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Abstract In this article, we formulate a mathematical model based on fractional partial differential equations
(FPDEs) to describe the spatiotemporal progression of viral infections, incorporating the effects of adaptive
immunity and antiviral treatment. The model includes a regional fractional Laplace operator to account for
the anomalous diffusion observed within the infected medium. We investigate the existence and uniqueness
of equilibria and establish their global stability using Lyapunov functions tailored to the associated reaction
systems. Moreover, numerical simulations are presented to illustrate the analytical results.
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1. Introduction

Since the dawn of humankind, viral infections have posed one of the most significant challenges to
public health. These infections involve complex interactions between pathogens, host cells and the
immune system. This intricate biological conflict requires a deep understanding and accurate modeling
to design effective treatment strategies and appropriate control measures. Mathematical modeling plays
a fundamental role in this context, offering tools to describe the spatial and temporal dynamics of viral
spread and the associated immune responses.
Among these tools, fractional partial differential equations (FPDEs) stand out for their ability to

incorporate anomalous diffusion and memory effects, which are frequently observed in biological tissues but
are only partially captured by classical models based on integer-order derivatives. Fractional derivatives
offer a flexible and powerful framework for representing nonlocal interactions and heterogeneous transport
processes, both of which are essential for accurately describing viral dissemination within biological
systems.
Stability analysis is crucial for assessing the reliability and robustness of mathematical models under

various conditions. It helps detect and prevent unexpected or unstable behavior in simulations, ensuring

∗Correspondence to: Mohammad Eloualy (Email: moha2000eloualy@gmail.com).

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



M. ELOUALY, A. EL HASSANI, K. HATTAF, A. BASSOU 1

biologically consistent and meaningful predictions. Several studies have addressed the global dynamics
of viral infection models by applying stability criteria. For instance, Xu and Ma [1] investigated the
global behavior of a time-delayed model for hepatitis B virus (HBV) infection, incorporating spatial
diffusion, saturation effects in the infection rate and a delay associated with intracellular incubation.
In a related study, Shaoli et al. [2] proposed a spatially diffusive HBV model that integrates the role
of cellular immune response alongside a nonlinear infection process. They demonstrated that free virus
diffusion does not alter global stability under homogeneous Neumann boundary conditions. In addition,
Hattaf and Yousfi [3] were among the first to introduce a systematic approach for constructing Lyapunov
functions specifically tailored to reaction-diffusion systems, both with and without time delays. Their
method has found broad application in recent studies [4, 5, 6, 7, 8, 9] for the global stability analysis
of classical models. More recently, this approach has been extended to fractional differential equations
(FDEs) with classical diffusion [10], and further applied in [11]. It has also been extended to PDEs
involving a fractional Laplacian operator [12], as well as to diffusion-reaction systems with and without
time delays governed by the p-Laplacian operator [13]. In another application, the method was employed
to analyze the global dynamics of SARS-CoV-2 infection model incorporating both antiviral treatment
and diffusion, using the regional fractional Laplacian operator [14].
In the present study, we propose a class of FPDEs to model the progression of viral infection, accounting

for both adaptive immunity and antiviral treatment. To describe the anomalous diffusion confined within
the infected tissue, we employ the regional fractional Laplacian operator. Accordingly, the article is
organized as follows: SectionÂ 2 formulates the viral infection model by means of FPDEs and investigates
the existence and uniqueness of equilibria. SectionÂ 3 is dedicated to the global stability analysis. Section
4 is devoted to parameters estimation and sensitivity analysis. SectionÂ 5 presents numerical simulations
that illustrate and support the theoretical results. Finally, SectionÂ 6 summarizes the main findings of
this research.

2. Formulation of the viral infection model and equilibria

This section presents a fresh approach to modeling viral infections using fractional spatial diffusion,
non-lytic and lytic immune responses, adaptive immunity, and two modes of transmission. The model is
constructed as the following nonlinear system of FPDEs:

∂U

∂t
= −dU (−∆)sΩU(y, t) +A−mUU(y, t)−

β1U(y, t)V (y, t)

(1 + q1Z(y, t))(1 + q1W (y, t))
−

β2U(y, t)I(y, t)

(1 + q2Z(y, t))(1 + q2W (y, t))
+ θI(y, t),

∂I

∂t
= −dI(−∆)sΩI(y, t) +

β1U(y, t)V (y, t)

(1 + q1Z(y, t))(1 + q1W (y, t))
+

β2U(y, t)I(y, t)

(1 + q2Z(y, t))(1 + q2W (y, t))
− (mI + θ)I(y, t)− pI(y, t)Z(y, t),

∂V

∂t
= −dV (−∆)sΩV (y, t) + k(1− ε)I(y, t)−mV V (y, t)− rV (y, t)W (y, t),

∂W

∂t
= −dW (−∆)sΩW (y, t) + ρV (y, t)W (y, t)−mWW (y, t),

∂Z

∂t
= −dZ(−∆)sΩZ(y, t) + σI(y, t)Z(y, t)−mZZ(y, t).

(1)

Here, the functions Z(y, t),W (y, t), V (y, t), I(y, t) and U(y, t) denote, respectively, the spatial and temporal
concentrations of cytotoxic T lymphocyte (CTL) cells, antibodies, free virus particles, infected cells, and
uninfected cells. The production of uninfected cells occurs at a constant rate A, undergo natural death at a
rate mU . These cells can become infected through two primary mechanisms: virus-mediated transmission,
occurring at rate β1UV , and cell-to-cell contact at rate β2UI. Both of these infection pathways are
modulated by immune responses: cellular immunity reduces the infection rates through the non-lytic
effects represented by the factors 1 + q1Z and 1 + q2Z, while humoral immunity adds inhibitory effects
via 1 + q1W and 1 + q2W . Infected cells are lost due to natural death at rate mII, targeted elimination by
CTL at rate pIZ, or recovery back to the uninfected state at rate θI. The virus is produced by infected
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cells at rate k, and is removed from the system at rate mV V . Antibodies are generated as a result of
interactions between virus and antibodies at rate ρVW , degrade naturally at rate mWW , and neutralize
free virus at a rate rV W . CTL populations grow in response to the presence of infected cells, expanding at
rate σIZ, and decay at rate mZZ. Furthermore, the parameter ε ∈ [0, 1] quantifies the efficacy of antiviral
therapy in suppressing viral production, where higher values of ε reflect more effective treatment. Lastly,
dU , dI , dV , dW and dZ denote the diffusion coefficients for the respective biological components, capturing
their spatial spread within the domain, and are assumed to be non-negative. In model (1), the diffusion
of particules is described using the regional fractional Laplacian operator (−∆)sΩ as defined in [15], by the
following formula:

(−∆)sΩu(y) = C(n, s) lim
ε→0+

∫
{z∈Ω,||y−z||>ε}

u(y)− u(z)

||y − z||n2 +s
dz, (2)

where ∥ · ∥ is the Euclidean norm on Rn, n is the dimension of the space and C(n, s) denotes a normalization
constant, given in the same reference [15] by:

C(n, s) =

 ∫
Rn

1− cos(ξ1)

||ξ||n2 +s
dξ

−1

=
s4s

π
n
2

Γ(s+ n
2 )

Γ(1− s)
, (3)

with s ∈ (0, 1) the fractional parameter, ξ = (ξ1, ξ
′), ξ′ ∈ Rn−1 and Γ(z) =

∫ +∞
0

tz−1e−t dt, z ∈ R∗
+.

