gk − gk−1) < ∥gk−1∥2, then (19) yields βDPH

k = βPRP
k . Hence,

Theorem 1 together with (26) gives

βDPH
k =

gTk (gk − gk−1)

∥gk−1∥2
<

∥gk∥2

∥gk−1∥2
<

gTk dk
gTk−1dk−1

(36)
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Therefore, the inequality 0 ≤ βk ≤ gT
k dk−1

gT
k−1dk−1

is true for βk = βDPH
k .

Next, the global convergence result of Algorithm 1 is established. The result is established under the following
assumptions.

Assumption 1: 1. Bound on the Objective Function: f(x) is bounded from below on the level set
Ω = {x ∈ Rn : f(x) ≤ f (x0)}, where x0 is the initial point.

Assumption 2: Lipschitz Condition: within some neighbourhood N of Ω, f(x) is continuously differentiable, and
its gradient is Lipschitz continuous, that is, for all x, y ∈ N , there exists a constant L ≥ 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥ (37)

Together with Assumptions 1 and 2, the following important results is usually employed to establish the global
convergence results of CG algorithms.

Lemma 2
Let an iterative scheme of the form (2) where dk is a descent direction and αk satisfies the Wolfe line search
conditions (4) and (6). If assumptions 1 and 2 hold, then,

∞∑
k=0

(
gTk dk

)2
∥dk∥2

< +∞ (38)

Lemma 2 is the famous Zoutendijk condition, the proof of which may be found in [7]. Using Lemma 2 and the
above assumptions, the following global convergence result of the Algorithm 1 is presented.

Theorem 2
Let dk be generated by the iterative rules (2)-(3) with βk computed from Line 5 of Algorithm 1. If Assumptions 1
and 2 hold, then by Lemmas 1 and 2, limk→∞ inf ∥gk∥ = 0.

Proof
Suppose by contradiction that the conclusion does not hold, that is, limk→∞ inf ∥gk∥ ̸= 0. However, since ∥gk∥ > 0,
then there exists a constant ζ > 0 such that ∥gk∥ ≥ ζ, ∀k. Starting with (3) gives

∥dk∥2 = β2
k ∥dk−1∥2 − 2dTk gk − ∥gk∥2 (39)

Dividing both sides of (35) by
(
dTk gk

)2 and using Lemma 1, the following was obtained

∥dk∥2(
dTk gk

)2 =
∥dk−1∥2(
dTk−1gk−1

)2 − 2

dTk gk
− ∥gk∥2(

dTk gk
)2 =

∥∥dTk−1

∥∥2(
dTk1gk−1

)2 −
(

1

∥gk∥
+

∥gk∥
dTk gk

)2

+
1

∥gk∥2

≤ ∥dk−1∥2(
dTk−1gk−1

)2 +
1

∥gk∥2

(40)

Since ∥d1∥2 /
(
dT1 g1

)2
= 1/

(
dT1 g1

)2, (35) gives
(
∥dk−1∥2 /

(
dTk−1gk−1

)2) ≤
∑k

i=1

(
1/ ∥gi∥2

)
≤ k/ζ, ∀k. This

implies
∑

k≥1

(
gTk dk

)2
/ ∥dk∥2 = ∞, which contradicts (34).

5. Numerical Experiments

In this section, we describe the numerical implementations of the new hybrid methods and compare their
performances with other existing methods based on four indicators. The indicators for profiling the performance of
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our methods with other methods are: number of iterations (Table 1), the final value of the objective function (Table
2), the infinite norm of the final value of the gradient (Table 3) and the CPU time of executing Algorithm 1 (Table
4). All the test functions were drawn from [4], many of which are contained in the CUTEr library described in [5].

Hybrid CG Algorithm was coded and implemented on Matlab R2016a installed on a PC with Windows 10 OS
and 2G RAM. Varying dimensions of 500, 1000, 5000 and 10000 were used except for very few cases where, due
to problem peculiarity, we used much-reduced dimensions to obtain complete result output by all the methods.
The new methods were compared with other existing methods based on the indicators mentioned earlier adopting
the Dolan and Mor [9] performance profile theory. The theory outlines the comparison of the performance of a
set of methods S on a set of problem P In this case, for instance, S denotes the set of different CG methods
implemented on our algorithm while P is the set of unconstrained test functions. The theory is described in the
following paragraphs.

