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Abstract We study a time–dependent advection–diffusion equation with spatially varying advection and heterogeneous
diffusivity under homogeneous Dirichlet conditions. The strong and weak formulations are derived and discretized by a
conforming Galerkin finite element method, leading to the standard semi–discrete system with mass, stiffness, and advection
matrices. Temporal integration is performed with an unconditionally stable implicit Euler scheme. A practical 2D assembly
procedure based on a 7–point Gaussian quadrature is detailed. To assess discretization accuracy and mesh independence,
we employ L1, L2, and H1 norms together with the Grid Convergence Index (GCI), including Richardson extrapolation
and an asymptotic range check via the convergence ratio. Beyond baseline simulations with elementwise constant advection,
we formulate and solve a convex optimization problem for an advection field γopt that minimizes a quadratic functional
and steers the solution within a prescribed subdomain. Numerical experiments on structured meshes (n = 9, 18, 36 per
direction) demonstrate consistent convergence, CAR values near unity, and reduced dispersion when using γopt, while
quantifying uncertainty through GCI. The results confirm the robustness and effectiveness of the proposed FEM framework
for evolutionary advection–diffusion problems and provide a reproducible pathway for accuracy verification and transport-
field design.
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1. Introduction

Let Ω ⊂ R2 be a polygonal domain. We aim to solve the following advection–diffusion equation with medium-
dependent advection [1, 2]:

∂tu+ γ(x) · ∇u−∇ · (κ(x)∇u) = f(x, t), in Ω× (0, T ], (1)

subject to homogeneous Dirichlet boundary conditions and an initial condition u(x, 0) = u0(x). For the parabolic
differential equation (1), the solution u : Ω → R must satisfy the PDE within the rectangular domain Ω× (0, T ],
together with the boundary conditions:

u(x) = 0, ∀x ∈ ∂Ω,

which corresponds to homogeneous Dirichlet conditions assumed throughout this work. In this study, the strong
and weak formulations of a class of partial differential equations are presented. The numerical approximation
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VILLA, G., RAMÍREZ, C. AND CAMELO, A. 1

of evolutionary problems with variational formulations is applied to the modeling of the heat equation with a
dominant advection term. The solution approach relies on transforming the PDE into a linear system through the
finite element method, considering complete discretization in both time and spatial domains, together with initial
and boundary conditions. Finally, several numerical experiments are carried out to analyze the effect of mesh
refinement on the minimization of a functional within an arbitrary subdomain, demonstrating the effectiveness of
the proposed methodology.

1.1. Notation

In the numerical solution of time-dependent advection–diffusion equations, several fundamental terms must be
clearly defined. The test function φ(x) plays a central role in the variational formulation, while ∂tu represents the
temporal derivative of the unknown solution. The external influence of the system is modeled by the forcing term
f(x, t). The advection term γ(x), assumed constant within each element, governs directional transport, whereas
the diffusivity coefficient κ(x) accounts for spatial dispersion of the solution. For numerical integration, Gauss
quadrature is employed using points ξi and weights ωi. The operator ∇ is used to express gradients and fluxes
in the spatial coordinates (x) = (x, y), enabling the finite element discretization to capture both transport and
diffusion phenomena accurately.

1.2. Organization

Section (2) introduces the model problem advection–diffusion equation with spatially dependent advection
under homogeneous Dirichlet conditions and derives its weak formulation. We then present the finite element
discretization: the Galerkin setting, the semi-discrete matrix form, and the implicit Euler time integrator, followed
by the 2D assembly procedure using a 7–point quadrature rule. Next, we define the error norms and the Grid
Convergence Index (GCI) employed to assess mesh–dependent accuracy, establishing the metrics used in the
convergence study. The numerical section (Section (4)) reports experiments on structured meshes, first with
elementwise constant γ and subsequently with the optimized advection field γopt, including GCI-based verification
and Richardson extrapolation. We conclude with a discussion of accuracy, stability, and computational costs, and
outline directions for future extensions.

2. Basic algorithm and extensions

In this work, we study the advection–diffusion equation with spatially dependent advection under homogeneous
Dirichlet conditions. The weak formulation is derived to transform the PDE into a variational problem suitable for
the finite element method [3]. This framework provides the basis for the numerical experiments and the subsequent
mesh convergence analysis.

2.1. Weak Formulation

Consistent with the homogeneous boundary conditions defined above, we search for a solution u ∈ H1
0 (Ω).