Since the infected organ occupies a well-defined and bounded region within the human body, we
represent it in our model by a domain Ω ⊂ Rn with a smooth boundary ∂Ω. The operator (−∆)sΩ is
used to describe the random motion of particles within this domain, where a particle may move from one
location y1 ∈ Ω to another y2 ∈ Ω, with a likelihood of transition governed by the kernel ||y1 − y2||−

n
2 −s.

The fractional order s is defined as a parameter characterizing anomalous diffusion in biological tissues.
Biologically, it reflects the heterogeneity of the tissue microenvironment and the irregular movement of
viral particles and immune cells. Lower values of s correspond to more heterogeneous tissue structure and
subdiffusive behavior, whereas values approaching 1 indicate nearly classical and homogeneous diffusion.
On the other hand, it is important to note that particles are not allowed to exit the domain Ω. When
they reach the boundary ∂Ω, they are either redirected back into the interior or removed from the
system. Taking this spatial restriction into account, we now examine problem (1) under the framework
of generalized Neumann-type boundary conditions involving fractional normal derivatives. Following the
definition proposed in [15], the boundary conditions take the form:

ND(−2s+2)U = ND(−2s+2)I = ND(−2s+2)V = ND(−2s+2)W = ND(−2s+2)Z = 0,

on ∂Ω× (0,+∞), where the operator ND(−2s+2)u denotes the fractional normal derivative of the function
u in the direction of the outward unit normal vector. It is defined as:

ND(−2s+2)u(y) = − lim
t→0+

du(y + n(y)t)

dt
t−2s+2,

with n(y) represents the interior normal vector at the boundary point y ∈ ∂Ω, as introduced in [15]. To
finalize the model initialization, we assume that

U(y, 0) ⩾ 0, I(y, 0) ⩾ 0, V (y, 0) ⩾ 0, W (y, 0) ⩾ 0, Z(y, 0) ⩾ 0, for all y ∈ Ω.

It is worth highlighting that model (1) enhances and extends the ODE model introduced in [16] by
incorporating both spatial diffusion and antiviral treatment. Furthermore, the model proposed by El
Hassani et al. [14] can be regarded as a special case of the model presented in this work.
By employing the same approach outlined in [16], we can conclude that the system (1) has five steady

states. To determine all possible equilibria of the system, we consider homogeneous solutions, i.e., solutions
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that are constant in time and space. Thus, we assume that time derivatives and fractional diffusion terms
disappear. System (1) thus reduces to:

A−mUU −
β1UV

(1 + q1Z)(1 + q1W )
−

β2UI

(1 + q2Z)(1 + q2W )
+ θI = 0,

β1UV

(1 + q1Z)(1 + q1W )
+

β2UI

(1 + q2Z)(1 + q2W )
− (mI + θ)I − pIZ = 0,

k(1− ε)I −mV V − rV W = 0,

ρV W −mWW = 0,

σIZ −mZZ = 0.

(4)

First, we assume the absence of infection, i.e., I = V = W = Z = 0. In this case, system (4) simplifies

to the equation: 0 = A−mUU0, which gives U0 =
A

mU
. So, it is clear that the point E0 = (U0, 0, 0, 0, 0)

represents an equilibrium state in the absence of infection, called the infection-free equilibrium.
Consequently, the basic reproduction number of our model can be readily determined as follows:

R0 =
β1U0k(1− ε)

mV (mI + θ)︸ ︷︷ ︸
R01

+
β2U0

mI + θ︸ ︷︷ ︸
R02

= R01 +R02. (5)

Considering biological perspectives, and in accordance with references [17, 18], the basic reproduction
number R0 can be decomposed into two distinct components R01 and R02. The first component R01,
corresponds to the virus-to-cell infection pathway and is given by the expression R01 = β1U0k(1−ε)

mV (mI+θ) . While

the second component, R02, represents the direct cell-to-cell transmission mode and is calculated as
R02 = β2U0

mI+θ .

When R0 > 1, model (1) admits a second equilibrium point, denoted by E1 = (U1, I1, V1, 0, 0), which
represents infection occurring without any immune response. For Z = W = 0, the system reduces to:

0 = A−mUU−β1UV − β2UI + θI,

0 = β1UV + β2UI − (mI + θ)I,

0 = k(1− ε)I −mV V.

From the third equation, we have V = k(1−ε)
mV

I. Substituting this expression for V into the second equation,

we obtain β1U
(

k(1−ε)
mV

I
)
+ β2UI = (mI + θ)I. Factoring I from both sides and rearranging the equation,

we get U
(

β1k(1−ε)
mV

+ β2

)
= mI + θ. We find the following expression:

U1 =
mI + θ

β1k(1− ε)

mV
+ β2

=
U0

R0
.

We now substitute U1 =
U0

R0
=

A

mUR0
into the first equation in order to determine the value of I.

Since V =
k(1− ε)

mV
I, we obtain from the first equation A−mUU1 −

(
β1U1

k(1−ε)
mV

+ β2U1 − θ
)
I = 0.

Using the relation β1U1
k(1−ε)
mV

+ β2U1 = mI + θ, the equation simplifies to A−mUU1 −mII = 0. We find

I1 = A−mUU1

mI
=

A− A
R0

mI
= A(R0−1)

mIR0
and V1 = k(1−ε)

mV
I1 = Ak(1−ε)(R0−1)

mImV R0
.
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In the context where humoral immunity is active while CTL immunity remains absent, any equilibrium
configuration must fulfill the following system of equations:

A−mUU −mII = 0,

β1UV

1 + q1W
+

β2UI

1 + q2W
− (mI + θ)I = 0,

k(1− ε)I −mV V − rV W = 0,

ρV W −mWW = 0.