Suppose there exist ns methods and np problems, for each problem p and method s, then, rp,s is the computing
cost (number of iterations, CPU time, function or gradient evaluations) required to solve problem p by method s. If
Ip,s is an attribute (say, number of iterations or function evaluation, etc) for problem p ∈ P by method s ∈ S, then
the comparison between the different methods is based on the performance ratio given by

rp,s =
Ip,s

min {Ip,s : s ∈ S}
(41)

Equation (37) gives the required number of iterations for solving problem p ∈ P with method s ∈ S. Consequently,
if there exists a parameter rK , which is large enough so that rK ≥ rp,s for all p, s. Equality holds, that is rK = rp,s,
only when the chosen method s does not solve the problem p. Based on (37), the cumulative distribution function
for the performance ratio rp,s, is defined by

ρs(τ) =
1

np
|p ∈ P : log rp,s ≤ τ | (42)

where | · | represents cardinality, ρs(τ) is the probability, in relation to method s, that rp,s is within a factor τ ∈ Rn.
At τ = 1, the value of ρs(τ) is the probability that the method will out-performs the other methods.

The comparison of methods using the theory described above is outlined for each of the performance indicators
as follows: Set 1: DPRP, DHS, DPH, DHW, DV, DM and CG DESCENT and Set 2: VPRP, VHS, DPH, DHW, DV,
DM and CG DESCENT. The CG DESCENT method, being one of the most efficient CG methods, was selected
in both sets to profile the performance of the proposed methods.

At the start of the simulation, the value of αk at k = 0 is set to zero (0) while other values of αk are computed
using SWLS (4)-(5). The stopping criterion is given by ∥gk∥ ≤ ϵ, where ϵ = 10−6. Other parameters of the
algorithm are set as follows: δ = 0.0001 and σ = 0.9. The numerical results are presented in Tables 1-4. Note that
in Tables (3) and (4), the entries of a few cells are NaN meaning undefined or unrepresentative floating numbers. In
instances where this occurs, the numbers of iterations and the CPU times were still recorded in Table 1 and Table
2, respectively.

The following Figures 1-8 produced from the numerical values in Tables 1-4 indicate the performance profiles
of our hybrid methods against some non-hybrid methods. The performance profile with respect to the numbers of
iterations is illustrated in Figures 1. Clearly, in Figure 1, DPH and DV gave better performance than DHS, DPRP,
CG DESCENT (Figure 1 (left) at τ = 1 and τ = 2) and VPRP, VHS, CG DESCENT (Figure 1 (right) at τ = 1
and τ = 2), respectively. The comparison based on CPU time of execution (see Figures 2) shows that DPH and
DV methods remain very efficient and highly competitive (see Figure 2 (left) at τ = 2). Similarly, according to
Figure 2 (right), DPH and DV methods perform better than the CG DESCENT method. In term of the function
value, DM produced the best performance (Figure 3). From Figure 4, the average performance of DV and DM are
approximately the better methods.

In summary, in terms of computation time and number of iterations, DPH and DV were observed to be very
efficient and competitive. DM method gave a better performance based on objective function evaluation. On the
average, all the new methods either out-perform or very competitive with CG DESCENT method. The following
abbreviations were used in the tables: FN-Function Name; EBD1-Extended Block Diagonal-1, EH-Extended
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Himmelblau, GR-Generalized Rosenbrock, EWH-Extended White & Holst, GPSC1-Generalized PSC1, ET1-
Extended Tridiagonal-1, VD-Variable Dimension, PQD-Perturbed Quadratic Diagonal, GWH-Generalized White
& Holst, CGD-CG DESCENT.
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Figure 1. The performance profile of DPRP, DHS, DPH, DHW, DV, DM & CG DESCENT (left) and VPRP, VHS, DPH,
DHW, DV, DM & CG DESCENT (right) with respect to the numbers of iterations.
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Figure 2. The performance profile of DPRP, DHS, DPH, DHW, DV, DM & CG DESCENT (left) and VPRP, VHS, DPH,
DHW, DV, DM & CG DESCENT (right) with respect to CPU time.

Stat., Optim. Inf. Comput. Vol. 9, June 2021



O.J. ADELEKE, A.E. EZUGWU AND I.A. OSINUGA 411

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ(
τ)

 

 

DPRP
DHS
CG_DESCENT
DPH
DHW
DV
DM

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ(
τ)

 

 

VPRP
VHS
CG_DESCENT
DPH
DHW
DV
DM

Figure 3. The performance profile of DPRP, DHS, DPH, DHW, DV, DM & CG DESCENT (left) and VPRP, VHS, DPH,
DHW, DV, DM & CG DESCENT (right) with respect to the values of f .
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Figure 4. The performance profile of DPRP, DHS, DPH, DHW, DV, DM & CG DESCENT (left) and VPRP, VHS, DPH,
DHW, DV, DM & CG DESCENT (right) with respect to the values of ∥g∥.
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Table 1. Numerical test results for the numbers of iterations after running Algorithm 1 for different values of n. Functions
ARGLINB, HIMMELH and QUADRATIC behave differently from other functions, forcing the use of smaller dimensions.
ET1 under VHS produces the largest number of iterations compared to other functions which use the same values for n. DV
has the least average number of iterations (175.73) followed by DPH (191.10).