Multiplying equation (1) by a test function v ∈ V := H1
0 (Ω) and integrating over Ω yields:∫

Ω

∂u

∂t
v dx+

∫
Ω

γ(x) · ∇u v dx−
∫
Ω

∇ · (κ(x)∇u) v dx =

∫
Ω

fv dx. (2)

Defining the bilinear form

(u, v) =

∫
Ω

uv dx,

the diffusion-related term becomes

−
∫
Ω

∇ · (κ(x)∇u) v dx =

∫
Ω

κ(x)∇u · ∇v dx−
∫
∂Ω

κ(x)∇u · n⃗ v dx.
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2 NUMERICAL METHODS FOR EVOLUTIONARY PROBLEMS

Since the test functions vanish on the boundary (v = 0 on ∂Ω), the boundary integral disappears, leaving only the
domain contribution.

b(u, v) =

∫
Ω

(κ(x)∇u) · ∇v dx. (3)

The advection terms γ(x) are given by:

a(u, v) =

∫
Ω

γ(x) · ∇u v dx, (4)

and the linear functional is defined as:

L(v) =

∫
Ω

f(x, t)v dx. (5)

Thus, the complete weak formulation reads [3]: find u ∈ H1
0 (Ω) such that(

∂u

∂t
, v

)
+ a(u, v) + b(u, v) = L(v), ∀v ∈ H1

0 (Ω). (6)

This formulation provides the basis for deriving the nodal equations and assembling the linear system obtained
through the finite element discretization of the domain [3, 4].

2.2. FEM for Parabolic Problems

The Finite Element Method (FEM) approximates the solution of PDEs by representing it as a linear combination
of basis functions and solving the weak formulation of the problem. The domain Ω is subdivided into a finite
set of elements {Ωi}, typically triangles or quadrilaterals, and the approximate solution is expressed as uh =∑

αi(t)φi(x), where φi are piecewise polynomial basis functions. These are continuous, low–degree functions
with compact support [4], which simplifies the assembly of global matrices and ensures computational efficiency.
The Galerkin formulation of equation (1) reads:(

∂uh

∂t
, vh

)
+ a(uh, vh) + b(uh, vh) = L(vh), ∀vh ∈ Vh. (7)

Expressing uh =
∑

αi(t)φi(x), the matrix form is given by:

M
∂uh

∂t
+ (A+ S)uh = B, (8)

where the global matrices are defined as:

Mij =

∫
Ω

φi(x)φj(x) dx, (Mass matrix) (9)

Sij =

∫
Ω

κ(x)∇φi(x) · ∇φj(x) dx, (Stiffness matrix) (10)

Aij =

∫
Ω

(
γ(x) · ∇φi(x)

)
φj(x) dx, (Advection matrix) (11)

Bi =

∫
Ω

f(x, t)φi(x) dx, (Load vector) (12)

This formulation provides the algebraic system required for the numerical solution of parabolic advection–diffusion
equations using FEM.
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2.3. Implicit Euler Method

To numerically approximate the solution of the semi-discrete system (8), we apply the implicit Euler scheme for
the temporal discretization. Let the time interval [0, T ] be divided into Nt steps of size ∆t = T/Nt. For un

h denoting
the approximation at time tn = n∆t, the scheme reads:

M
un+1
h − un

h

∆t
+ (A+ S)un+1

h = Bn+1. (13)

This leads to the following linear system to be solved at each time step:(
M +∆t(A+ S)

)
un+1
h = Mun

h +∆tBn+1. (14)

The implicit Euler method is unconditionally stable for parabolic problems, making it suitable for
advection–diffusion equations with temporal dynamics. However, it requires solving a linear system at every time
step, which increases the computational cost compared to explicit schemes [5]. The stability and robustness of this
approach ensure accurate results, even for relatively large time steps.

2.4. Assembling in 2D with 7–point quadrature

To describe any two-dimensional mesh, we define a coordinate matrix:

X =


x1 y1
x2 y2
...

...
xn yn

 , (15)

and a connectivity matrix that associates nodes to each element:

[T ] =


n
(1)
1 n

(1)
2 n

(1)
3

n
(2)
1 n

(2)
2 n

(2)
3

...
...

