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Abstract In this article, we formulate a mathematical model based on fractional partial differential equations
(FPDESs) to describe the spatiotemporal progression of viral infections, incorporating the effects of adaptive
immunity and antiviral treatment. The model includes a regional fractional Laplace operator to account for
the anomalous diffusion observed within the infected medium. We investigate the existence and uniqueness
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1. Introduction

Since the dawn of humankind, viral infections have posed one of the most significant challenges to
public health. These infections involve complex interactions between pathogens, host cells and the
immune system. This intricate biological conflict requires a deep understanding and accurate modeling
to design effective treatment strategies and appropriate control measures. Mathematical modeling plays
a fundamental role in this context, offering tools to describe the spatial and temporal dynamics of viral
spread and the associated immune responses.

Among these tools, fractional partial differential equations (FPDEs) stand out for their ability to
incorporate anomalous diffusion and memory effects, which are frequently observed in biological tissues but
are only partially captured by classical models based on integer-order derivatives. Fractional derivatives
offer a flexible and powerful framework for representing nonlocal interactions and heterogeneous transport
processes, both of which are essential for accurately describing viral dissemination within biological
systems.

Stability analysis is crucial for assessing the reliability and robustness of mathematical models under
various conditions. It helps detect and prevent unexpected or unstable behavior in simulations, ensuring
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biologically consistent and meaningful predictions. Several studies have addressed the global dynamics
of viral infection models by applying stability criteria. For instance, Xu and Ma [1] investigated the
global behavior of a time-delayed model for hepatitis B virus (HBV) infection, incorporating spatial
diffusion, saturation effects in the infection rate and a delay associated with intracellular incubation.
In a related study, Shaoli et al. [2] proposed a spatially diffusive HBV model that integrates the role
of cellular immune response alongside a nonlinear infection process. They demonstrated that free virus
diffusion does not alter global stability under homogeneous Neumann boundary conditions. In addition,
Hattaf and Yousfi [3] were among the first to introduce a systematic approach for constructing Lyapunov
functions specifically tailored to reaction-diffusion systems, both with and without time delays. Their
method has found broad application in recent studies [4, 5, 6, 7, 8, 9] for the global stability analysis
of classical models. More recently, this approach has been extended to fractional differential equations
(FDEs) with classical diffusion [10], and further applied in [11]. It has also been extended to PDEs
involving a fractional Laplacian operator [12], as well as to diffusion-reaction systems with and without
time delays governed by the p-Laplacian operator [13]. In another application, the method was employed
to analyze the global dynamics of SARS-CoV-2 infection model incorporating both antiviral treatment
and diffusion, using the regional fractional Laplacian operator [14].

In the present study, we propose a class of FPDEs to model the progression of viral infection, accounting
for both adaptive immunity and antiviral treatment. To describe the anomalous diffusion confined within
the infected tissue, we employ the regional fractional Laplacian operator. Accordingly, the article is
organized as follows: SectionA 2 formulates the viral infection model by means of FPDEs and investigates
the existence and uniqueness of equilibria. SectionA 3 is dedicated to the global stability analysis. Section
4 is devoted to parameters estimation and sensitivity analysis. SectionA 5 presents numerical simulations
that illustrate and support the theoretical results. Finally, SectionA 6 summarizes the main findings of
this research.

2. Formulation of the viral infection model and equilibria
This section presents a fresh approach to modeling viral infections using fractional spatial diffusion,

non-lytic and lytic immune responses, adaptive immunity, and two modes of transmission. The model is
constructed as the following nonlinear system of FPDEs:

6£ _ _ s —m _ BlU(yvt)V(yvt) _ 52U(yvt)l(y7 t)
o SRt 5UIIJ]((y7Z))V( (lt)+ wZ(y,0)(1 +‘17/3V15y(’t>2)1( (}f 22wt aWEn) @
— _ s 11Uy, Y, 2U Y, Y, —(m _
o ARG o G U a0, 0) T G+ a2 +awi ) T T 2,
B = WAV ) + k(1 —)l(y,t) - myV(y,t) —rV (g, OW (y, 1),
OV ()W (,8) 9V (3, OW (3, 8) — oy W (1,1,
O =z (A1) + T, 020, 1) — mz 2 (y,1).

(1)
Here, the functions Z(y,t), W(y,t), V(y,t), I(y,t) and U(y, t) denote, respectively, the spatial and temporal
concentrations of cytotoxic T lymphocyte (CTL) cells, antibodies, free virus particles, infected cells, and
uninfected cells. The production of uninfected cells occurs at a constant rate A, undergo natural death at a
rate my. These cells can become infected through two primary mechanisms: virus-mediated transmission,
occurring at rate S,UV, and cell-to-cell contact at rate SoUI. Both of these infection pathways are
modulated by immune responses: cellular immunity reduces the infection rates through the non-lytic
effects represented by the factors 1+ ¢;Z and 1+ ¢2Z, while humoral immunity adds inhibitory effects
via 1+ g W and 1 + g W. Infected cells are lost due to natural death at rate mI, targeted elimination by
CTL at rate plZ, or recovery back to the uninfected state at rate 1. The virus is produced by infected
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2 GLOBAL STABILITY OF A CLASS OF FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

cells at rate k, and is removed from the system at rate my V. Antibodies are generated as a result of
interactions between virus and antibodies at rate pV W, degrade naturally at rate my W, and neutralize
free virus at a rate rVW. CTL populations grow in response to the presence of infected cells, expanding at
rate 0IZ, and decay at rate mzZ. Furthermore, the parameter ¢ € [0, 1] quantifies the efficacy of antiviral
therapy in suppressing viral production, where higher values of ¢ reflect more effective treatment. Lastly,
dy, dy, dy, dw and dz denote the diffusion coefficients for the respective biological components, capturing
their spatial spread within the domain, and are assumed to be non-negative. In model (1), the diffusion
of particules is described using the regional fractional Laplacian operator (—A)$, as defined in [15], by the
following formula:

: u(y) — u(z)

(=A)du(y) =C(n,s) lim - dz, )

; =0t Jizea)ly—zl>e) 1y = 2l127F @)
where || - || is the Euclidean norm on R™, n is the dimension of the space and C(n, s) denotes a normalization

constant, given in the same reference [15] by:
-1
1 —cos(&1) s4°T(s+ %)
C = ——"d = — =", 3
(n;5) / TEEE ¢ 75 T(1—s) 3)
R

with s € (0,1) the fractional parameter, £ = (£1,¢), & € R™ L and T'(2) = [t le~tdt, z€ R

Since the infected organ occupies a well-defined and bounded region within the human body, we
represent it in our model by a domain Q C R™ with a smooth boundary 9. The operator (—A)§ is
used to describe the random motion of particles within this domain, where a particle may move from one
location y; € 2 to another y, € Q, with a likelihood of transition governed by the kernel ||y; — yo|| =2 5.
The fractional order s is defined as a parameter characterizing anomalous diffusion in biological tissues.
Biologically, it reflects the heterogeneity of the tissue microenvironment and the irregular movement of
viral particles and immune cells. Lower values of s correspond to more heterogeneous tissue structure and
subdiffusive behavior, whereas values approaching 1 indicate nearly classical and homogeneous diffusion.
On the other hand, it is important to note that particles are not allowed to exit the domain 2. When
they reach the boundary 02, they are either redirected back into the interior or removed from the
system. Taking this spatial restriction into account, we now examine problem (1) under the framework
of generalized Neumann-type boundary conditions involving fractional normal derivatives. Following the
definition proposed in [15], the boundary conditions take the form:

NDE2PY = ND2 [ = NP2 Y = ND2 2 = D42 7 =

on 0 x (0, +00), where the operator ND(~272)y, denotes the fractional normal derivative of the function
u in the direction of the outward unit normal vector. It is defined as:

ND(72S+2)u(y) = — lim wt*%Jﬂ,
t—0T dt

with n(y) represents the interior normal vector at the boundary point y € 92, as introduced in [15]. To
finalize the model initialization, we assume that

U(y,0) >0, I(y,0)>0, V(y,0)=>0, W(y,0)>0, Z(y,0)>0, forall yeQ.

It is worth highlighting that model (1) enhances and extends the ODE model introduced in [16] by
incorporating both spatial diffusion and antiviral treatment. Furthermore, the model proposed by El
Hassani et al. [14] can be regarded as a special case of the model presented in this work.

By employing the same approach outlined in [16], we can conclude that the system (1) has five steady
states. To determine all possible equilibria of the system, we consider homogeneous solutions, i.e., solutions
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that are constant in time and space. Thus, we assume that time derivatives and fractional diffusion terms
disappear. System (1) thus reduces to:
81UV BoUI

A—myU — - +0I=0,
T Utz +aW) I+ @)1+ W)

BLUV BUI
I+a2)+aW)  (1+¢2)(1+5 W)

—(mr+0)I —pIZ =0,

(4)
k(1—¢e)l —myV —rVW =0,

pVW —muy W =0,

oIZ —myZ = 0.
First, we assume the absence of infection, i.e., I =V =W = Z = 0. In this case, system (4) simplifies
A
to the equation: 0 = A — myUy, which gives Uy = —. So, it is clear that the point & = (Uj,0,0,0,0)
m

U
represents an equilibrium state in the absence of infection, called the infection-free equilibrium.
Consequently, the basic reproduction number of our model can be readily determined as follows:

B1Uk(1 —¢) = B2l
+

my(my+60)  my+6

—_— — —

Ro = = Ro1 + Roz. (5)

R()l RO?

Considering biological perspectives, and in accordance with references [17, 18], the basic reproduction
number Ry can be decomposed into two distinct components Ry; and Rge. The first component Roq,
corresponds to the virus-to-cell infection pathway and is given by the expression Rg; = Bilok{l=c) yyhile

mv(m1+0)
the second component, Rgo, represents the direct cell-to-cell transmission mode and is calculated as
Ros = szo
+0°

When Ry > 1, model (1) admits a second equilibrium point, denoted by & = (Ui, I1,V1,0,0), which
represents infection occurring without any immune response. For Z = W = 0, the system reduces to:

0 =A—mpU_p UV = 3UI + 01,
0 =5UV+BUI—-(mr+0)I,
0 =k(1—e)—myV.
From the third equation, we have V = ’6(77117;6)] Substituting this expression for V' into the second equation,

we obtain S1U (k(l £) ) + B2UI = (my + 0)1. Factoring I from both sides and rearranging the equation,
we get U (%1‘:5) + ﬂg) = my + 0. We find the following expression:

U my+ 6 Uy
1= 55— = —/—.
1—¢ R
Bik(l —¢) L By 0
my
Uy A .. .
We now substitute U; = == into the first equation in order to determine the value of I.
o muRo
. k(1 —¢) . . k(1—¢) _
Since V = ———=1, we obtain from the first equation A — myU; — BlUlTV +BU, —0) 1=
my
Using the relation 5y U1M + B2U; = my + 0, the equation simplifies to A — myU; — m;I = 0. We find
—m A-A- _
= Ammuty - AR AR gy, = M) AL oRe)
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4 GLOBAL STABILITY OF A CLASS OF FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

In the context where humoral immunity is active while CTL immunity remains absent, any equilibrium
configuration must fulfill the following system of equations:

A—mUU—m[IZO,

/UVvV BoUI
1+aW  14+@W

— (mr+6)I =0,
(6)

k(1 =) —myV —rVW =0,

pVW —my W = 0.