FN n
CG METHOD

VPRP VHS DPRP DHS DPH DHW DV DM CGD

EBD1

500 66 61 95 69 80 52 57 26 96
1000 78 79 69 82 52 55 73 42 62
5000 89 72 60 61 72 9 68 42 107
10000 110 77 71 101 67 54 52 71 59

Diagonal-4

500 167 5 85 5 18 46 40 47 49
1000 171 5 87 5 18 47 33 48 50
5000 179 5 91 8 18 49 52 50 52
10000 181 22 91 29 18 50 45 51 53

EH

500 25 60 75 77 26 25 37 19 31
1000 26 60 68 59 27 25 39 19 31
5000 26 60 140 95 29 25 42 19 33
10000 26 61 105 77 30 25 43 20 33

GR

500 76 40 39 56 64 37 96 45 57
1000 76 40 39 56 64 37 96 45 57
5000 76 40 39 56 64 37 96 45 57
10000 76 40 39 56 64 37 96 45 57

EWH

500 46 76 37 150 63 6570 89 484 83
1000 46 76 37 150 63 6473 89 484 83
5000 46 76 37 150 63 6497 89 484 83
10000 46 76 37 150 63 6497 89 484 83

GPSC1 500 2515 589 2095 353 3087 3824 1150 6146 1314
1000 2021 463 1158 339 1344 2421 1932 3542 761

ET1

500 3 46520 3 5124 462 817 479 4749 2013
1000 3 46520 3 6632 504 1107 520 5020 286
5000 3 46520 3 10862 628 1253 809 8228 180
10000 3 46520 3 13652 692 1883 752 8017 176

VD 500 41 3536 41 358 32 24 32 24 24
1000 36 34 36 34 25 25 25 25 25

QUADRATIC 50 207 84 172 59 93 157 71 132 382

PQD

500 125 15 125 15 20 63 20 63 63
1000 16 23 16 23 23 30 23 30 30
5000 3179 28 3179 26 37 1590 37 1590 1590
10000 965 28 965 25 36 483 36 483 483

ARGLINB 10 65 23 32 19 15 34 15 34 15
20 1411 43 1386 27 138 698 44 679 694

HIMMELH 2 33 13 25 34 12 21 11 21 20
4 31 21 26 41 19 22 20 22 20

LIARWHD

500 24 16 24 16 14 14 15 14 14
1000 27 16 27 16 15 14 15 14 14
5000 18 21 18 21 21 30 19 30 30
10000 18 22 18 22 23 31 20 31 31

QUARTC

500 390 386 390 386 392 389 386 389 195
1000 257 313 257 313 320 311 313 311 156
5000 185 181 185 181 191 8 184 8 8
10000 148 146 148 146 6 8 6 8 8

GWH

500 46 76 37 150 63 6677 89 522 84
1000 46 76 37 150 63 6594 89 522 84
5000 46 76 37 150 63 6691 89 522 84
10000 46 76 37 150 63 6613 89 472 88
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Table 2. Numerical test results for the CPU time of Algorithm 1. The average CPU time for the methods are: VPRP (2.3302),
VHS (24.8496), DPRP (1.6083), DHS (5.7417), CGD (1.0447), DPH (0.9834), DHW (14.7620), DV (0.9938), DM (5.5049),
with DPH giving the least value, followed by DV.

FN n
CG METHOD

VPRP VHS DPRP DHS DPH DHW DV DM CGD

EBD1

500 0.46 0.268 0.481 0.338 0.573 0.327 0.304 0.226 1.078
1000 0.649 0.168 0.358 0.366 0.204 0.187 0.313 0.204 0.3
5000 1.417 0.582 1 0.452 0.459 0.05 0.531 0.322 0.824
10000 3.18 0.521 1.619 0.693 0.638 0.617 0.728 0.742 0.386

Diagonal-4

500 1.061 0.099 0.398 0.031 1.498 0.162 0.32 0.536 0.465
1000 0.973 0.028 0.506 0.051 0.143 0.255 0.184 0.18 0.223
5000 2.635 0.075 1.53 0.112 0.161 0.616 0.369 0.439 0.492
10000 5.478 0.273 2.212 0.348 0.207 0.622 0.491 0.571 0.606

EH

500 0.208 0.527 0.672 0.761 0.398 0.556 0.282 0.352 0.611
1000 0.207 0.265 0.396 0.238 0.145 0.126 0.151 0.139 0.136
5000 0.329 0.466 2.215 0.89 0.242 0.197 0.355 0.386 0.264
10000 0.513 0.826 2.468 1.137 0.375 0.303 0.513 0.255 0.405