(6)

In situation where the humoral immune system has not yet been activated, the inequality ρV −mW ≤ 0
holds. Under this condition, the reproduction number associated with the humoral response can be
characterized by:

RW
1 =

ρ

mW
V1 =

ρk(1− ε)A

mWmImV R0
(R0 − 1),

which quantifies the average number of antibodies generated by the immune system in response to viral
infection, in the absence of CTL activity [19].
Assuming that W > 0, one obtains V = mU

ρ , I = 1
mI

(A−mUU). Consequently, the variables W and U

must satisfy the relations W = k(1−ε)ρ
rmWmI

(A−mUU)− mV

r , and U
[

β1mW

ρ(1+q1W ) +
β2(A−mUU)
mI(1+q2W )

]
− mI+θ

mI
(A−

mUU) = 0.

Let us introduce the threshold parameter: a =
A

mU
− mV mWmI

k(1− ε)ρmU
, and restrict our analysis to the

interval U ∈ (0, a). Within this domain, define the auxiliary functions:

g1(U) =
k(1− ε)ρ

rmWmI
(A−mUU)− mV

r
, f1(U) = U

[
β1mW

ρ(1 + q1g1(U))
+

β2(A−mUU)

mI(1 + q2g1(U))

]
− dI + θ

dI
(A−mUU).

By direct computation, one observes f1(0) < 0, and further:

f1(a) =
mImV m

2
W

(k(1− ε))2ρ2mU
(k(1− ε)β1 +mV β2)(RW

1 − 1).

Thus, if RW
1 > 1, then f1(a) > 0, ensuring the existence of a solution U2 ∈ (0, a) such that f1(U2) = 0.

Using the relation mI + θ =
β1U2V

I(1 + q1W )
+

β2U2

1 + q2W
, we compute the derivative of f1 at U2:

f ′
1(U2) = β1V

1 + q1g1(U2)− q1U2g
′
1(U2)

(1 + q1g1(U2))2
− β2U2q2g

′
1(U2)h(U2)

(1 + q2g2(U2))2
− h′(U2)

β1U2V

h(U2)(1 + q1g1(U2))
,

where h(U) = 1
mU

(A−mUU). Since both h′(U) < 0 and g′1(U) < 0, it follows that f ′
1(U2) > 0,

confirming the uniqueness of the solution U2 and thereby the uniqueness of the associated equilibrium:
E2 = (U2, I2, V2,W2, 0), with I2 = h(U2), V2 = mW

ρ and W2 = g1(U2).

In situations where cellular immunity is present and the humoral response is absent, the equilibrium of
the system (1) is governed by: 

A−mUU −
β1UV

1 + q1Z
−

β2UI

1 + q2Z
+ θI = 0,

β1UV

1 + q1Z
+

β2UI

1 + q2Z
− (mI + θ)I − pIZ = 0,

k(1− ε)I −mV V = 0,

σIZ −mZZ = 0.

(7)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



M. ELOUALY, A. EL HASSANI, K. HATTAF, A. BASSOU 5

In the absence of cellular activation, the inequality σI1 −mZ ≤ 0 must be satisfied. Accordingly, the
reproduction number for CTL-mediated immunity is defined as:

RZ
1 =

σI1
mZ

=
σA(R0 − 1)

mZmIR0
,

is reflecting the mean number of CTL produced per infected individual in the absence of humoral
neutralization [19].

Given Z > 0, we derive the expressions: I = mZ

σ , V = kmZ

σmV
, Z = σ(A−mUU)−mImZ

pmZ
, and the equation:

U
[

β1k(1−ε)
mV (1+q1Z) +

β2

1+q2Z

]
− (mI + θ)− pZ = 0. Introducing the threshold: b = A

mU
− mImZ

σmU
, with 0 <

U < b, we define the functions:

g2(U) =
σ(A−mUU)−mImZ

pmZ
, f2(U) = U

[
β1k(1− ε)

mV (1 + q1g2(U))
+

β2

1 + q2g2(U)

]
− (mI + θ)− pg2(U).

We observe f2(0) = −(mI + θ)− pg2(0) < 0, and f2(b) = b
[
β1k(1−ε)

mV
+ β2

]
− (mI + θ). The derivative

f ′
2(U) is given by:

f ′
2(U) =

[
β1k(1− ε)

mV (1 + q1g2(U))
+

β2

1 + q2g2(U)

]
− U

[
β1k(1− ε)q1g

′
2(U)

mV (1 + q1g2(U))2
+

β2q2g
′
2(U)

(1 + q2g2(U))2

]
− pg′2(U).

Since g′2(U) < 0, we conclude that f ′
2(U) > 0.

If RZ
1 < 1, then I1 < mC

σ , so U1 > b, leading to:

f2(b) < f2(U1) = 0 ⇒ f2(b) < 0.

This indicates that no equilibrium solution exists in this case. On the contrary, if RZ
1 > 1,

then f2(b) > 0, implying the existence of a unique solution U3 ∈ (0, b) such that f2(U3) = 0.
Thus, a unique equilibrium point when RZ

1 > 1, which is given by E3 = (U3, I3, V3, 0, Z3), with

I3 = mZ

σ , V3 = kmZ

σmV
and Z3 = σ(A−mUU3)−mImZ

pmZ
.

We now consider the most comprehensive case, in which both humoral and cellular immune mechanisms
are simultaneously active. In this setting, i.e., when Z ̸= 0 and W ̸= 0, any equilibrium configuration must
satisfy the system (4). In this competitive environment, the reproduction number of humoral immunity
in competition, denoted by RW

2 , is defined as:

RW
2 =

ρ

mW
V3 =

ρk(1− ε)mZ

σmV mW
,

where V3 =
k(1− ε)mZ

σmV
represents the equilibrium viral load under the influence of both immune

responses. Analogously, the reproduction number of cellular immunity in competition is given by:

RZ
2 =

σ

mZ
I2 =

σ

mImZ
(A−mUU2),

which reflects the rate of CTL proliferation driven by infected cells, modulated by the availability of
uninfected target cells U2.

From a biological perspective, the quantityRZ
2 represents the expected proliferation rate of CTL induced

by infected cells, under the premise that the humoral immune response is already active. In contrast, RW
2

measures the average number of antibody-secreting immune cells triggered by viral particles, assuming
that CTL-mediated immunity is concurrently operational [19, 20].
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Since Z > 0, W > 0, then V =
mW

ρ
, I =

mZ

σ
, W =

k(1− ε)ρmZ

rσmW
− mV

r
, Z =

σ

pmZ
(A−mUU)−

mI

p
. In addition, we have the following equation:

U

[
β1V

(1 + q1Z)(1 + q1W )
+

β2I

(1 + q1Z)(1 + q2W )

]
− (mI + θ)I − pIZ = 0.