In situation where the humoral immune system has not yet been activated, the inequality pV —mpy <0
holds. Under this condition, the reproduction number associated with the humoral response can be
characterized by:

RV = Py = PO )

my mwmrmy Ro

which quantifies the average number of antibodies generated by the immune system in response to viral
infection, in the absence of CTL activity [19].

Assuming that W > 0, one obtains V' = %, 1= %,(A — myU). Consequently, the variables W and U

must satisfy the relations W = %(A —myU)— ™ and U [p(fﬁ%v‘v,v) + %Eé}%@%ﬂ — (A —
mUU) =0.
A mymwmry

Let us introduce the threshold parameter: ¢« = — — —————— and restrict our analysis to the
my k(1 —¢)pmy

interval U € (0, a). Within this domain, define the auxiliary functions:
k(l—&)p my Bimw ﬁg(A—mUU) :| B dr+6

a(U) = W(A —myU) — 0 hU)=U p(1+qig1(U))  mi(1+qg(U)) dg

By direct computation, one observes f1(0) < 0, and further:

mjmvmf,v
(k(1 —¢))*p*my
Thus, if RY > 1, then f;(a) > 0, ensuring the existence of a solution Us € (0,a) such that fi(Uy) = 0.

UV B2Us
IA+aW)  1+@W’

1+ q191(Uz) — @1Uag1(Uz) ~ B2Uaagi (U2)1(Us) AUV
(1+qg1(U2))? (1+3292(U2))? h(U2)(1 + qig1(U2))’
where h(U) = %U(A —mgyU). Since both A (U) <0 and g¢1(U) <0, it follows that f{(Us) >0,

confirming the uniqueness of the solution Us and thereby the uniqueness of the associated equilibrium:

52 = (UQ,IQ,‘/Q,WQ,O), Wlth IQ = h(UQ), ‘/2 = mTW and W2 = gl(UQ)

fi(a) = (k(1 —€)B1 +myB2)(RYY —1).

Using the relation m; 4+ 60 = we compute the derivative of f; at Us:

fi(la) = BV — h'(Uz)

In situations where cellular immunity is present and the humoral response is absent, the equilibrium of
the system (1) is governed by:
pUVv B2UI

A—myU — —
1+q12 1+ g2

+6I=0,

uv Ur
B Ba —(m; +60)I —pIZ =0,
1+ Z  1+¢z (7)

E(l—e)l —myV =0,

olZ —myzZ =0.
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In the absence of cellular activation, the inequality ol; — mz < 0 must be satisfied. Accordingly, the
reproduction number for CTL-mediated immunity is defined as:

o 0'.[1 . G'A(R() — ].)
my mzmiRo

is reflecting the mean number of CTL produced per infected individual in the absence of humoral
neutralization [19].

Given Z > 0, we derive the expressions: I = ™4, V = iﬁ‘z/, Z = U(Afng);m’mz , and the equation:
U [mﬁ;?l(-ls—;f)z) + 1+5q222} — (my+0) —pZ =0. Introducing the threshold: b= W% — oz, with 0<
U < b, we define the functions:

U(A—mUU)—mImZ |: ﬁlk(l—z’:‘) ﬂg :|
U) = KU =U — (my +0) — pga(U).
92( ) pmy f2( ) mv<1+q192(U)) 1+QQ92(U) ( I ) ng( )

We observe f3(0) = —(m;+6)—pg2(0) <0, and f2(b) =b [%1;5) + ,82:| — (my+60). The derivative
f4(U) is given by:

f2(U) =

Prk(1 —¢) B2 } U {&k‘(l —&)ag5(U) B24295(U)
my(14+qg2(U)) 1+ q2g2(U) my(1+qg2(U))? (14 q292(U))

Since ¢g4(U) < 0, we conclude that f5(U) > 0.
If R <1, then I; < 22, so Uy > b, leading to:

f2(b) < fo(U1) = 0= fo(b) < 0.

2} —pgs(U).

This indicates that no equilibrium solution exists in this case. On the contrary, if RZ > 1,
then f5(b) >0, implying the existence of a unique solution Us € (0,b) such that f3(Us)=0.
Thus, a unique equilibrium point when R#Z > 1, which is given by & = (Us,I3,V5,0,7Z3), with

[, = Mz Vo = kmy and  Z. = oc(A—myUs)—mimyz
3 o 3 omy 3 pmz ’

We now consider the most comprehensive case, in which both humoral and cellular immune mechanisms
are simultaneously active. In this setting, i.e., when Z # 0 and W # 0, any equilibrium configuration must
satisfy the system (4). In this competitive environment, the reproduction number of humoral immunity
in competition, denoted by RY , is defined as:

k(1 —
R = 0y, o2z
mw amymw
k(l - E)mz 1o . . .
where V3 = ——————= represents the equilibrium viral load under the influence of both immune
omy

responses. Analogously, the reproduction number of cellular immunity in competition is given by:

g g
R = —1I, = (A —mgyUs),
mz mrmzyg

which reflects the rate of CTL proliferation driven by infected cells, modulated by the availability of
uninfected target cells Us.

