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Abstract Mathematical models that extend beyond classical differential equations are necessary for understanding
complicated dynamical systems, such as circadian rhythm-regulated brain activity or intricate feedback loops in control
engineering. Nonlinear fractional differential equations (NFDEs), especially those that are constructed using the Caputo
derivative (CD), have become more common in recent years because of their ability to represent memory-dependent
phenomena in a variety of biological and engineering fields. Motivated by practical applications like the circadian variation
of brain metabolites and the behavior of relaxation-oscillation systems, the present work performs a thorough comparative
examination of these advanced models. Three different approaches to solving the NFDEs are used: the Picard Method (PM),
the Adomian Decomposition Method (ADM), and the Proposed Numerical Method (PNM). Proposed Numerical Method
(PNM) extends the earlier approach by providing a systematic framework capable of handling non-zero initial conditions,
incorporating adaptive step-sizing. Each approach is rigorously analyzed in terms of convergence, accompanied by detailed
error estimates that confirm the existence and uniqueness of the solutions.
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1. Introduction

Calculus stands as a cornerstone in applied mathematics, serving as a fundamental tool for modelling a vast
array of physical systems [1, 2, 3]. Yet, the challenges of capturing the memory, history, and nonlocal effects
inherent in many practical problems often elude traditional calculus. This is where fractional calculus emerges as
a transformative and essential extension, introducing derivatives and integrals of noninteger order. This innovative
approach excels at articulating the complexities of physical systems and phenomena related to memory and
hereditary characteristics, making it a powerful lens through which to view intricate behaviors [4, 5]. Fractional
derivatives enabled numerous diffusion processes, providing a further benefit.

Over the decades, fractional calculus has captivated the attention of researchers across multiple disciplines, from
science and finance to the nuances of human behavior, especially in the modelling and control of complex systems
within engineering. Its ability to bridge gaps that conventional methods cannot make fractional calculus an exciting
frontier of discovery and application.
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The significance of fractional models, defined by fractional derivatives, has captured the attention of
mathematicians and scientists alike, prompting an extensive investigation into numerical and approximate solutions
for fractional differential equations (FDEs). Given the absence of exact analytical solutions for the majority of
these equations, researchers have turned to a variety of sophisticated numerical techniques. Among these are the
homotopy perturbation method [7], the finite difference method [6], spectral methods [8], and the renowned ADM
[9], and several others [10].

The applications of these fractional equations are not merely academic; they permeate our everyday lives and are
crucial in diverse fields. From fluid mechanics that govern the flow of liquids and gases [11], to image processing
techniques [12] that enhance and analyze visual data, and from biological models that capture the dynamics of
living systems [13], physics [14], and even the design of electrical circuits and filters [15, 16], the reach of fractional
calculus is vast. Its versatility illustrates how fractional derivatives can illuminate and solve complex challenges,
making it an indispensable tool in the modern scientific toolkit.

The NFDEs have a lot of applications in the real world, which appear in engineering [17]-[21] and also in the
different fields of science [22]-[25].

In this research, three methods are used to solve an NFDE containing CD, which has a lot of important
applications, such as the relaxation-oscillation equation and brain metabolite variations under circadian rhythms.
These three methods are the PM [26], the ADM [27]-[29], and the PNM [28]. The two analytical methods, ADM
and PM, have many benefits: they are employed for solving different types of equations [30] in stochastic or
deterministic fields, in case they are linear or nonlinear, also free from linearization and discretization. The ADM
has demonstrated effectiveness and has been successfully applicable for a variety of fractional order problems. By
employing the ADM, we derive a series solution; however, in practice, we often approximate this solution using a
truncated series. In certain cases, this series aligns with the Taylor expansion of the correct solution in the vicinity
of the initial point for initial value problems. In contrast, EM in [28], is a numerical method specifically designed
to handle non-zero initial conditions, overcoming limitations of traditional techniques by Igor in [24] that is only
deal with zero initial conditions. It uses an efficient discretization scheme and delivers highly accurate results with
significantly reduced computational time. Comparative analysis shows that EM matches the accuracy of ADM and
PM but is far more efficient, especially in solving complex models like the fractional brain metabolite system.
Thus, while all methods are effective, EM is particularly advantageous for practical applications due to its speed,
flexibility, and compatibility with real data.

The following is the continuation of this research: Section 2 is a display of the NFDE with its key definitions and
properties. Section 3 provides the solution ADM with the convergence analysis, which contains the existence and
uniqueness of the solution, and error estimation. Section 4 and 5 give the steps of the PM and PNM techniques.
Section 6 obtained the numerical solution of the two important applications: the fractional brain model (FBM) and
the relaxation-oscillation equation. In section 7, we give a comment on each result.