...
n
(m)
1 n

(m)
2 n

(m)
3

 , (16)

where triangular P1 elements are considered. The global approximation is expressed as:

uh(x, t) =

n∑
i=1

αi(t)φi(x), (17)

with φi(x) the linear shape functions.
For each element e, the local matrices are computed using the 7–point Gaussian quadrature rule:

[Me]ij =

7∑
k=1

ωk φi(ξk, ηk)φj(ξk, ηk) |J |, (18)

[Se]ij =

7∑
k=1

ωk κ(ξk, ηk)∇φi(ξk, ηk) · ∇φj(ξk, ηk) |J |, (19)

[Ae]ij =

7∑
k=1

ωk (γ(ξk, ηk) · ∇φi(ξk, ηk))φj(ξk, ηk) |J |, (20)

[Be]i =

7∑
k=1

ωk f(ξk, ηk, t)φi(ξk, ηk) |J |, (21)
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4 NUMERICAL METHODS FOR EVOLUTIONARY PROBLEMS

where (ξk, ηk) are the quadrature points, ωk are the corresponding weights, and |J | is the determinant of the
Jacobian mapping from the reference element to the physical element.
Finally, the assembly step consists of inserting each Me, Se, Ae, Be into their global counterparts:

M =

m∑
e=1

Me, S =

m∑
e=1

Se, A =

m∑
e=1

Ae, B =

m∑
e=1

Be.

Thus, the assembled system in 2D is:

M
∂uh

∂t
+ (A+ S)uh = B, (22)

which represents the finite element discretization of the advection–diffusion equation with temporal dynamics,
evaluated through high–order quadrature for greater accuracy.

3. Error norms definitions

Within the framework of the Grid Convergence Index (GCI), different mathematical norms are employed to
quantify the differences between discrete solutions obtained on meshes of varying resolutions. The L1 norm
evaluates global deviations through a weighted sum of absolute values, while the L2 norm, associated with the
mass matrix, captures the quadratic distribution of errors and guarantees positive definiteness. The H1 seminorm,
linked to the stiffness matrix, reflects variations in the gradient and becomes particularly relevant in problems
dominated by diffusion and advection phenomena. Together, these norms provide a rigorous framework to assess
convergence, quantify discretization errors, and validate the asymptotic behavior of numerical solutions in time-
dependent advection–diffusion equations.

3.1. L1 norm

When implementing the Grid Convergence Index (GCI), we need to measure how the numerical solution uh

changes as the mesh is refined. To this end, a norm is required to quantify the difference between solutions obtained
on different meshes. In particular, the L1 norm is defined by:

||uh||L1(Ω) =

∫
Ω

|uh|dx. (23)

In order to compare two solutions obtained on different meshes, the coarser mesh h1 is interpolated onto the finer
mesh h2, using:

||uh1
− uh2

||L1(Ω) =

∫
Ω

|uh1
− uh2

|dx. (24)

In practice, since Ω is discretized into finite elements, where:

uh(x, t) =

n∑
i=1

αi(t)φi(x),

the integral is approximated by the quadrature weight associated with node i:

||uh||L1(Ω) =

n∑
i=1

|αi(t)|wi, (25)

in addition, the nodal weights are:

wi =

∫
Ω

φi(x)dx. (26)
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Since
n∑

j=1

φj(x) = 1, the connection with the mass matrix is given by:

wi =

n∑
j=1

∫
Ω

φi(x)φj(x)dx =

n∑
j=1

Mij , (27)

in vector form:

w = M1, (28)

where 1 is a column vector of ones, therefore:

||uh||L1(Ω) =

n∑
i=1

|αi(t)|wi =

n∑
i=1

|αi(t)|M1. (29)

This transforms the L1 norm into a weighted sum of absolute values at quadrature points. When applying the GCI
within the finite element method, the L1 norm is employed to evaluate the discrete approximations on each mesh
uh1 , uh2 , uh3 . Instead of considering a pointwise value of the solution, the error is assessed in terms of the L1 norm.