From a biological perspective, the quantity RZ represents the expected proliferation rate of CTL induced
by infected cells, under the premise that the humoral immune response is already active. In contrast, RY
measures the average number of antibody-secreting immune cells triggered by viral particles, assuming
that CTL-mediated immunity is concurrently operational [19, 20].
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Since Z>0, W >0, then V= "W j_Mz y_kl=cpmz mv o
P o romyy r pmz

(AfmUU)*

L addition, we have the following equation:
p

[ BV n Bl
AI+a2)1+aW)  (Q+aZ)(1+g W)

}—(m1+9)1—pIZ:O.

1
Let c= —— (Ao —mymz). Then 0 < U < ¢. The functions g3 and f5 are defined on the interval [0, ¢]

as follows: o o m
93(U) = M (A=myU) - ?17
. ﬂlv 621 _ _
) =0 | e O 0 e )

Therefore, the model (1) admits an equilibrium point with both humoral and cellular immune responses
if and only if there exists a value Uy € (0, ¢) satisfying f5(Uy) = 0. Under this condition, the associated

k(1 —
equilibrium is expressed as &4 = (Uy, Iy, Vy, Wa, Z4), with I = y,w = m—W, W, = w _ v
o P romw r

and Zy = g3(Us). Observe that Wy = ﬂ(RgV —1), which implies R} > 1. Moreover, we compute
T
f3(0) = (—mp — 0 — pg3(0))I4 < 0, and f4(0) > 0. In addition, we have

L p1Va Bals
fale) = I {C<1 YW, 1+ aWa

) — (m[ + 9)]2:| .
Hence, if RZ <1, then I, < I, ¢ < Us, and Wy < Wy, which leads to

I, B1Va Balz I,
< — |U- — NIs| = —=f1(Uy) =0.
fa(e) < T [ 2 <1+(11W2 + 1+q2W2) (mr +0) 2} I2f1( 2)

It follows that f3(U) < 0 for all U € (0, ¢), thus the system (1) does not admit an equilibrium in this range
when RZ < 1. Conversely, if R > 1, we find Iy > I, ¢ > Us, and Wy > Wy, so that

1y B1Va Bl
> P
s> 3, [ ? (1 TaWe 1+ @We

> - m112:| = %fl(Ug) =0.

Therefore, exactly one value U, € (0, c) can be identified such that f3(Uy) = 0. We conclude that if RF > 1,
the system (1) possesses a unique steady state.
Based on the above reasoning, we formulate the following theorem.

Theorem 2.1

1. Suppose that Ry < 1. In this case, the system (1) admits a unique infection-free equilibrium denoted
A
by & = (Uy,0,0,0,0), where Uy = —.
m

U
2. Assume that Ro > 1. Under this condition, system (1) exhibits an infection equilibrium in the
absence of immune responses. This equilibrium is given by & = (Uy, I, V4,0,0), where Uy =

_ A(Ro-1) _ k(1—e)A(Ro—1)
Il - 77LIR(J and ‘/1 - mlmvng

3. Suppose that the condition R}V >1 holds. Then system (1) admits an infection equilibrium
in the presence of humoral immunity only, denoted by &; = (Us, I, Vo, W5,0), where U; €

<0 A mimymw ), Iy = mLI(A _ mUUg), Vo = mTW and Wy = k(1—g)p(A—myUs) my

S my k(l1—e)pmy rmwmr r

myRo’
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4. Assume that RZ > 1. In this scenario, the model (1) possesses an equilibrium involving cellular

immunity only, expressed as & = (Us, I3, V3,0, Z3), where Us € (0, n% — ";IT"[LJZ), I3 =72, V3=

k(l;wi)mz and Z3 — o’(AfmUUg)fmImZ .

\4 pmz

5. Suppose further that both reproduction numbers satisfy RS > 1 and RZ > 1. In this case, system
(1) admits an infection equilibrium involving both humoral and cellular immune responses. This
equilibrium is denoted by &4 = (Uy, Iy, V4, Wy, Z4), where Uy € (O7 M), Iy="2z V, =1w

pmu o’ p?

W4 — k(l—e)pmz — mv and Z4 — o(A—myUs)—mimyz
romw r pmz :
3. Global stability
In this part, we focus on analyzing the global stability of the equilibria associated with system (1). This
will be achieved using the approach outlined in [14]. In the following analysis, we employ the function
#(y) =y —1—1Iny, which is known to be well-defined and strictly positive on the interval (0,4o00).

Moreover, the function attains zero if and only if y = 1.

Let us denote by u the vector of the relative components of system (1) and by F' the reaction function:

BIUV ﬁQUI

U A=l A raw), Grezaran
! AUy + bal1 — (my+60)I —pIZ
u= |V | and Fu)=|0+a2)0+aWw)  (1+@2)1+ W) ! b (8)
%% k(1—e) —myV —rVW
VA pVW —my W
olZ —mgzZ
Theorem 3.1

Assume that Ro < 1. Then the infection-free state & = (Uy,0,0,0,0) of system (1) is globally
asymptotically stable.

Proof
Define the following functional:

U

Lo(u) = Uy ¢ <> 414 DB

my

U,
A OﬂlmWW’
g pmy

Uy
and define

Lolu) = / Lo(uy, 1)) dy.