Let c =
1

σmU
(Aσ −mImZ). Then 0 < U < c. The functions g3 and f3 are defined on the interval [0, c]

as follows:
g3(U) =

σ

pmZ
(A−mUU)− mI

p
,

f3(U) = U

[
β1V

(1 + q1g3(U))(1 + q1W )
+

β2I

(1 + q1g3(U))(1 + q2W )

]
− (mI + θ)I − pIg3(U).

Therefore, the model (1) admits an equilibrium point with both humoral and cellular immune responses
if and only if there exists a value U4 ∈ (0, c) satisfying f3(U4) = 0. Under this condition, the associated

equilibrium is expressed as E4 = (U4, I4, V4,W4, Z4) , with I4 =
mZ

σ
, V4 =

mW

ρ
,W4 =

k(1− ε)pmZ

rσmW
− mV

r

and Z4 = g3(U4). Observe that W4 =
mV

r
(RW

2 − 1), which implies RW
2 > 1. Moreover, we compute

f3(0) = (−mI − θ − pg3(0))I4 < 0, and f ′
3(0) > 0. In addition, we have

f3(c) =
I4
I2

[
c

(
β1V2

1 + q1W4
+

β2I2
1 + q2W4

)
− (mI + θ)I2

]
.

Hence, if RZ
2 ≤ 1, then I2 ≤ I4, c ≤ U3, and W2 ≤ W4, which leads to

f3(c) ≤
I4
I2

[
U2

(
β1V2

1 + q1W2
+

β2I2
1 + q2W2

)
− (mI + θ)I2

]
=

I4
I2

f1(U2) = 0.

It follows that f3(U) < 0 for all U ∈ (0, c), thus the system (1) does not admit an equilibrium in this range
when RZ

2 ≤ 1. Conversely, if RZ
2 > 1, we find I2 > I4, c > U3, and W2 > W4, so that

f3(c) >
I4
I2

[
U2

(
β1V2

1 + q1W2
+

β2I2
1 + q2W2

)
−mII2

]
=

I4
I2

f1(U2) = 0.

Therefore, exactly one value U4 ∈ (0, c) can be identified such that f3(U4) = 0. We conclude that if RZ
2 > 1,

the system (1) possesses a unique steady state.
Based on the above reasoning, we formulate the following theorem.

Theorem 2.1

1. Suppose that R0 ⩽ 1. In this case, the system (1) admits a unique infection-free equilibrium denoted

by E0 = (U0, 0, 0, 0, 0), where U0 =
A

mU
.

2. Assume that R0 > 1. Under this condition, system (1) exhibits an infection equilibrium in the
absence of immune responses. This equilibrium is given by E1 = (U1, I1, V1, 0, 0), where U1 = A

mUR0
,

I1 = A(R0−1)
mIR0

and V1 = k(1−ε)A(R0−1)
mImV R0

.

3. Suppose that the condition RW
1 > 1 holds. Then system (1) admits an infection equilibrium

in the presence of humoral immunity only, denoted by E2 = (U2, I2, V2,W2, 0), where U2 ∈(
0, A

mU
− mImV mW

k(1−ε)ρmU

)
, I2 = 1

mI
(A−mUU2), V2 = mW

ρ and W2 = k(1−ε)ρ(A−mUU2)
rmWmI

− mV

r .
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4. Assume that RZ
1 > 1. In this scenario, the model (1) possesses an equilibrium involving cellular

immunity only, expressed as E3 = (U3, I3, V3, 0, Z3), where U3 ∈
(
0, A

mU
− mImZ

σmU

)
, I3 = mZ

σ , V3 =

k(1−ε)mZ

σmV
and Z3 = σ(A−mUU3)−mImZ

pmZ
.

5. Suppose further that both reproduction numbers satisfy RW
2 > 1 and RZ

2 > 1. In this case, system
(1) admits an infection equilibrium involving both humoral and cellular immune responses. This

equilibrium is denoted by E4 = (U4, I4, V4,W4, Z4), where U4 ∈
(
0, Aρ−mImZ

ρmU

)
, I4 = mZ

σ , V4 = mW

ρ ,

W4 = k(1−ε)ρmZ

rσmW
− mV

r and Z4 = σ(A−mUU4)−mImZ

pmZ
.

3. Global stability

In this part, we focus on analyzing the global stability of the equilibria associated with system (1). This
will be achieved using the approach outlined in [14]. In the following analysis, we employ the function
ϕ(y) = y − 1− ln y, which is known to be well-defined and strictly positive on the interval (0,+∞).
Moreover, the function attains zero if and only if y = 1.

Let us denote by u the vector of the relative components of system (1) and by F the reaction function:

u =


U
I
V
W
Z

 and F (u) =



A−mUU − β1UV

(1 + q1Z)(1 + q1W )
− β2UI

(1 + q2Z)(1 + q2W )
+ θI

β1UV

(1 + q1Z)(1 + q1W )
+

β2UI

(1 + q2Z)(1 + q2W )
− (mI + θ)I − pIZ

k(1− ε)I −mV V − rV W
ρVW −mWW
σIZ −mZZ


. (8)

Theorem 3.1
Assume that R0 ≤ 1. Then the infection-free state E0 = (U0, 0, 0, 0, 0) of system (1) is globally
asymptotically stable.

Proof
Define the following functional:

L0(u) = U0 ϕ

(
U

U0

)
+ I +

U0β1

mV
V +

p

σ
Z +

rU0β1mW

ρmV
W,

and define

L0(u) =

∫
Ω

L0(u(y, t)) dy.

For all u ∈ R∗5
+ , the functional L0(u) satisfies L0(u) > 0, with equality L0(u) = 0 occurring only when

u = E0. By applying the method described in [14], we obtain

dL0(u)

dt
= −C(n, s)

2

5∑
i=1

di E
(
ui,

∂L0

∂ui
(u)

)
+

∫
Ω

∇L0(u) · F (u) dy,
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with ui are the components of u and di are diffusion coefficients. Our analysis reveals the negativity of
∇L0(u) · F (u) from [16] as follows

∇L0(u) · F (u) =
dL0

dt
= −mU

U
(U − U0)

2 + U0

[
β1V

(1 + q1W )(1 + q1Z)
+

β2I

(1 + q2W )(1 + q2Z)

]
−mII − pIZ +

U0β1

mV
V ′ +

p

σ
Z ′ +

rU0β1mW

ρmV
W ′,

≤ −mU

U
(U − U0)

2 + U0(β1V + β2I)−mII − pIZ +
U0β1

mV
V ′ +

p

σ
Z ′ +

rU0β1mW

ρmV
W ′,

≤ −mU

U
(U − U0)

2 +mII(R0 − 1)− p

σ
mZZ − rU0β1mW

ρflmV
flW.