3.2. L2 Norm

Let the L2(Ω) norm be defined as:

||uh||2L2(Ω) =

∫
Ω

|u(x)|2dx. (30)

If uh(x, t) =

n∑
i=1

αi(t)φi(x) is the finite element approximation with shape functions φi(x), then:

||uh||2L2(Ω) =

n∑
i,j=1

αi(t)αj(t)

∫
Ω

φi(x)φj(x)dx. (31)

The term

Mij =

∫
Ω

φi(x)φj(x)dx, (32)

corresponds precisely to the mass matrix. In the two-dimensional case, it is computed using equation (9):

||uh||2L2(Ω) = αTMα. (33)

3.2.1. Properties of the Mass Matrix Each entry Mij is non–negative, since φi, φj ≥ 0 within their support. The
matrix M is symmetric and positive definite:

αTMα =

∫
Ω

(
n∑

i=1

αi(t)φi(x)

)2

dx ≥ 0, (34)

moreover, αTMα = 0 if and only if uh(x) = 0.

3.3. Seminorm H1

The energy norm induced by the diffusion operator is defined as

|| u ||2E=
∫
Ω

κ(x) | ∇u |2 dx. (35)
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Using the stiffness matrix S defined in (10), this is computed discretely as

|| uh ||2E= αTSα. (36)

Note that for constant κ = 1, this coincides with the standard H1 seminorm. Using the finite element method:

||u||2H1(Ω) =

n∑
i,j=1

αi(t)αj(t)

∫
Ω

∇φi(x) · ∇φj(x)dx. (37)

The term:

Sij =

∫
Ω

∇φi(x) · ∇φj(x)dx, (38)

where the matrix S is computed using equations (19) in the one–dimensional case and equation (10) in the
two–dimensional case, yields:

||uh||2H1(Ω) = αTSα. (39)

The energy norm, or equivalently the H1(Ω) seminorm, is directly computed through the stiffness matrix.

4. Numerical results

4.1. solution considering γ constant

Using a polygonal discretization of 9 squares in the domain Ω = [0, 1]× [0, 1], we aim to solve the partial
differential equation introduced in (1). Figure (1) shows a structured quadrilateral mesh (Q1), composed of uniform
rectangular cells. Each vertex corresponds to a FEM node, represented by red points. This mesh discretizes the
domain Ω ⊂ R2 and is used to assemble the global matrices of the linear system obtained by the finite element
method, i.e., the mass, stiffness, advection matrices, and the load vector.
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1
Structured Q1 mesh.

Figure 1. Structured Q1 mesh.
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The initial condition is given by the expression:

u(x, y, 0) = 10000e

−((x− x0)
2 + (y − y0)

2)

2σ2 ,

Figure (2) depicts a surface describing a Gaussian bell centered at x0 = 0.5, y0 = 0.5 with σ = 0.05. The maximum
amplitude occurs at the center, decaying rapidly toward the boundaries, under homogeneous Dirichlet boundary
conditions. This initial condition simulates a localized distribution of concentration/temperature, serving as the
input to the system to observe how the initial perturbation propagates through the medium under advection and
diffusion.

Figure 2. Initial condition u(x, y, 0).

A constant γ(x) is considered, centered at each square element. Red arrows (vectors) are displayed at the center of
each cell in Figure (3), indicating the direction and magnitude of the advection field. γ(x) represents the convective
transport in the equation. The arrows illustrate how the transported quantity is driven across the domain. Different
directions affect the symmetry and displacement of the solution profile.
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γ(x,y) per element

Figure 3. Advection per element γ(x).

On the other hand, the values of κ(x) are constant across elements (Figure (4)). κ(x) models the heterogeneous
diffusion of the medium.
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Figure 4. κ(x) per element.

The solution u(x, t) from a top view exhibits the following distribution at different time instants t =
[0, 0.25, 0.5, 0.75].
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Figure 5. Solution u(x, y, t) for t = [0, 0.25, 0.5, 0.75].

The behavior of the solution u(x, t) with elevation is illustrated in Figure (5), which displays the temporal evolution
of the solution. It can be observed that the Gaussian bell is displaced (advection) and smoothed (diffusion) over
time. This figure highlights the combined effect of both phenomena.

Figure 6. Solution u(x, y, t) for t = [0, 0.25, 0.5, 0.75]

The plots in Figure (6) allow visualization of the three-dimensional deformation of the distribution over time. This
is useful for comparing the decay rate and directional propagation of the initial peak due to the advection field and
constant diffusion.