2. Nonlinear fractional differential equations

Consider the following NFDE:

CDvy(V)_wl(V)Qs(Vay(V)) = w2(”)7 VE(O,T],’YG(H,TL—FI), (21)
yD0) = ¢, =012 ,n (2.2)

where ¢ D7 (-) denotes the CD.

According to the following hypothesis:

(i) ¢ : @ X R — R is continuous and measurable in v for any y € R.

(79) A bounded measurable function exists h(r) € L1(Q) and 3 a positive constant m where |¢(v,y)| <
h(v) +mly|.

(131) Define the set Q; = {y € C(J) : |y(v)| < 7}, and |h (v)| < H.

(1v) wi,we : J x J,and |w; (V)] < w;,i=1,2.

(v) Define a mapping 2 : £ — E, where E is Banach space of continuous functions on .J, and ||y = max ly(v)].
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Definition 2.1. The definition of the CD of order ~ is [24]

t (n
CDY(t) = — > / (¢ O n-1<y<n, (2.3)
0

I'(n— t—v)y—ntl’

and its corresponding FI is [24]

I (1) /¢ ) dy, 0<y <1, (2.4)
moreover
(1) (°D7) ¢ (v) = ¢ (v) — 6 (a). 2.5)

The key benefits of CF are summarized in the following points:

* No need to mention fractional initial value.
« “D7 w = 0 for any constant w.
* It starts with the similar conditions as integer-order of differential equations.

3. Numerical methods

In this section, we present three different methods for finding numerical solutions to the equation under
consideration.

3.1. First method: ADM

3.1.1. The formula of the solution
Our equation (2.1) is reduced to the integral equation (IE)

n

y(V):ZC

j,uﬂ + 0w (1) @ (v, y (1) + w2 (V)] (3.1)

where v € J = (0,T],v € RT, ¢ (v, y) is continuous function satisfies Lipschitz condition

|Q§(V7y)*¢(l/7z)|§§)%‘y72|, (32)
where ¥t is the Lipschitz constant.
The ADM approach of the IE (3.1) is
"¢
yo )= j—flyf T T wy ()], Y (V) = 7wy (V) At (v) (3.3)
§=0

where x > 1, and A, are Adomian polynomials (APs) of the nonlinear term ¢ (v, y) which is described as

d)\'i <Z/\7y]>] . (3.4)
A=0

AK:

The ADM solution becomes

= yw). (3.5)
k=0

3.1.2. Convergence analysis
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Existence and uniqueness

Theorem 1
Assume that ¢ (v,y) meet the Lipschitz condition (3.2). If TV <
yeC(J)

('H'l , then the IE (3.1) has a unique solution

Proof
From (3.1), the mapping €2 is defined as

n

Z T I wr () @ (v,y (v) + w2 (V)] -

O

Lety,z € E, then

Q-0 = D )6y W) - T @)z )
99— Q2 < max I oy (4) 6 (3 () — 01 () 6 (2 ()
R ly ==l 5 [ w=sp~as
< oAy
IEESY
< Tully-=.

with the condition 0 < T, < 1, the mapping €2 is contraction, consequently for 77 < F(ggijll) there exists a unique

solution y € C(Q). O
Corollary 2
Consider the NDE
W) o )6 (9 () = 2 (), (0) = (3.6)
dV 1 Yy =w2 V), Yy = Cp. .

Operating with I (. fo ) dv to both sides of equation (3.6), we obtain

V) = ot [ o 9806+ (9]
0
= co+1I[w (v)o(v,y(v))+ws (V)]. 3.7)

In problem (2.1), let v — 1, so (3.7) which is equivalent to (3.6) has a unique solutiony € C (Q), if T < §R1w1 )

Solution convergence

Theorem 3
Let the solution (3.1) exist. If |y (v)| < k, where k is a positive constant, hence the series solution (3.5) of IE (3.1)
using ADM converges.

Proof

Define a sequence ®; where, @ Z Y (v) is the series of partial sums from the series solution E yx(v), and
k=0

we get

(oo}
= Z A,
k=0
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Taking two partial sums; ®; and ®,, from thg: ADM series solution, such as 7 > v. Now, we aim to display that ¢
is a Cauchy sequence in this Banach space E.

‘I)’fl - (I’v = Zym - Zym
k=0 k=0
= DY wi (A @)= DY w () Aw1 (v)
k=0 k=0
—1
= o [Z wi (V) Apy (y)]
= CI’YWI (V) [¢ (V> (bﬁfl) - ¢ (V7 (bvfl)] ) (38)
where xk > 1.
[@n = @l < max “Dw; (1) |6 (1, @ar) = 6 (v, )]
%wlTV
< [®y_1 — Dy
< Y| ®rm1 — Pyl

Letn = v+ 1, then
[@oi1 = Poll < T1[|®y = Pyi]| S TT @1 = Do < - < YT @1 — Do
From the triangle inequality, we have

||(I>7'L - (I)v” < ”(I)v—&-l - (I)’UH + ||(I)v+2 - (I)’U—HH +eee ”(I)ﬂ - (I)ﬂ—ln
XY+ - YT |21 — @0
TV [L+T 4+ TP |2 — @