GR

500 0.381 0.213 0.205 0.33 0.369 0.178 0.428 0.192 0.242
1000 0.395 0.19 0.217 0.267 0.302 0.206 0.449 0.247 0.287
5000 0.899 0.401 0.429 0.54 0.611 0.381 0.919 0.447 0.651
10000 1.539 0.627 0.686 0.865 0.972 0.644 1.547 0.73 1.086

EWH

500 0.338 0.52 0.208 0.815 0.3 44.343 1.574 2.872 0.741
1000 0.524 0.438 0.255 0.965 0.371 68.216 0.782 3.094 0.653
5000 0.795 0.999 0.563 2.005 0.909 127.357 1.745 7.491 1.237
10000 1.419 1.674 0.939 3.379 1.379 184.787 2.253 12.561 2.154

GPSC1 500 9.479 2.328 8.886 1.36 12.066 13.826 4.292 22.807 5.355
1000 6.886 1.657 3.968 1.154 4.486 8.682 7.126 13.447 2.615

ET1

500 0.046 174.715 0.075 18.874 1.917 3.172 1.793 17.626 8.196
1000 0.036 192.869 0.049 26.142 1.971 4.328 2.029 19.921 1.312
5000 0.097 319.511 0.094 72.565 4.089 9.518 5.501 56.464 1.774
10000 0.172 493.666 0.182 136.981 7.749 17.523 8.103 80.542 2.324

VD 500 0.3 17.024 0.292 1.957 0.264 0.213 0.221 0.198 0.212
1000 0.249 0.219 0.242 0.228 0.234 0.167 0.171 0.171 0.194

QUADRATIC 50 0.875 0.379 0.671 0.266 0.401 0.624 0.265 0.489 1.333

PQD

500 0.574 0.132 0.216 0.028 0.035 0.093 0.035 0.083 0.083
1000 0.066 0.093 0.023 0.033 0.033 0.044 0.034 0.044 0.045
5000 42.777 0.205 24.268 0.113 0.129 6.104 0.144 6.002 6.145
10000 22.383 0.33 16.431 0.216 0.28 4.025 0.272 4.061 4.162

ARGLINB 10 0.225 0.202 0.176 0.033 0.156 0.177 0.159 0.053 0.045
20 1.768 0.176 1.714 0.223 0.161 0.732 0.054 0.752 0.769

HIMMELH 2 0.179 0.026 0.038 0.046 0.026 0.035 0.025 0.035 0.035
4 0.036 0.026 0.033 0.046 0.025 0.027 0.024 0.027 0.027

LIARWHD

500 0.062 0.039 0.165 0.178 0.037 0.037 0.04 0.161 0.041
1000 0.07 0.034 0.192 0.033 0.034 0.043 0.034 0.031 0.033
5000 0.12 0.141 0.125 0.131 0.34 0.206 0.114 0.207 0.212
10000 0.259 0.322 0.475 0.318 0.343 0.453 0.308 0.458 0.463

QUARTC

500 0.423 0.415 0.422 0.404 0.436 0.418 0.418 0.429 0.226
1000 0.395 0.439 0.398 0.436 0.504 0.444 0.439 0.443 0.193
5000 0.432 0.392 0.423 0.395 0.43 0.047 0.408 0.048 0.05
10000 0.545 0.502 0.661 0.498 0.064 0.091 0.065 0.09 0.097

GWH

500 0.271 0.317 0.104 0.379 0.17 24.934 0.213 1.248 0.212
1000 0.395 0.339 0.121 0.425 0.194 37.292 0.247 1.504 0.23
5000 0.59 0.685 0.359 1.145 0.484 60.736 0.67 3.93 0.66
10000 1.071 1.288 0.649 2.153 0.875 99.219 1.253 6.483 1.305
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Table 3. Numerical test results indicating the values of f . Notice that the proposed methods solved all the selected problems,
with the exemption of DHW which failed on one instance.

FN n
CG METHOD

VPRP VHS DPRP DHS DPH DHW DV DM CGD

EBD1

500 8.41E-17 4.35E-14 3.90E-15 7.76E-14 6.91E-15 2.69E-13 4.68E-14 2.62E-15 2.98E-17
1000 3.80E-17 9.45E-15 2.33E-14 2.50E-14 4.19E-14 2.75E-14 7.62E-14 4.43E-17 5.34E-14
5000 5.54E-14 4.30E-14 3.85E-15 6.79E-14 4.03E-15 NaN 8.07E-14 2.54E-18 1.93E-16
10000 5.86E-14 8.09E-15 7.58E-15 2.57E-14 2.46E-14 3.07E-14 3.99E-14 3.25E-14 8.71E-14

Diagonal-4

500 1.08E-15 NaN 7.01E-16 NaN 5.89E-17 1.01E-15 2.42E-17 7.79E-16 8.07E-16
1000 8.78E-16 NaN 6.03E-16 NaN 1.18E-16 9.41E-16 1.02E-15 7.27E-16 7.26E-16
5000 7.19E-16 NaN 5.58E-16 NaN 5.89E-16 1.02E-15 3.55E-15 7.90E-16 7.34E-16
10000 9.15E-16 2.68E-16 1.12E-15 5.10E-15 1.18E-15 9.55E-16 2.91E-15 7.36E-16 6.60E-16