4.2. Grid Convergence Index

We now aim to compute the L1, L2, and H1 errors for three meshes (coarse h1, medium h2, fine h3). To evaluate
the Grid Convergence Index (GCI) using the three numerical solutions associated with each mesh, the following
procedure is applied to the results of the numerical experiments:

1. Place the solutions on the same mesh. Let uhk
denote the solution on mesh hk (with k = 1, 2, 3 and h1 >

h2 > h3). To compare two solutions, they must lie in the same discrete space. This requires interpolating the

Stat., Optim. Inf. Comput. Vol. 15, Month 2026



10 NUMERICAL METHODS FOR EVOLUTIONARY PROBLEMS

solutions onto the fine mesh:

P2→3 : uh2 → uh3 , P1→3 : uh1 → uh3 ,

so that the comparisons are performed on h3:

e32 = uh3
− uh2

, e21 = uh2
− uh1

.

In the finite element method it is common to employ non–nodal interpolation. In this work,
interpolation was carried out using the griddata function in Matlab, e.g. P1→3 : uh1 → uh3 =
griddata(x1, y1, u1, x3, y3,′ linear′).

2. Norms with mass and stiffness matrices. On the mesh where solutions are compared (fine mesh h3), assemble:
• Mass matrix Mh3

using equation (9).
• Stiffness matrix Sh3 using equation (10).

3. Let e be the error vector on mesh h3 (either e32 or e21). Then:
• L1(Ω) norm:

||e||L1(Ω) =

n∑
i=1

|e|M1. (40)

• L2 norm:
||e||L2(Ω) =

√
eTMe. (41)

• H1(Ω) seminorm:
||e||H1(Ω) =

√
eTSe. (42)

4. Since the meshes are uniformly refined with ratio r =
hk

hk+1
(r = 2), the following calculations are performed

[9, 10]:
• Relative error:

RE =

∣∣∣∣e32e21

∣∣∣∣ , RE ≤ 1. (43)

• The observed order p in each norm can be estimated with error pairs:

ρ =

ln

(
e13
e23

)
ln(r)

. (44)

5. With ρ, the GCI is computed using a safety factor Fs (see [?], where 1.25 ≤ Fs ≤ 3). In this work, Fs = 1.25
was employed:

GCI12 = Fs

(
|e21|

uh2
(rρ − 1)

)
, (45)

and

GCI23 = Fs

(
|e32|

uh3
(rρ − 1)

)
. (46)

6. The asymptotic range of convergence is verified by computing the coefficient:

CAR =
rρGCI32
GCI21

≈ 1, (47)

which verifies that the solutions lie within the asymptotic convergence range. It is important to emphasize
that the generalized Richardson extrapolation method must be applied within the monotonic convergence
regime.

7. Finally, the exact solution is estimated using Richardson extrapolation:

uexact ≈ uh(h → 0) ≈ uh3 +
uh3

− uh2

rρ − 1
. (48)
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4.2.1. γ constant per element The following presents the mesh–independence analysis for the numerical solution
of the time–dependent advection–diffusion equation. For each function on each mesh, the solution at the final time
u(x, tf ) was employed:

• Fs = 1.25

• h1(N = 9) =
1

9

• h2(N = 18) =
1

18

• h3(N = 36) =
1

36
• r21 = 2
• r32 = 2

p ρ RE ||eextrap||p ||u1||p ||u2||p ||u3||p GCI12 GCI23 R

L1 3.1170 0.1153 0.0537 0.0485 0.0531 0.0536 1.4394% 0.1643% 0.9905

L2 3.1674 0.1113 0.0652 0.0589 0.0645 0.0651 1.3744% 0.1516% 0.9909

H1 1.2122 0.4315 0.2941 0.2671 0.2896 0.2916 15.4003% 6.5986% 0.9930
Table 1. GCI mesh–independence analysis.

4.3. Function J(γ)

We aim to optimize a vector field γ(x) = (γx, γy) ∈ R2 in the domain Ω ∈ R2, which is associated with the
advection term in (1):

γ(x) · ∇u = (γx, γy) ·
(
∂u

∂x
,
∂u

∂y

)
= γx

∂u

∂x
+ γy

∂u

∂y
, (49)

where γ(x) · ∇u represents a vector term projected onto the gradient of u. Furthermore, the goal is to find γ(x)
that minimizes the following functional [11]:

J(γ) =
1

2

∫ T

0

∫
Ω

|γ(x)|2dxdt+ 1

2

∫ T

0

∫
R

|u(x, t)|2dxdt+ 1

2

∫
Ω

|u(x, t)|2dx, (50)

The objective is to control the dynamics of u(x, t) through the advection term, where the aim is to minimize:

J(γopt) = min
γ∈R2

J(γ). (51)

Now, by considering random values for γ(x), we aim to numerically demonstrate the convexity of the functional
(50). This is achieved by computing a linear combination proposed in equation (14).
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Figure 7. Behavior of the convex functional evaluated along different linear trajectories between two γ configurations.