Therefore, if R0 ≤ 1, we have ∇L0(u) · F (u) ≤ 0, and the equality ∇L0(u) · F (u) = 0 occurs exclusively
when u equals E0. Furthermore, L0 complies with the requirements specified in Theorem 1 in [14],

E
(
U,

∂L0

∂U
(u)

)
= U0

∫
Ω

∫
Ω

(U(y1, t)− U(y2, t))
2

U(y1, t)U(y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
I,

∂L0

∂I
(u)

)
= E

(
V,

∂L0

∂V
(u)

)
= E

(
W,

∂L0

∂W
(u)

)
= E

(
Z,

∂L0

∂Z
(u)

)
= 0.

If R0 ≤ 1, then it follows that dL0

dt ≤ 0. This derivative equals zero only when u = E0 Thus, the global
asymptotic stability holds for the equilibrium point E0.

We now proceed to analyze the asymptotic stability of the four infection equilibria E1, E2, E3, and E4.
For this analysis, we will assume the following additional hypothesis:

(
(1 + q1Z)(1 + q1W )

(1 + q1Zi)(1 + q1Wi)
− 1

)(
(1 + q1Z)(1 + q1W )

(1 + q1Zi)(1 + q1Wi)
− V

Vi

)
≤ 0,(

(1 + q2Z)(1 + q2W )

(1 + q2Zi)(1 + q2Wi)
− 1

)(
(1 + q2Z)(1 + q2W )

(1 + q2Zi)(1 + q2Wi)
− I

Ii

)
≤ 0,

(H)

where Zi, Wi, Vi, Ii, and Ui denote, respectively, the components of CTL cells, antibodies, viral particles,
infected cells, and uninfected cells at the equilibrium states Ei corresponding to i = 1, 2, 3, 4.

Remark 3.2
It obvious that the assumption (H) is always satisfied when the non-lytic effects of humoral and cellular
immune responses are ignored, i.e., q1 = q2 = q1 = q2 = 0.

Theorem 3.3
Suppose that the hypothesis (H) is satisfied for the infection equilibria Ei, with i = 1, 2, 3, 4.

(i) The equilibrium E1 is globally asymptotically stable if the conditions RW
1 ≤ 1 and RZ

1 ≤ 1 hold.
(ii) If RZ

2 ≤ 1 < RW
1 , then the infection equilibrium E2 is globally asymptotically stable.

(iii) When RW
2 ≤ 1 < RZ

1 , the infection equilibrium E3, characterized by absence of humoral immunity,
is globally asymptotically stable.

(iv) If both RW
2 > 1 and RZ

2 > 1, then the infection equilibrium E4, which includes both humoral and
cellular immune responses, is globally asymptotically stable.

Proof

• For the case (i), let us introduce the Lyapunov functional L1 given by:

L1(u) =

∫
Ω

L1(u(y, t)) dy,
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where

L1(u) = U1ϕ

(
U

U1

)
+ I1ϕ

(
I

I1

)
+

β1U1V1

k(1− ε)I1
V1ϕ

(
V

V1

)
+

p

σ
Z +

β1rU1V1

k(1− ε)ρI1
W.

According to [16], we have ∇L1(u) · F (u) ≤ 0 provided that condition (H) holds for E1, and that
both RW

1 ≤ 1 and RZ
1 ≤ 1 are satisfied. Moreover, equality holds, i.e., ∇L1(u) · F (u) = 0, if and only

if u = E1.
Additionally, L1 takes the form of equation (11) in [14], thus

E
(
U,

∂L1

∂U
(u)

)
= U1

∫
Ω

∫
Ω

(U(y1, t)− U(y2, t))
2

U(y1, t)U(y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
I,

∂L1

∂I
(u)

)
= I1

∫
Ω

∫
Ω

(I(y1, t)− I(y2, t))
2

I(y1, t) I(y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
V,

∂L1

∂V
(u)

)
=

β1U1V1

k(1− ε)I1
V1

∫
Ω

∫
Ω

(V (y1, t)− V (y2, t))
2

V (y1, t)V (y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
W,

∂L1

∂W
(u)

)
= E

(
Z,

∂L1

∂Z
(u)

)
= 0.

Consequently, we have

dL1

dt
=

∫
Ω

∇L1(u) · F (u) dy − C(n, s)

2

5∑
i=1

di E
(
ui,

∂L1

∂ui
(u)

)
≤ 0.

Therefore, the equilibrium point E1 is globally asymptotically stable under the conditions that (H)
holds, RW

1 ≤ 1 and RZ
1 ≤ 1.

• In case (ii), let us consider the Lyapunov function L2 defined as follows:

L2(u) =

∫
Ω

L2(u(y, t)) dy,

with

L2(u) = U2 ϕ

(
U

U2

)
+ I2 ϕ

(
I

I2

)
+

β1U2V2

k(1− ε)(1 + q1W2)I2
V2 ϕ

(
V

V2

)
+

p

σ
Z

+
r β1 U2 V2

ρ k(1− ε)(1 + q1W2)I2
W2 ϕ

(
W

W2

)
.