EH

500 5.13E-15 7.99E-16 5.21E-16 2.16E-15 6.16E-15 1.17E-16 1.45E-14 6.18E-16 4.89E-15
1000 6.18E-17 1.60E-15 1.74E-17 1.01E-14 3.60E-15 2.34E-16 9.40E-15 1.24E-15 9.77E-15
5000 3.09E-16 7.99E-15 3.37E-15 3.29E-15 4.24E-15 1.17E-15 1.20E-14 6.18E-15 6.57E-15
10000 6.18E-16 5.55E-15 6.11E-15 1.19E-15 7.34E-15 2.34E-15 4.34E-15 1.21E-15 1.31E-14

GR

500 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00
1000 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00
5000 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00
10000 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00 3.99E+00

EWH

500 6.35E-17 2.21E-16 1.24E-16 3.07E-16 2.12E-16 1.99E-16 3.51E-17 9.27E-17 5.99E-17
1000 6.35E-17 2.21E-16 1.24E-16 3.07E-16 2.12E-16 2.80E-16 3.51E-17 9.27E-17 5.99E-17
5000 6.35E-17 2.21E-16 1.24E-16 3.07E-16 2.12E-16 6.12E-17 3.51E-17 9.27E-17 5.99E-17
10000 6.35E-17 2.21E-16 1.24E-16 3.07E-16 2.12E-16 6.12E-17 3.51E-17 9.27E-17 5.99E-17

GPSC1 500 4.99E+02 4.99E+02 4.99E+02 4.99E+02 4.99E+02 4.99E+02 4.99E+02 4.99E+02 4.99E+02
1000 9.87E+01 9.87E+01 9.99E+02 9.87E+01 9.87E+01 9.87E+01 9.87E+01 9.87E+01 9.87E+01

ET1

500 6.08E-61 2.64E-10 0 4.49E-09 4.10E-09 6.17E-09 4.11E-09 4.01E-09 6.06E-09
1000 1.21E-60 5.29E-10 0 5.53E-09 5.23E-09 6.10E-09 5.16E-09 5.72E-09 2.07E-09
5000 6.08E-60 2.64E-09 0 9.91E-09 8.82E-09 1.17E-08 8.83E-09 8.61E-09 6.58E-09
10000 1.21E-59 5.29E-09 0 1.25E-08 1.11E-08 1.32E-08 1.11E-08 1.24E-08 4.34E-10

VD 500 7.03E-19 1.88E-17 7.03E-19 3.50E-18 1.37E-18 1.96E-18 1.37E-18 1.96E-18 5.33E-19
1000 8.02E-21 9.99E-19 8.02E-21 9.99E-19 6.24E-21 8.87E-20 6.24E-21 8.87E-20 8.12E-21

QUADRATIC 50 9.97E-01 -1.00E+00 9.97E-01 -1.00E+00 9.97E-01 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00

PQD

500 1.47E-14 4.88E-15 1.47E-14 4.88E-15 1.38E-14 1.47E-14 1.38E-14 1.47E-14 1.47E-14
1000 8.90E-16 9.74E-16 8.90E-16 1.21E-15 1.11E-15 3.21E-15 1.11E-15 3.21E-15 3.21E-15
5000 3.60E-16 3.80E-17 3.60E-16 6.43E-17 1.67E-16 3.60E-16 1.67E-16 3.60E-16 3.60E-16
10000 9.37E-17 8.37E-17 9.37E-17 4.98E-18 6.00E-17 9.37E-17 6.00E-17 9.37E-17 9.37E-17

ARGLINB 10 2.14E+00 2.14E+00 2.14E+00 2.14E+00 2.14E+00 2.14E+00 2.14E+00 2.14E+00 2.14E+00
20 4.63E+00 4.63E+00 4.63E+00 NaN 4.63E+00 4.63E+00 4.63E+00 4.63E+00 4.63E+00

HIMMELH 2 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00
4 -2.00E+00 -2.00E+00 -2.00E+00 -2.00E+00 -2.00E+00 -2.00E+00 -2.00E+00 -2.00E+00 -2.00E+00

LIARWHD

500 1.89E-20 3.42E-21 1.89E-20 3.42E-21 9.53E-21 3.24E-21 2.48E-21 3.24E-21 3.24E-21
1000 2.15E-22 6.84E-21 2.15E-22 6.84E-21 2.85E-25 6.47E-21 4.97E-21 6.47E-21 6.47E-21
5000 1.62E-23 1.20E-22 1.62E-23 1.20E-22 4.83E-22 1.05E-22 8.46E-23 1.05E-22 1.05E-22
10000 3.23E-23 0 3.23E-23 0 2.32E-23 2.93E-23 6.67E-23 2.93E-23 2.93E-23