In the case of convex functionals, optimization exhibits a fundamental property: any local minimum coincides with
the global minimum. This implies that the optimal values of the functional are found in a stable and unique manner
within the feasible domain. In particular, when constraints or bounds are imposed on the domain, the optimal
values tend to be located at the extremes or boundaries of such a domain, reflecting the geometric property of
convexity. The values shown in Figure (7) were computed on a coarse mesh with n = 9 elements in each direction.
The optimal value was found to be J(γ(x)opt) = 1.539823× 104.

4.3.1. Solution considering γopt Discrete Optimization Implementation To minimize the functional defined in
(50), the control variable γ(x) = (γx, γy) is discretized using a piecewise constant approximation on each element
Ωe, consistent with the finite element approximation of the state variable. For the coarse mesh (n = 9), this
results in a optimization problem with 2× 92 = 162 unknowns. The functional includes an L2 regularization term,
1
2

∫
Ω
|γ(x)|2dx2, which ensures the problem remains well-posed and bounded. The optimization was solved using

the interior-point algorithm via MATLAB’s fmincon. The stopping criteria were set to a function tolerance of 10−8

and a maximum of 500 iterations.The optimization was performed on the coarse mesh to reduce computational
overhead, with a total execution time of 16.1203 seconds. The resulting optimal parameters γopt were then
interpolated to finer meshes (n = 18, 36) for the verification analysis presented in Section 4.3.2. Initial condition
centered at the origin (0, 0). Optimization completed. Results saved. Total execution time: 16.1203 seconds.
J(γopt(x)) = 1.539823× 104
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Figure 8. Initial advection field γ(x) (a),(b) and optimized field γ(x)opt (c),(d).

In subfigures (a) and (b), the initial advection field is observed to be uniform and constant: the flat surface in (a)
indicates that γ(x) exhibits no local variations in magnitude. The vector field in (b) shows that all vectors have
the same direction and magnitude, implying that the initial convective transport is homogeneous throughout the
domain. This corresponds to a simplified initial configuration that does not capture the specific characteristics of
problem (51) nor the geometry of the domain. In subfigure (c), the scalar result of the optimization for γ(x)opt is
shown. The surface now varies compared to the initial case. This reflects that the optimization process introduced
local variations in the magnitude of γ(x) to minimize the associated functional and achieve improved transport
effects. In subfigure (d), the optimized vector field shows a significant change: the vectors are no longer parallel
nor equal in magnitude. A radial distribution is observed around the center of the domain, indicating that the
transport has been adjusted to direct the flow toward the center. This vectorial pattern reflects the capability of the
method to capture cavitation or localized dispersion phenomena, adapting the dynamics of the advection field to
the PDE solution.
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Figure 9. Solution u(x, t) for t = [0, 0.25, 0.5, 1] including γ(x)opt.

Figure (9) shows the temporal evolution of the solution u(x, t) considering the case where the advection field is
constant per element, but now employing the optimized values γ(x)opt obtained from the optimization process.
The use of an optimized advection field enables controlling the propagation dynamics of the initial perturbation
within a subdomain R. Whereas with the initial field the solution rapidly dispersed toward the domain boundaries,
the optimized field γ(x)opt attenuates the expansion rate and maintains a more concentrated and stable profile over
time. This confirms that the optimization process successfully reduces uncontrolled dispersion, enhances numerical
robustness, and adjusts the transport dynamics according to the problem objectives.

4.3.2. GCI considering γopt For the following analysis, the considerations regarding the obtained solutions are as
follows:

1. The differential equation (1) is solved on a coarse mesh (N = 9 elements in each direction).
2. The computation of the optimal values per element is performed by optimizing the functional (50).
3. With the obtained values in the advection field, these are extrapolated to the medium mesh (N = 18 elements

in each direction), and the solution of (1) is computed with these interpolated values.
4. Subsequently, the values from the coarse mesh are interpolated to the fine mesh (N = 36 elements in each

direction), and the solution of the differential equation is computed with these values.
5. The mesh–independence analysis is performed in the same way as in subsection (4.2.1).
6. Finally, the values of each term of the Grid Convergence Index are recorded according to the procedure

described in Section (4.2).