From [16], it follows that∇L2(u) · F (u) ≤ 0 when H applies to E2,RW
1 > 1 andRZ

2 ≤ 1. Furthermore,
we have ∇L2(u) · F (u) = 0 precisely when u = E2. Moreover, the function L2 corresponds to the
general form given in equation (11) of [14]. Accordingly, the following relations hold:

E
(
U,

∂L2

∂U
(u)

)
= U2

∫
Ω

∫
Ω

(
U(y1, t)− U(y2, t)

)2
U(y1, t)U(y2, t) |y1 − y2|

n
2 +s

dy1 dy2 ≥ 0,

E
(
I,

∂L2

∂I
(u)

)
= I2

∫
Ω

∫
Ω

(
I(y1, t)− I(y2, t)

)2
I(y1, t) I(y2, t) |y1 − y2|

n
2 +s

dy1 dy2 ≥ 0,

E
(
V,

∂L2

∂V
(u)

)
= β1U2V2

k(1−ε)(1+q1W2) I2
V2

∫
Ω

∫
Ω

(
V (y1, t)− V (y2, t)

)2
V (y1, t)V (y2, t) |y1 − y2|

n
2 +s

dy1 dy2 ≥ 0,

E
(
W,

∂L2

∂W
(u)

)
= r β1 U2 V2

ρ k(1−ε)(1+q1W2) I2
W2

∫
Ω

∫
Ω

(
W (y1, t)−W (y2, t)

)2
W (y1, t)W (y2, t) |y1 − y2|

n
2 +s

dy1 dy2 ≥ 0,

E
(
Z,

∂L2

∂Z
(u)

)
= 0.
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As a result, by applying point (ii) of Theorem 1 in [14], we obtain
dL2

dt
≤ 0. Therefore, the equilibrium

point E2 is globally asymptotically stable, provided that condition (H) holds and the reproduction
numbers satisfy RW

1 > 1 and RZ
2 ≤ 1.

• In case (iii), consider the Lyapunov function L3 defined by:

L3(u) =

∫
Ω

L3(u(y, t)) dy

where

L3(u) = U3 ϕ

(
U

U3

)
+ I3 ϕ

(
I

I3

)
+

β1U3V3

k(1− ε)(1 + q1Z3) I3
V3 ϕ

(
V

V3

)
+

p

σ
Z3 ϕ

(
Z

Z3

)
+

r β1 U3 V3

ρ k(1− ε)(1 + q1Z3) I3
W.

According to the results in [16], we have ∇L3(u) · F (u) ≤ 0, whenever condition (H) is satisfied,
RW

2 ≤ 1, and RZ
1 > 1. The equality ∇L2(u) · F (u) = 0 holds only when u = E3. Moreover, the

function L3 corresponds to the general form (11) presented in [14]. As a result, the following
expressions are satisfied:

E
(
U,

∂L3

∂U
(u)

)
= U3

∫
Ω

∫
Ω

(U(y1, t)− U(y2, t))
2

U(y1, t)U(y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
I,

∂L3

∂I
(u)

)
= I3

∫
Ω

∫
Ω

(I(y1, t)− I(y2, t))
2

I(y1, t) I(y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
V,

∂L3

∂V
(u)

)
=

β1U3V3

k(1− ε)(1 + q1Z3) I3
V3

∫
Ω

∫
Ω

(V (y1, t)− V (y2, t))
2

V (y1, t)V (y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
W,

∂L3

∂W
(u)

)
= 0,

E
(
Z,

∂L3

∂Z
(u)

)
=

p

σ
Z3

∫
Ω

∫
Ω

(Z(y1, t)− Z(y2, t))
2

Z(y1, t)Z(y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0.

Therefore, by applying point (ii) of Theorem 1 in [14], it follows that
dL2

dt
≤ 0. This implies that

the equilibrium point E3 is globally asymptotically stable, provided that the hypothesis (H) holds,
RW

2 ≤ 1 and RZ
1 > 1.

• In case (iv), the Lyapunov function L4 is given by:

L4(u) =

∫
Ω

L4(u(y, t)) dy

with

L4(u) = U4 ϕ

(
U

U4

)
+ I4 ϕ

(
I

I4

)
+

β1U4V4

k(1− ε)(1 + q1Z4)(1 + q1W4) I4
V4 ϕ

(
V

V4

)
+

p

σ
Z4 ϕ

(
Z

Z4

)
+

r β1 U4 V4

ρ k(1− ε)(1 + q1Z4)(1 + q1W4) I4
W4 ϕ

(
W

W4

)
.

Then, according to the results in [16], provided that condition (H) holds, RW
2 > 1, and RZ

2 > 1, it
follows that ∇L4(u) · F (u) ≤ 0. Moreover, the equality ∇L4(u) · F (u) = 0 holds if and only if u = E3.
In addition, the function L4 corresponds to the general form (11) presented in [14]. Consequently,
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the following expressions hold:

E
(
U,

∂L4

∂U
(u)

)
= U4

∫
Ω

∫
Ω

(U(y1, t)− U(y2, t))
2

U(y1, t)U(y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
I,

∂L4

∂I
(u)

)
= I4

∫
Ω

∫
Ω

(I(y1, t)− I(y2, t))
2

I(y1, t) I(y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
V,

∂L4

∂V
(u)

)
= β1U4V4

k(1−ε)(1+q1Z4)(1+q1W4) I4
V4

∫
Ω

∫
Ω

(V (y1, t)− V (y2, t))
2

V (y1, t)V (y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
W,

∂L4

∂W
(u)

)
= r β1 U4 V4

ρ k(1−ε)(1+q1Z4)(1+q1W4) I4
W4

∫
Ω

∫
Ω

(W (y1, t)−W (y2, t))
2

W (y1, t)W (y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0,

E
(
Z,

∂L4

∂Z
(u)

)
=

p

σ
Z3

∫
Ω

∫
Ω

(Z(y1, t)− Z(y2, t))
2

Z(y1, t)Z(y2, t) |y1 − y2|
n
2 +s

dy1 dy2 ≥ 0.

Hence, by applying point (ii) of Theorem 1 in [14], it follows that
dL2

dt
≤ 0. As a result, the

equilibrium point E4 is globally asymptotically stable, provided that hypothesis (H) holds and that
RW

2 > 1 as well as RZ
2 > 1.

4. Parameters estimation and sensitivity analysis

This section presents a detailed analysis of parameter estimation and sensitivity. It quantifies the main
biological parameters of our model, examines the experimental and theoretical data sources on which
these estimates rely, and evaluates how variations in these parameters influence the overall dynamics of
the system.
From the above mathematical analysis of our FPDE model, the infection-free equilibrium

E0
(

A
mU

, 0, 0, 0, 0
)

represents a state in which no infection is present. In the case of HIV infection, the

quantity A
mU

corresponds the total number of healthy CD4+ T cells when the system is in a stable state,
without any viral infection or immune response. It follows from the references [21, 22] that the average
half-life of naive CD4 cells is approximately 22 to 50 days, which implies that ln 2

50 ≤ mU ≤ ln 2
22 , giving mU

between 0.0139 and 0.0315 day−1. In healthy adults, the CD4+ T cells typically range between 500 and
1500 cells/µL [23]. Hence, the parameter A can be range between 6.95 and 47.25 cellsµL−1day−1.
For the virion infection rate of CD4+ T cells β1, we selected a range from 2.4× 10−5 to 4.8×

10−3 µLvirion−1 day−1. This range is based on the standard estimates provided by Perelson et al. [24], as
well as the extended values reported by Stafford et al. [25]. The second infection pathway, mediated by cell-
to-cell transmission and represented by the parameter β2, has not been directly quantified experimentally.
Nonetheless, the study in [26] showed that this mode of transmission contributes to roughly 60% of viral
infections.
The death rate of productively infected CD4+ T cells is commonly estimated to be mI = 0.29± 0.02

day−1[27]. This value reflects the rapid turnover characteristic of HIV infection, corresponding to an
average infected cell lifespan of roughly 3 to 4 days. The estimations of the other parameters are given in
Table 1.