QUARTC

500 1.98E-10 1.98E-10 9.99E-07 1.98E-10 1.98E-10 1.98E-10 1.98E-10 1.98E-10 1.98E-10
1000 1.57E-10 1.57E-10 1.57E-10 1.57E-10 1.57E-10 1.57E-10 1.57E-10 1.57E-10 1.57E-10
5000 9.13E-11 9.17E-11 9.13E-11 9.17E-11 9.12E-11 6.61E-15 9.19E-11 6.61E-15 6.61E-15
10000 7.28E-11 7.23E-11 7.28E-11 7.23E-11 4.03E-12 1.32E-14 4.03E-12 1.32E-14 1.32E-14

GWH

500 6.35E-17 2.21E-16 1.24E-16 3.07E-16 2.12E-16 7.83E-17 3.51E-17 8.85E-17 7.16E-17
1000 6.35E-17 2.21E-16 1.24E-16 3.07E-16 2.12E-16 2.39E-16 3.51E-17 8.85E-17 7.16E-17
5000 6.35E-17 2.21E-16 1.24E-16 3.07E-16 2.12E-16 4.15E-17 3.51E-17 8.85E-17 7.16E-17
10000 6.35E-17 2.21E-16 1.24E-16 3.07E-16 2.12E-16 2.54E-16 3.51E-17 1.27E-16 9.22E-17
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Table 4. Numerical test results indicating the values of ∥g∥. These values represent the values of the norm of the gradient of
the objective functions, f at x∗, the optimal value of x.

FN n
CG METHOD

VPRP VHS DPRP DHS DPH DHW DV DM CGD

EBD1

500 2.59E-08 9.62E-07 1.16E-07 7.89E-07 4.79E-07 9.17E-07 9.64E-07 2.90E-07 3.09E-08
1000 3.49E-08 2.67E-07 3.62E-07 4.48E-07 8.92E-07 9.45E-07 8.87E-07 1.88E-08 4.50E-07
5000 8.47E-07 9.55E-07 1.97E-07 7.92E-07 3.58E-07 NaN 8.21E-07 4.51E-09 8.15E-08
10000 9.62E-07 2.22E-07 4.93E-07 3.41E-07 8.56E-07 8.42E-07 8.63E-07 9.09E-07 8.26E-07

Diagonal-4

500 9.99E-07 NaN 7.71E-07 NaN 1.98E-07 9.33E-07 7.66E-08 8.19E-07 8.31E-07
1000 8.99E-07 NaN 7.15E-07 NaN 2.79E-07 9.01E-07 5.15E-07 7.91E-07 7.88E-07
5000 8.14E-07 NaN 6.88E-07 NaN 6.25E-07 9.39E-07 9.53E-07 8.25E-07 7.93E-07
10000 9.18E-07 4.76E-07 9.73E-07 8.82E-07 8.83E-07 9.07E-07 8.13E-07 7.96E-07 7.52E-07

EH

500 8.68E-07 2.93E-07 2.86E-07 5.70E-07 9.14E-07 1.38E-07 9.88E-07 3.11E-07 6.71E-07
1000 1.00E-07 4.14E-07 5.87E-08 7.23E-07 4.95E-07 1.95E-07 7.15E-07 4.39E-07 9.48E-07
5000 2.24E-07 9.27E-07 8.43E-07 6.82E-07 7.28E-07 4.36E-07 7.89E-07 9.83E-07 6.84E-07
10000 3.17E-07 6.22E-07 9.50E-07 3.83E-07 6.19E-07 6.17E-07 8.30E-07 4.03E-07 9.67E-07

GR

500 7.85E-07 5.47E-07 7.29E-07 9.37E-07 9.00E-07 7.19E-07 3.78E-07 8.54E-07 8.22E-07
1000 7.85E-07 5.47E-07 7.29E-07 9.37E-07 9.00E-07 7.19E-07 3.78E-07 8.54E-07 8.22E-07
5000 7.85E-07 5.47E-07 7.29E-07 9.37E-07 9.00E-07 7.19E-07 3.78E-07 8.54E-07 8.22E-07
10000 7.85E-07 5.47E-07 7.29E-07 9.37E-07 9.00E-07 7.19E-07 3.78E-07 8.54E-07 8.22E-07