In order to evaluate the numerical accuracy and the mesh independence of the solution, an analysis was carried out
using the Grid Convergence Index (GCI). For this purpose, three spatial discretizations with systematic refinements
were considered: n = 9, n = 18, and n = 36 elements per spatial direction, corresponding to coarse, intermediate,
and fine meshes, respectively. The calculation was performed using the final–time solution u(x, tf ) with the
optimized values γ(x)opt.
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p ρ RE ||eextrap||p ||u1||p ||u2||p ||u3||p GCI12 GCI23 R

L1 2.7176 0.1520 0.1509 0.1347 0.1485 0.1505 2.0944% 0.3141% 0.9865

L2 2.7597 0.1477 0.1818 0.1629 0.1790 0.1814 1.9708% 0.2872% 0.9871

H1 1.2122 0.4316 0.8194 0.7365 0.8016 0.8103 15.4254% 6.5859% 0.9892
Table 2. GCI mesh–independence analysis for γopt.

For the coarse mesh with n = 9, the following execution values were obtained: optimization completed, results
stored, and a total execution time of 16.1203 seconds. Once the values of γ(x)opt were obtained on the coarse mesh,
they were interpolated to the medium and fine meshes, yielding the equivalent values in each case. The transient
state of the partial differential equation was then solved for each γ(x)opt on each mesh. Afterwards, interpolation
of the solutions at the final time was carried out. The GCI method enables a quantitative estimation of the
discretization error by comparing the solutions obtained on successively refined meshes. In this way, the asymptotic
convergence behavior is verified, and the numerical uncertainty associated with the spatial discretization of the
problem is quantified. The primary contribution of this work lies in the synergistic integration of a rigorous accuracy
verification framework—using the Grid Convergence Index (GCI) across L1, L2, and H1 norms—with a convex
optimization approach for controlling evolutionary advection-diffusion dynamics1. Unlike traditional FEM studies
that focus solely on discretization error, or existing PDE-constrained optimization works that often overlook the
quantification of numerical uncertainty, this study bridges the gap by demonstrating that the optimized advection
field (γopt) significantly mitigates dispersion while simultaneously satisfying strict asymptotic convergence criteria
(CAR ≈ 1). This establishes a reproducible pipeline for designing transport fields where numerical reliability is
explicitly guaranteed alongside control performance.

5. Future work

This study establishes a finite element framework for time–dependent advection–diffusion with mesh–verified
accuracy via GCI and Richardson extrapolation, and explores transport-field design through the optimization of
γ(x). Several research directions arise naturally:

• Discretization enhancements: extend the spatial approximation to higher–order (Pk) and discontinuous
Galerkin schemes, and incorporate stabilization, this will allow for the extension of the current optimization
framework to high-Peclet number flows where standard Galerkin methods fail, (e.g., SUPG/GLS)
for advection–dominated regimes; explore space–time FEM and higher–order time integrators (BDF2,
Crank–Nicolson) with adaptive time stepping.

• Adaptive strategies: develop goal–oriented and a posteriori error estimators (in L1, L2, H1) to drive h– and
hp–adaptivity; compare uniform versus adaptive refinement in the GCI pipeline and analyze the effect on the
observed order ρ and CAR.

• Model generalization: treat anisotropic and strongly heterogeneous κ(x), curved geometries, and 3D
domains; include reaction terms and nonlinear/state–dependent advection to assess robustness of the
assembly and verification procedures.

• Optimization and control: formulate PDE–constrained optimization with adjoints for γopt under
regularization and box constraints on subdomains R; compare deterministic versus data–assimilative
formulations and study well–posedness and convexity beyond quadratic costs.

• Uncertainty quantification: incorporate stochastic γ and κ (random fields) and propagate uncertainty to
GCI metrics; investigate Bayesian inversion of transport parameters from sparse observations.

• Performance and reproducibility: design parallel solvers with multigrid/preconditioned Krylov methods
for the implicit systems; provide open benchmarks (manufactured solutions) and formalize convergence
proofs linking monotone regimes to CAR ≈ 1.
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These extensions aim to improve accuracy in advection–dominated settings, broaden applicability to complex
media and geometries, and establish scalable, verifiable pipelines for simulation and control of evolutionary
transport phenomena.
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