For all w € R°, the functional Lo(u) satisfies Lo(u) > 0, with equality Lo(u) =0 occurring only when
u = &y. By applying the method described in [14], we obtain

dﬁgt(“) - 70(2’ ) ;dﬂs (u ZZS@)) 1 /Q VLo(u) - F(u) dy,
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with u; are the components of u and d; are diffusion coefficients. Our analysis reveals the negativity of
VLo(u) - F(u) from [16] as follows

dLg my 9 /61V ﬁ2[
Lo(u) - F(u) =22 = - — 1)2 + U
Vholu) Flu) =" == W=+ U | 0wt v a2 T e+ w2)
—mgI — pIZ+ 051 V/+ Z/ rUOﬂlmWWI,
pmy
S*—U(U—Uo)2+Uo(61V+ﬂQI) mpl iz + 0y P g OO
u my pmy
muy 2 rUpBimw
<-20w- I(Ro—1) — Lmyz - TOW gy
S 7 (U —=Up)* +miI(Ro— 1) . Sy %%

Therefore, if Rg < 1, we have VLg(u) - F(u) <0, and the equality VLo(u) - F(u) = 0 occurs exclusively
when u equals &. Furthermore, Ly complies with the requirements specified in Theorem 1 in [14],

oL — Ul(ys,t))?
5<U 0 > Uo// y1, (y2, ))|n+s dy1 dys > 0,

2,1) [Y1 — y2
(1220) e (1 B g?mgyf;voi) () o

If Rg <1, then it follows that dﬁo < 0. This derivative equals zero only when u = & Thus, the global
asymptotic stability holds for the equlhbrlum point &. U

We now proceed to analyze the asymptotic stability of the four infection equilibria &, &, &3, and &4.
For this analysis, we will assume the following additional hypothesis:

(Sffzﬁi?gﬁ—ﬁ(gffﬂﬁiiwﬂ—ﬁ)éﬁ
1+ q@Z)1+3 W) 1+@Z2)1+eW) I
Q Q(( ) )SQ

1+ @Z)1+G&W,) 1+ @Z)+aW) I

(H)

where Z;, W;, V;, I;, and U; denote, respectively, the components of CTL cells, antibodies, viral particles,
infected cells, and uninfected cells at the equilibrium states &; corresponding to i = 1,2, 3, 4.

Remark 3.2

It obvious that the assumption (H) is always satisfied when the non-lytic effects of humoral and cellular
immune responses are ignored, i.e., g1 = ¢ =¢1 = ¢z = 0.

Theorem 3.3

Suppose that the hypothesis (H) is satisfied for the infection equilibria &;, with i = 1,2,3,4.

(i) The equilibrium &; is globally asymptotically stable if the conditions R}V < 1 and R% < 1 hold.
(i) If RZ <1 <R}, then the infection equilibrium &, is globally asymptotically stable.
(iii) When RY <1 < R%, the infection equilibrium &3, characterized by absence of humoral immunity,
is globally asymptotically stable.
(iv) If both Ry > 1 and R% > 1, then the infection equilibrium &;, which includes both humoral and
cellular immune responses, is globally asymptotically stable.

Proof

e For the case (i), let us introduce the Lyapunov functional £; given by:
L0 = [ Lautw0)dy,
Q
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where

=0 (i) <0 (1) 550w (i)« 5

According to [16], we have VLi(u)- F(u) < 0 provided that condition (H) holds for &, and that
both R}V < 1 and RZ < 1 are satisfied. Moreover, equality holds, i.e., VL (u) - F(u) = 0, if and only
if u= 51.

Additionally, L; takes the form of equation (11) in [14], thus

L )
g <U 8 1 > Ul/ / yla U(y25 )) e dyl dy2 Z 07
yh U(y2,t) [y1 — yal2
L .y 2
< o >_ 1// yh el s dy1dyz > 0,
Z/17 y27 ) |y1 - y?
1 B1U // yl, ~V(yo,t))°
: dyy dys > 0,
( oV ) k(1—e)l V(y1,t) V(yz,t) [yr — y2| 2T vy
oLy oLy, \
e (womn) = (2 570) =0
Consequently, we have

d£1 /VL1 nsZM(“ng ))<0.

Therefore, the equilibrium point &; is globally asymptotically stable under the conditions that (H)
holds, RI <1 and R? < 1.
e In case (ii), let us consider the Lyapunov function £ defined as follows:

&wzémwmmw

U I B1U2 V4 |4 P
Lafw) = %¢< >+b¢<2>+Mrwxuwm@b%¢<%>+oz

rpiUz Vo < W >
+ — W. — .
pk(l—e)(1+q W)l 20 Wa
From [16], it follows that VLy(u) - F(u) < 0 when H applies to £, RYY > 1 and R < 1. Furthermore,

we have VILs(u)- F(u) =0 precisely when u = &. Moreover, the function Ly corresponds to the
general form given in equation (11) of [14] Accordingly, the following relations hold:

L ) — Ul(ya,
5<U8 2( ) // yl (v2:0))° =y dys 2 0,
yla y27 )|y1— 2| ’