EWH

500 5.90E-07 8.70E-07 8.30E-07 9.85E-07 8.97E-07 8.95E-07 4.46E-07 7.14E-07 6.01E-07
1000 5.90E-07 8.70E-07 8.30E-07 9.85E-07 8.97E-07 9.84E-07 4.46E-07 7.14E-07 6.01E-07
5000 5.90E-07 8.70E-07 8.30E-07 9.85E-07 8.97E-07 4.81E-07 4.46E-07 7.14E-07 6.01E-07
10000 5.90E-07 8.70E-07 8.30E-07 9.85E-07 8.97E-07 4.81E-07 4.46E-07 7.14E-07 6.01E-07

GPSC1 500 9.91E-07 9.74E-07 9.43E-07 9.85E-07 9.76E-07 9.83E-07 9.86E-07 1.00E-06 9.93E-07
1000 9.81E-07 5.81E-07 9.24E-07 7.72E-07 9.76E-07 9.84E-07 7.99E-07 9.78E-07 9.51E-07

ET1

500 9.79E-46 9.33E-08 0.00E+00 9.98E-07 9.86E-07 9.92E-07 9.88E-07 7.82E-07 9.96E-07
1000 1.38E-45 1.32E-07 0.00E+00 9.66E-07 9.98E-07 9.74E-07 9.88E-07 9.33E-07 3.68E-07
5000 3.10E-45 2.95E-07 0.00E+00 9.96E-07 9.92E-07 9.68E-07 9.93E-07 9.16E-07 9.21E-07
10000 4.38E-45 4.17E-07 0.00E+00 9.98E-07 9.94E-07 8.73E-07 9.96E-07 9.06E-07 4.10E-07

VD 500 4.20E-07 3.18E-07 4.21E-07 8.78E-07 3.63E-07 8.13E-07 3.63E-07 8.13E-07 8.12E-07
1000 2.42E-07 5.88E-07 2.42E-07 2.60E-07 3.64E-07 9.92E-07 3.64E-07 9.92E-07 9.87E-07

QUADRATIC 8.86E-07 8.54E-07 8.16E-07 7.30E-07 8.09E-08 7.40E-07 8.98E-08 4.15E-07 9.76E-07

PQD

500 8.47E-07 4.88E-07 8.47E-07 4.88E-07 8.22E-07 8.47E-07 8.22E-07 8.47E-07 8.47E-07
1000 3.57E-07 3.74E-07 3.57E-07 4.18E-07 3.98E-07 6.79E-07 3.98E-07 6.79E-07 6.79E-07
5000 9.84E-07 3.20E-07 9.84E-07 4.16E-07 6.71E-07 9.84E-07 6.71E-07 9.84E-07 9.84E-07
10000 9.85E-07 9.31E-07 9.85E-07 2.27E-07 7.88E-07 9.85E-07 7.88E-07 9.85E-07 9.85E-07

ARGLINB 10 7.92E-07 9.21E-07 8.65E-07 2.10E-07 8.65E-07 7.35E-07 8.65E-07 7.35E-07 4.52E-07
20 6.93E-07 1.99E-08 3.19E-08 NaN 4.59E-07 2.64E-07 3.36E-08 5.11E-08 7.56E-07

HIMMELH 2 9.63E-07 7.31E-07 6.07E-07 8.06E-07 4.20E-07 5.27E-07 5.36E-08 6.20E-07 2.85E-07
4 4.71E-07 3.18E-07 8.16E-07 6.13E-07 1.15E-07 7.45E-07 9.96E-07 8.77E-07 8.05E-07

LIARWHD

500 5.54E-07 2.35E-07 5.54E-07 2.35E-07 3.93E-07 2.29E-07 2.01E-07 2.29E-07 2.29E-07
1000 1.18E-07 6.66E-07 1.18E-07 6.66E-07 4.30E-09 6.48E-07 5.67E-07 6.48E-07 6.48E-07
5000 1.62E-07 4.41E-07 1.62E-07 4.41E-07 8.85E-07 4.13E-07 3.70E-07 4.13E-07 4.13E-07
10000 4.58E-07 0.00E+00 4.58E-07 0.00E+00 3.88E-07 4.36E-07 6.57E-07 4.36E-07 4.36E-07

QUARTC

500 9.99E-07 9.99E-07 9.99E-07 9.99E-07 1.00E-06 9.98E-07 9.99E-07 9.98E-07 9.98E-07
1000 9.99E-07 9.98E-07 9.99E-07 9.98E-07 9.99E-07 1.00E-06 9.98E-07 1.00E-06 9.98E-07
5000 9.94E-07 9.97E-07 9.94E-07 9.97E-07 9.92E-07 7.80E-10 9.98E-07 7.80E-10 7.80E-10
10000 9.97E-07 9.92E-07 9.97E-07 9.92E-07 1.14E-07 1.56E-09 1.14E-07 1.56E-09 1.56E-09