Table 1. The 19 parameters of the FPDE model (1) with their values.
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Parameter Meaning Value Source

A Production rate of uninfected cells 6.95 - 47.25 cellsµL−1day−1. Calculated
mU Death rate of uninfected cells 0.0139 - 0.0315 day−1 Estimated
β1 Virus-to-cell infection rate 2.4× 10−5 − 4.8× 10−3 µLvirion−1day−1 [24, 25]
β2 Cell-to-cell infection rate 0− 1 µLcell−1day−1 Assumed
mI Death rate of infected cells 0.27− 0.31 day−1 [27]
θ Cure rate of infected cells 0.01 day−1 [28]
mV Clearance rate of virus 2.06− 3.81 day−1 [24]
k Viral production rate 27-7073 virion cell−1day−1 [5]
p Clearance rate by CTL cells 0.001− 1 cell−1µLday−1 [18]
r Neutralization rate by antibodies 0.5 molecule−1µLday−1 Assumed
mW Death rate of antibodies 0.35 day−1 Assumed
mZ Death rate of CTL cells 0.05− 0.15 day−1 [29, 30]
q1 CTL non-lytic strength virus-to-cell 0.01 µLcell−1 Assumed
q̄1 Antibody non-lytic strength virus-to-cell 0.001 µLcell−1 Assumed
q2 CTL non-lytic strength cell-to-cell 0.02 µLcell−1 Assumed
q̄2 Antibody non-lytic strength cell-to-cell 0.002 µLcell−1 Assumed
ρ Activation rate of antibodies 6.7× 10−6 − 6.7× 10−3 µLvirion−1 day−1 Assumed
σ Activation rate of CTL cells 0.002− 0.025 µLcell−1 day−1 Assumed
ϵ Effectiveness of antiviral treatment 0− 1 Assumed

Sensitivity analysis enables quantification of how changes in model parameters affect the progression of viral

infection infection. The basic reproduction number, R0 =
A
(
β1k(1−ε)+β2mV

)
mUmV (mI+θ)

, serves as a critical threshold,

indicating whether the infection will be cleared or persist within the host. To evaluate the relative influence of
each parameter, we use the normalized sensitivity index defined for any parameter α as

Γα
R0

=
α

R0

∂R0

∂α
. (9)

By applying Equation (9) and analyzing the data presented in Table 1, we find that the parameters exerting
the most significant influence on R0 in the viral infection model are A, β1, β2, and k. An increase in any of
these parameters results in a higher basic reproduction number, whereas increasing mU , mI , mV , θ, or ε tends
to decrease R0. These findings are summarized in Table 2 and illustrated in Figures 1 and 2.

Table 2. Sensitivity of R0 to model parameters.
Parameter Value Sensitivity index
A 10 1
mU 0.0139 −1

β1 2.4× 10−5 0.166667

β2 1.8× 10−3 0.83333
k 50 0.166667
ε 0.1 −0.0185185
mV 3 −0.166667
mI 0.29 −0.9666667
θ 0.01 −0.0333333
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Figure 1. Sensitivity indices of R0.

Figure 2. The dependence of R0 on specific parameters.
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5. Numerical simulations

Initially, we introduce a computational method for approximating solutions to the FPDE model (1). Applying
the explicit Euler scheme, the temporal discretization reads as follows:

un+1
l − unl

∆t
= D (−∆h)

sunl + F (unl ).

Here, (−∆h)
s corresponds to the discrete version employing the regional fractional Laplacian operator, which

can be approximated in one dimension as in [31] by the following discrete operator:

(−∆h)
sul =

+∞∑
k=−∞

(ul − ul−k)wk =

+∞∑
k=1

(−ul−k + 2ul − ul+k)wk, (10)

for a function u = {ul}l∈Z defined on the discrete spatial domain Ωh = {lh | l ∈ Z} ∩ Ω, with mesh size h > 0.
The weights {wk}k∈Z are positive correction coefficients satisfying the normalization condition

∑
k∈Z wk = 1.

Following [32], the weights are chosen as

wk =
C(1, s)

|k|1+2s
, k ̸= 0.

Given that the fractional Laplacian inherently possesses symmetry, it is appropriate to enforce symmetry on the
weights, that is, wk = w−k. The normalization constant C(1, s), as defined in equation (3), ensures consistency
in the operator’s definition. Thus, we can write the scheme in the form

un+1
l =

(
1 + ∆t w0

)
unl +D

∑
k ̸=0

∆t (unl − unl−k)wk +∆t F (unl ),

=
(
1 + ∆t w0

)
unl +D

+∞∑
k=1

∆t (−unl+k + 2unl − unl−k)wk +∆t F (unl ),

where ul = (Ul, Il, Vl,Wl, Zl) and F = (F1, F2, F3, F4, F5) denotes the reaction term as defined in (8). The weight
coefficient w0 can be chosen arbitrarily, as it does not appear explicitly in equation (10).
So, to numerically approximate model (1), we employ the following recursive formulas:

Un+1
l = (1 +∆t w0)U

n
l + dU

N∑
k=1

∆t (−Un
l+k + 2Un

l − Un
l−k)wk +∆t F1(u

n
l ),

In+1
l = (1 +∆t w0)I

n
l + dI

N∑
k=1

∆t (−Inl+k + 2Inl − Inl−k)wk +∆t F2(u
n
l ),

V n+1
l = (1 +∆t w0)V

n
l + dV

N∑
k=1

∆t (−V n
l+k + 2V n

l − V n
l−k)wk +∆t F3(u

n
l ),

Wn+1
l = (1 +∆t w0)W

n
l + dW

N∑
k=1

∆t (−Wn
l+k + 2Wn

l −Wn
l−k)wk +∆t F4(u

n
l ),

Zn+1
l = (1 +∆t w0)Z

n
l + dZ

N∑
k=1

∆t (−Zn
l+k + 2Zn

l − Zn
l−k)wk +∆t F5(u

n
l ).