2
L b I 7t
5( 82 >_I2// yl (2 ))@+deldll2207
I(y1,t) I(ya,t) ly1 — :Uz| 2

with

2
OLy Vs / / yl, —V(y2, 1))
Elv, =2 SN -1 1 M— s dy1 dyz > 0,
( 8V BRGNS alJaV y1, V(y2,t) ly1 — 2|2 +° e
2
oL r yla - W(vat)
g (W 2 ) Blf{ﬁq‘ﬁ/yﬂlz 2/ / ) g dyl dy2 Z 07
aJo Wy, t) W(ya,t) [y1 — y2|>
8L
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dl
As a result, by applying point (ii) of Theorem 1 in [14], we obtain d—tz < 0. Therefore, the equilibrium

point &, is globally asymptotically stable, provided that condition (H) holds and the reproduction
numbers satisfy R} > 1 and RZ < 1.
In case (iii), consider the Lyapunov function £3 defined by:

La(u) = ﬂ La(u(y, 1)) dy

where

U I B1U3V3 |4 D Z
La(u) = U3¢< >+IB¢< 3) * k(l—g)(1+Q1Z3)I3V3¢<V3> +0'ZS¢<Z3>
rBU3 V3

pk(1—e)(1+aqZs) 13

_|_

According to the results in [16], we have VL3(u) - F(u) <0, whenever condition (H) is satisfied,
RY <1, and RZ > 1. The equality VLy(u)- F(u) =0 holds only when u= ;. Moreover, the
function L3 corresponds to the general form (11) presented in [14]. As a result, the following
expressions are satisfied:

L
£ <U 0 3 ) // yla U(y27 )) — dy1 dys > 0,
yh yz, t) ly1 — yol 2

L -1
£ <I & ) — 13// yl’ (y27 )) dyl dy2 > O
I(y1,t) I(y2,t) [yr — yo| 2 +°

3L3 ) 61(]3‘/3 // y17 V(?J%t))
(C/" ‘/77 u == n d d 207
( 8V() k(1*5)(1+Q1Z3 y1, yz, )|y1—y2 2 +s vray
oLy \ _
8L3 ) / / yla Z(y27 t))z
g\l Z, =— dyy dyo > 0.
( 0z Z(yart) [yr — o E0 1
dLs

Therefore, by applying point (i) of Theorem 1 in [14], it follows that s < 0. This implies that

the equilibrium point &3 is globally asymptotically stable, provided that the hypothesis (H) holds,
RY <1 and R? > 1.
In case (iv), the Lyapunov function £4 is given by:

Lalu) = /Q La(u(y, 1)) dy

with

U I B1U4Vy |4
Lalw) = Um( )”‘“’5(4>*k<1—e><1+qlz4><1+qlw4>14‘/4¢<V4>
A rB1Us Va w
" Z4¢<Z4)+ k(l—5)(1+Q1Z4)(1+611W4)I4W4¢<>'

Wy
Then, according to the results in [16], provided that condition (H) holds, RY > 1, and R > 1, it
follows that VL4 (u) - F(u) < 0. Moreover, the equality VLy(u) - F(u) = 0 holds if and only if u = &;.
In addition, the function L4 corresponds to the general form (11) presented in [14]. Consequently,
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the following expressions hold:

L
5<U,a 4 ) // yl’ ~ Uly,t))” s dy i > 0,
Uy, t yz, )\y1—y2| )

¢ <178L4 ! ) a 4/ / yl, I(il/2,t))2£ - dy1 dy2 > 0,
I(yi,t) I(y2,t) [y1 — y2| 2
2
€ (Vv é(;%(“)) = R- e)(1+§1lg:‘(41+qlw4)14 / / Vi ‘7/ o ’y2, )V;?Q_’t;;gﬂ dy1 dyz > 0,
€ <W gf;;(@) = pk(1—5)(1zrillgf)‘(/f+qﬁw4)m / / W yKVt o) W (ya,t ‘)/V;ljz_’t;jﬁs dyy dyz > 0,
& <Z,88[§1 ) = 3// Z(p. D) yl’y% )Z;f_’t;i 75 dy1 dyz = 0.

ar
Hence, by applying point (ii) of Theorem 1 in [14], it follows that d—; < 0. As a result, the

equilibrium point &, is globally asymptotically stable, provided that hypothesis (H) holds and that
RY >1 as well as RY > 1.

4. Parameters estimation and sensitivity analysis

This section presents a detailed analysis of parameter estimation and sensitivity. It quantifies the main
biological parameters of our model, examines the experimental and theoretical data sources on which
these estimates rely, and evaluates how variations in these parameters influence the overall dynamics of
the system.

From the above mathematical analysis of our FPDE model, the infection-free equilibrium

& (mu 0,0,0 0) represents a state in which no infection is present. In the case of HIV infection, the

quantity m—U corresponds the total number of healthy CD41 T cells when the system is in a stable state,
without any viral infection or immune response. It follows from the references [21 22] that the average
half-life of naive CD4 cells is approximately 22 to 50 days, which implies that 1 2 <my < 122 , giving my
between 0.0139 and 0.0315 day . In healthy adults, the CD4* T cells typlcally range between 500 and
1500 cells/pL [23]. Hence, the parameter A can be range between 6.95 and 47.25 cells pL~ day ™!,

For the virion infection rate of CD4™ T cells 8;, we selected a range from 2.4 x 107° to 4.8 x
1073 pL virion™* day~'. This range is based on the standard estimates provided by Perelson et al. [24], as
well as the extended values reported by Stafford et al. [25]. The second infection pathway, mediated by cell-
to-cell transmission and represented by the parameter 2, has not been directly quantified experimentally.
Nonetheless, the study in [26] showed that this mode of transmission contributes to roughly 60% of viral
infections.