GWH

500 5.90E-07 8.70E-07 8.30E-07 9.85E-07 8.97E-07 6.43E-07 4.46E-07 7.36E-07 6.63E-07
1000 5.90E-07 8.70E-07 8.30E-07 9.85E-07 8.97E-07 9.83E-07 4.46E-07 7.36E-07 6.63E-07
5000 5.90E-07 8.70E-07 8.30E-07 9.85E-07 8.97E-07 4.87E-07 4.46E-07 7.36E-07 6.63E-07
10000 5.90E-07 8.70E-07 8.30E-07 9.85E-07 8.97E-07 9.45E-07 4.46E-07 8.21E-07 7.16E-07

6. Conclusion

This study, based on previous ideas of hybrid CG method construction and recently proposed CG methods of
the PRP and HS family, has described four hybrid CG methods which satisfy the descent property as well
as globally convergent. Numerical experiments revealed that two of the proposed methods, DPH and DV, are
computationally efficient compared to non-hybrid methods. As a major contribution to knowledge, the proposed
methods (especially, DPH and DV) gave better performances than the CG DESCENT method, acclaimed to be
one of the best known CG methods. The DHW and DM methods which are less efficient computation-wise also
compete reasonably with the non-hybrid methods. In fact, it was observed that the weak performance of these
methods could be addressed if hybridized with classical methods such as the FR and DY methods which are known
to possess good convergence properties. Therefore, as part of future work, new hybrid methods comprising of the
methods introduced in this paper and those exhibiting good global convergence properties would be developed,
tested numerically and compared with highly efficient methods.
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9. E. D. Dolan, and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., vol. 91, pp. 201–213,

2002.
10. X. Du, P. Zhang, and W. Ma, Some modified conjugate gradient methods for unconstrained optimization, Journal of Computational

and Applied Mathematics, vol. 305, pp. 92–114, 2016.
11. A. E. Ezugwu, O. J. Adeleke, and S. Viriri, Symbiotic organisms search algorithm for the unrelated parallel machines scheduling

with sequence-dependent setup times, PloS one, vol. 13, no. 7, 2018.
12. A. E. Ezugwu, O. J. Adeleke, A. A. Akinyelu, and S. Viriri, A conceptual comparison of several metaheuristic algorithms on

continuous optimisation problems, Neural Computing and Applications, vol. 2019, pp. 1–45, 2019.
13. R. Fletcher, and C. Reeves, Function minimization by conjugate gradients, Comput. J., vol. 7, pp. 149–154, 1964.
14. W. W. Hager, and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim.,

vol. 16, no. 1, pp. 170–192, 2005.
15. W. W. Hager, and H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific Journal of Optimization, vol. 2, pp. 35–58,

2006.
16. M. R. Hestenes, and E. L. Stiefel, Method of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards, vol. 49, pp.

409–436, 1952.
17. H. Huang, Z. Wei, and Y. Shengwei, The proof of the sufficient descent condition of the WeiYaoLiu conjugate gradient method under

the strong WolfePowell line search, Applied Mathematics and Computation, vol. 189, no. 2, pp. 1241–1245, 2007.
18. H. D. Huang, Y. J. Li, and Z. W. Wei, Global convergence of a modified PRP conjugate gradient method, J. Math. Res. Exposition,

vol. 30, no. 1, pp. 141–148, 2010.
19. J. Jian, L. Han, and X. Jiang, A hybrid conjugate gradient method with descent property for unconstrained optimization, Applied

Mathematical Modelling, vol. 39, pp. 1281–1290, 2015.
20. X. Jiang, and J. Jian, Improved FletcherReeves and DaiYuan conjugate gradient methods with the strong Wolfe line search, Journal

of Computational and Applied Mathematics, vol. 348, pp. 525–534, 2019.
21. Q. Li, A modified Fletcher-Reeves-type method for nonsmooth convex minimization, Statistics, Optimization & Information

Computing, vol. 2, no. 3, pp. 200–210, 2014.
22. X. Li, W. Zhang, and X. Dong, A class of modified FR conjugate gradient method and applications to non-negative matrix

factorization, Computers & Mathematics with Applications, vol. 73, no. 2, pp. 270–276, 2017.
23. X. Li, J. Shi J, X. Dong, and J. Yu, A new conjugate gradient method based on Quasi-Newton equation for unconstrained

optimization, Journal of Computational and Applied Mathematics, vol. 350, pp. 372–379, 2019.
24. Y. Liu, and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: Theory, J. Optim. Theory Appl., vol. 69, pp.

129–137, 1991.
25. P. Mtagulwa, and P. Kaelo, An efficient modified PRP-FR hybrid conjugate gradient method for solving unconstrained optimization

problems, Applied Numerical Mathematics, vol. 145, pp. 111–120, 2019.
26. D. A. Oladepo, O. J. Adeleke, and C. T. Ako, A mixed hybrid conjugate gradient method for unconstrained engineering optimization

problems, In Computer Science On-line Conference 2018, pp. 423–431. Springer, Cham.
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