Based on Table 1, the numerical values of the model parameters are chosen as follows: ε = 0.1, θ = 0.01,
β1 = 2.4× 10−5, mU = 0.0139, mI = 0.29, mV = 3 and mW = 0.35.
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Figure 3. Dynamics of the system (1) at E0 when R0 = 0.8975 < 1.
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Figure 4. Dynamics of system (1) at E1 when R0 = 3.437 > 1, RW
1 = 4.55× 10−3 ≤ 1 and RZ

1 = 0.5868 ≤ 1.
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Figure 5. Dynamics of system (1) at E2 when R0 = 5.18 > 1, RW
1 = 4.549 > 1 and RZ

2 = 0.3796 ≤ 1.
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Figure 6. Dynamics of system (1) at E3 when R0 = 3.1079 > 1, RZ
1 = 3.425 > 1 and RW

2 = 0.0257 ≤ 1.
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Figure 7. Dynamics of system (1) at E4 when R0 = 5.179 > 1, RW
2 = 1.4357 > 1 and RZ

2 = 3.89 > 1.
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Figure 8. Effect of treatment on viral infection dynamics.

Infection-free steady state E0: For the dynamics of E0, we study the case where R0 < 1. If A = 10, β2 =
1.8× 10−6, σ = 2× 10−3, mZ = 0.05, k = 50 and ρ = 6.7× 10−3 , then R0 = 0.8975 < 1. Accordingly, the
equilibrium E0 = (719.4244, 0, 0, 0, 0) exhibits global asymptotic stability. This finding is supported by the
numerical simulation shown in Figure 3, where the trajectories of model (1) converge to E0.

Infection equilibrium in the absence of immune responses E1: Let us consider the following parameter values:
k = 27, ρ = 6.7× 10−6, A = 12, mZ = 0.1, β2 = 10−3 and σ = 0.002. For this configuration, we obtain the
basic reproduction number R0 = 3.437 > 1, while the reproduction numbers related to immune responses are
RW

1 = 4.55× 10−3 ≤ 1 and RZ
1 = 0.5868 ≤ 1. As illustrated in Figure 4, the system trajectories associated with

model (1) converge to the infection equilibrium point E1 = (251.181, 29.34, 237.65, 0, 0). This behavior supports
the global asymptotic stability of E1 and corroborates the theoretical findings stated in point (i) of Theorem
3.3.

Infection equilibrium in the absence of cellular immunity E2: Consider the parameter values: k = 50, ρ =
6.7× 10−3, β2 = 1.8× 10−3, A = 10, mZ = 0.1 and σ = 0.002. Under these conditions, the basic reproduction
number is R0 = 5.18 > 1, while the reproduction number for humoral immunity is RW

1 = 4.5493 > 1, and that of
cellular immunity is RZ

2 = 0.3796 ≤ 1. As illustrated in Figure 5, the trajectories of system (1) evolve toward the
infection equilibrium without cellular immune response, denoted by E2 = (550, 8.12, 52.238, 8, 0). This behavior
confirms the global asymptotic stability of E2, in agreement with the analytical findings stated in item (ii) of
Theorem 3.3.

Infection equilibrium without humoral immunity E3: For k = 50, β2 = 1.8× 10−3, A = 7, σ =

0.025, mZ = 0.15 and ρ = 10−4 , we have R0 = 3.6510 > 1, RZ
1 = 2.9211 > 1 and RW

2 = 0.0257 ≤ 1. As
shown in Figure 6, the trajectories of the system (1) approach the infection equilibrium point E3 =
(298.9338, 6, 90, 0, 18.4137), which represents a configuration where the humoral immune response is inactive.
This behavior supports the asymptotic stability of equilibrium E3, in accordance with item (iii) of Theorem 3.3.

Steady state E4 with both immune branches (humoral and cellular) are involved: Consider the parameter set:
k = 50, ρ = 6.7× 10−3, A = 10, σ = 0.02, mZ = 0.1 and β2 = 1.8× 10−3. Under these conditions, the model
yields R0 = 5.179 > 1, RW

2 = 1.4357 > 1 and RZ
2 = 3.89 > 1. As illustrated in Figure 7, the trajectories of

system (1) evolve toward the infection equilibrium involving both humoral and cellular immunity, denoted
by E4 = (397.29, 14.9, 17.5, 60.55, 2.61). This numerical observation supports the theoretical conclusion regarding
the global asymptotic stability of E4, as established in item (iv) of Theorem 3.3.

On the other hand, we examine the impact of antiretroviral therapy on the progression of viral infection. The
analysis of the basic reproduction number, R0, indicates that it decreases with increasing treatment efficacy ε,
demonstrating the effectiveness of antiretroviral therapy in controlling viral spread. As illustrated in Figure 8,
R0 falls below 1 when treatment efficacy exceeds 60%, which biologically means that the infection will eventually
disappear.
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6. Conclusion

This work was devoted to formulate a mathematical model of viral infection that incorporates spatial fractional
diffusion, represented through the regional fractional Laplacian operator, as well as the adaptive immune
response. The model also accounts for two distinct transmission mechanisms and includes both lytic and non-
lytic immune responses. We first identified the equilibrium states of the system, along with the threshold
parameters governing its dynamics. Furthermore, the global stability of these equilibria was analyzed using
an innovative approach based on the construction of Lyapunov functionals, tailored to a category of partial
differential equations, both delayed and non-delayed, incorporating the regional fractional Laplacian operator.

During viral infection, immunologic memory enables the immune system to recognize and respond more
rapidly and effectively to previously encountered pathogens, providing long-term protection and reducing the
severity of subsequent infections. Therefore, it is of great interest to investigate the effect of this immunologic
memory on the dynamical behavior of viral infection using the generalized Hattaf mixed fractional derivative
[33, 34], instead of the classical time derivative used in (1). This will represent a potential direction for our
future research.
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105(25), 8691Â–8696, 2008.
22. S. Rane, T. Hogan, E. Lee, B. Seddon, A. J. Yates, G. T. Belz, T. Taniguchi, J. Borghans, Towards a unified

model of naive T cell dynamics across the lifespan, eLife, 11,e78168, 2022.
23. S. B. Garcia, M.Zubair, N. Guzman, CD4 Cell Count and HIV, StatPearls, 2025.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



22 GLOBAL STABILITY OF A CLASS OF FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

24. A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, D. D. Ho, HIV-1 dynamics in vivo: virion clearance

rate, infected cell life-span, and viral generation time, Science 271, 1582Â–1586, 1996.
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