The death rate of productively infected CD4% T cells is commonly estimated to be m; = 0.29 4 0.02
day—1[27]. This value reflects the rapid turnover characteristic of HIV infection, corresponding to an
av?brlagtle infected cell lifespan of roughly 3 to 4 days. The estimations of the other parameters are given in
Table 1.

Table 1. The 19 parameters of the FPDE model (1) with their values.
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Parameter Meaning Value Source

A Production rate of uninfected cells 6.95 - 47.25 cells uL~day . Calculated
my Death rate of uninfected cells 0.0139 - 0.0315 day ! Estimated
b1 Virus-to-cell infection rate 24 x107° — 4.8 x 1073 pLvirion tday™!  [24, 25]

B2 Cell-to-cell infection rate 0—1 pLcell *day ! Assumed
my Death rate of infected cells 0.27 — 0.31 day " [27]

0 Cure rate of infected cells 0.01 day™* [28]

my Clearance rate of virus 2.06 — 3.81 day " [24]

k Viral production rate 27-7073 virion cell *day ! [5]

P Clearance rate by CTL cells 0.001 — 1 cell *yL day ! [18]

r Neutralization rate by antibodies 0.5 molecule_luL day_1 Assumed
myy Death rate of antibodies 0.35 day ! Assumed
myz Death rate of CTL cells 0.05 — 0.15 day * [29, 30]

a1 CTL non-lytic strength virus-to-cell 0.01 pLcell™? Assumed
7 Antibody non-lytic strength virus-to-cell  0.001 pL cell™! Assumed
q2 CTL non-lytic strength cell-to-cell 0.02 puL cell Assumed
G2 Antibody non-lytic strength cell-to-cell 0.002 pL cell™? Assumed
P Activation rate of antibodies 6.7x 1075 — 6.7 x 1073 pLvirion 'day™'  Assumed
o Activation rate of CTL cells 0.002 — 0.025 pLcell ™! day ! Assumed
€ Effectiveness of antiviral treatment 0-1 Assumed

Sensitivity analysis enables quantification of how changes in model parameters affect the progression of viral

infection infection. The basic reproduction number, Rg =

A(Bik(1—e)+Bamv)
mymy (m+0)

, serves as a critical threshold,

indicating whether the infection will be cleared or persist within the host. To evaluate the relative influence of
each parameter, we use the normalized sensitivity index defined for any parameter o as

ro — @ 9Ro
Ro ™ Ry da

By applying Equation (9) and analyzing the data presented in Table 1, we find that the parameters exerting
the most significant influence on R( in the viral infection model are A, 81, B2, and k. An increase in any of
these parameters results in a higher basic reproduction number, whereas increasing my, my, my, 0, or € tends
to decrease Rg. These findings are summarized in Table 2 and illustrated in Figures 1 and 2.

Table 2. Sensitivity of Rg to model parameters.

Parameter Value Sensitivity index
A 10 1

my 0.0139 -1

B 2.4x107°  0.166667

B2 1.8 x 1072  0.83333

k 50 0.166667

£ 0.1 —0.0185185

my 3 —0.166667

mr 0.29 —0.9666667

0 0.01 —0.0333333
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A my B, 3, k € my, m, 0
Parameter

Figure 1. Sensitivity indices of Rg.
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Figure 2. The dependence of R( on specific parameters.
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5. Numerical simulations

Initially, we introduce a computational method for approximating solutions to the FPDE model (1). Applying
the explicit Euler scheme, the temporal discretization reads as follows:

=D (=Ap)"w" + F(u').

Here, (—Ap,)® corresponds to the discrete version employing the regional fractional Laplacian operator, which
can be approximated in one dimension as in [31] by the following discrete operator:

+ +
Ap)up = EOO - §Oo 1
(=ARp)u = (ug —w—p)wy = Y (—uwj—p + 2u; — uqp)wy, (10)
k=—o0 k=1

for a function uw = {u;};cz defined on the discrete spatial domain Q; = {lh |l € Z} N Q, with mesh size h > 0.
The weights {wy,}rcz are positive correction coefficients satisfying the normalization condition ), -, wy = 1.

Following [32], the weights are chosen as

C(1,s)
’U.)k;:W7 k7§0

Given that the fractional Laplacian inherently possesses symmetry, it is appropriate to enforce symmetry on the
weights, that is, wy = w_j. The normalization constant C(1,s), as defined in equation (3), ensures consistency
in the operator’s definition. Thus, we can write the scheme in the form

uptt = (14 Atwo)u]' + D Z At (up —ujp)wy + At F(u]'),
k40
400
= (14 Atwo)uf' + DY At (—ujlyy, +2uf’ — uj' ) wy + At F(uf),
k=1

where v, = (U, I;, V;, W}, Z;) and F = (F1, Fa, Fs, Fy, F5) denotes the reaction term as defined in (8). The weight
coefficient wp can be chosen arbitrarily, as it does not appear explicitly in equation (10).
So, to numerically approximate model (1), we employ the following recursive formulas:

N
UM = (1+ Atwo)UJ* + dy Y At (=Ufyy, + 200" = Ul p)we + At Fi(uf?),
k=1
N
I = (L4 Atwo) I +dp > At (=14, + 200 — I p)we + At Fy(uf?),
k=1
N
VI = (14 Atwo) V" +dy > At (=Viy, + 2V = V2w + At Fy(u),
k=1
N
Wi = (14 Atwo) W] + dw > At (=W, + 20" = W p)wy + At Fa(ul),
k=1
N
ZPH = (14 Atwo) 20" +dg Y At (=204 + 220" — Z["p)wi + At Fs ().
k=1

Based on Table 1, the numerical values of the model parameters are chosen as follows: £ = 0.1, § = 0.01,
B1=2.4x107%, my = 0.0139, m; = 0.29, my = 3 and my = 0.35.
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Figure 3. Dynamics of the system (1) at & when Ro = 0.8975 < 1.
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Figure 4. Dynamics of system (1) at & when Rg = 3.437 > 1, RIV = 4.55 x 1072 < 1 and R¥ = 0.5868 < 1.
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Figure 5. Dynamics of system (1) at & when Rg = 5.18 > 1, R} = 4.549 > 1 and RZ = 0.3796 < 1.
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Figure 6. Dynamics of system (1) at €3 when Ro = 3.1079 > 1, R¥ = 3.425 > 1 and RY = 0.0257 < 1.
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Figure 7. Dynamics of system (1) at £& when Rg = 5.179 > 1, RY =1.4357>1and R =3.89 > 1
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Figure 8. Effect of treatment on viral infection dynamics.

Infection-free steady state £p: For the dynamics of &, we study the case where Rg < 1. If A =10, fs=
1.8x107% 5=2x10"2, myz =005 k=50and p=6.7x10"2 , then Ry = 0.8975 < 1. Accordingly, the
equilibrium &y = (719.4244,0,0,0,0) exhibits global asymptotic stability. This finding is supported by the
numerical simulation shown in Figure 3, where the trajectories of model (1) converge to &g.

Infection equilibrium in the absence of immune responses £;: Let us consider the following parameter values:
k=27, p=67x10"°% A=12, mz =0.1, 2 =10"2 and o = 0.002. For this configuration, we obtain the
basic reproduction number Ry = 3.437 > 1, while the reproduction numbers related to immune responses are
RY =455 %1072 <1 and RZ = 0.5868 < 1. As illustrated in Figure 4, the system trajectories associated with
model (1) converge to the infection equilibrium point £ = (251.181, 29.34, 237.65, 0, 0). This behavior supports
the global asymptotic stability of £; and corroborates the theoretical findings stated in point (i) of Theorem
3.3.

Infection equilibrium in the absence of cellular immunity £;: Consider the parameter values: k = 50, p =
6.7x 1073, By =1.8%x 1073, A=10, mz = 0.1 and o = 0.002. Under these conditions, the basic reproduction
number is R = 5.18 > 1, while the reproduction number for humoral immunity is R}" = 4.5493 > 1, and that of
cellular immunity is R¥ = 0.3796 < 1. As illustrated in Figure 5, the trajectories of system (1) evolve toward the
infection equilibrium without cellular immune response, denoted by & = (550, 8.12, 52.238, 8, 0). This behavior
confirms the global asymptotic stability of £, in agreement with the analytical findings stated in item (ii) of
Theorem 3.3.

Infection equilibrium without humoral immunity &£3: For k=50, B2 =18x10"3, A=7 o=
0.025, mz=0.15 and p=10"% , we have Rg=3.6510>1, RY =2.9211 >1 and RY =0.0257 < 1. As
shown in Figure 6, the trajectories of the system (1) approach the infection equilibrium point €3 =
(298.9338, 6,90, 0, 18.4137), which represents a configuration where the humoral immune response is inactive.
This behavior supports the asymptotic stability of equilibrium s, in accordance with item (iii) of Theorem 3.3.

Steady state &4 with both immune branches (humoral and cellular) are involved: Consider the parameter set:
k=50, p=26.7 x 1073, A=10, ¢ =0.02, myz = 0.1 and B2 = 1.8 x 107>. Under these conditions, the model
yields Rg=5.179>1, RY =1.4357>1 and R =3.89 > 1. As illustrated in Figure 7, the trajectories of
system (1) evolve toward the infection equilibrium involving both humoral and cellular immunity, denoted
by &4 = (397.29,14.9,17.5,60.55,2.61). This numerical observation supports the theoretical conclusion regarding
the global asymptotic stability of &4, as established in item (iv) of Theorem 3.3.

On the other hand, we examine the impact of antiretroviral therapy on the progression of viral infection. The
analysis of the basic reproduction number, R, indicates that it decreases with increasing treatment efficacy e,
demonstrating the effectiveness of antiretroviral therapy in controlling viral spread. As illustrated in Figure 8,
Ro falls below 1 when treatment efficacy exceeds 60%, which biologically means that the infection will eventually
disappear.
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6. Conclusion

This work was devoted to formulate a mathematical model of viral infection that incorporates spatial fractional
diffusion, represented through the regional fractional Laplacian operator, as well as the adaptive immune
response. The model also accounts for two distinct transmission mechanisms and includes both lytic and non-
lytic immune responses. We first identified the equilibrium states of the system, along with the threshold
parameters governing its dynamics. Furthermore, the global stability of these equilibria was analyzed using
an innovative approach based on the construction of Lyapunov functionals, tailored to a category of partial
differential equations, both delayed and non-delayed, incorporating the regional fractional Laplacian operator.

During viral infection, immunologic memory enables the immune system to recognize and respond more
rapidly and effectively to previously encountered pathogens, providing long-term protection and reducing the
severity of subsequent infections. Therefore, it is of great interest to investigate the effect of this immunologic
memory on the dynamical behavior of viral infection using the generalized Hattaf mixed fractional derivative
[33, 34], instead of the classical time derivative used in (1). This will represent a potential direction for our
future research.
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