1— T’fL—U
< {14} o

ININA

Now 0 < T < 1, and 72 > v implies that (1 — T7~) < 1. Hence,

v

’rv
[@5 — @ul| < —L—[Jn]| <

i max|ys (v)]

1—T1 veJ

But, |y1(v)| < k and as v — oo then, ||[®; — ®,|| — 0 so, ® is a Cauchy sequence in this Banach space £, then

the series Y y.(v) converges. O
k=0

Error analysis

Theorem 4
The maximum absolute error (MAE) of (3.5) is estimated as

y(v) = > yx(v)

xk=0

< LS max |y1 (V)] . (3.9)

max
- 1- Nl veJ

velJ

Proof
From Theorem 2, we obtain ||®; — @, || < 131{1 max ly1 (V)] -
ve.
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But, d;; = Z Y, (V) as i — oo then, &, — y(v), so
~k=0

v

T
_ < 1
o) = @l < T

max |y1 ()],

then the MAE in the interval J is

%

v T
max () — ;Oyn(V) < T max ()]
O
3.2. Second method: PM
Applying PM to (3.1), the solution would be
w) = Zﬁuﬂ + s (v), (3.10)
7=0
ue() = @)+ Twr ()¢ (1) (V) 311
where the functions y, () are continuous functions as
s () = yo() + D (Y — Y1), (3.12)
k=1

so the sequence y,, is convergent and comparable to the infinite series > (y, — yx—1). Hence PM solution takes
the form

y(v) = lim y,(v), (3.13)

K—> 00
lastly, we can presume that if the series > (v, — yx —1) is convergent, further the sequence y,.(v) is convergent to
y(v). To show that {y, (v)} is informally convergent, assume the associated series

o0

D> ) = year (v)]. (3.14)
k=1
From (3.10) for k = 1, we get
nw) =) = D (v)é(vyo ()
(V) =) = | “Dw (V)¢ (v,50 (v))]
< w5 [ =9 )l ml @) s
< ) [/0 (v—38)"" |h(u)d§+m/0 (v—38)""" |yo (8)|d3
(.lJlTﬂY .
< m [H + #m]
< 9, (3.15)

where 1), = leTW [H 4 #m] . Now, we get an estimate for y,;(v) — y. —1(v), K > 2,

(v+1)
Cl’ywl (V) ¢ (V’ Yrx—1 (V)) - CI’YWI (V) ¢ (V’ Ys—2 (V))
|

yﬁ(”) — Yk 71(V)
|

(V) —ye—1(0)] < w1 TG (v, g1 () = & (v, Yz (V)
RT™
< Ty et ) = v )
lys —Ys -1l < YTillys—-1— -2l - (3.16)
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In the relationship mentioned above, if we put x = 2, and use (3.15) we get

lyz =l < Yallya(v) = yo(@)ll
lya =l < Y1y
Doing the same for k = 3,4, -- -,
lys —w2ll < Yillya —wnl < Y30
lya—ys| < Tillys — el < T3 b

Subsequently, this relation’s general form ought to be

Y — Yuo1| < X519y, (3.17)

Since T < 1, then the series

o0

[Ys (V) = ys—1(V)],

k=1

is convergent. Thus, the sequence {y,(v)} can be convergent, as ¢(v, y(v)) is continuous in y, then

y(v) = lim D (1) ¢ (1Y) () = Dot (@) oy ).

K— 00

3.3. Third method: PNM (El-Sayed method)

This technique was applied for the first time in [28] and used to overcome the shortage in the numerical method
given in [24]. It has a drawback in that it solves only FDE with zero initial conditions (IC), but here we solve this
drawback.

IC are changed to be homogeneous through substitution, so the substitution is

n—1
P
X:y—chH, (3.18)
p=0
use the following relations to generate the solution algorithm:
. e . _ I'(vi+1)
DX = Rhv wOD X, () = (—1)P d ,
; ’ vt = OV TT)
Vm = mh (m=0,1,2,...), Xv)=Xm W), (3.19)

where wz(,’“) represents the fractional binomial coefficients or weights derived from the fractional derivative

approximation, computed as w,(;”) = (=1)" (Z;) and X,, are the discrete numerical approximation of the unknown
function y at the m-th time

then get the values of X,,,. Go back to the initial variables, from (3.18), we have

n—1 (V )p
=Sl 620
p=0 ’

Therefore, the PNM utilizes convolution weights to successfully handle non-zero initial conditions, resulting in
enhanced accuracy and stability.
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4. Stability
Theorem 5
There exists a unique solution of the FDE (2.1)-(2.2) is consistently stable if the hypothesis (i) — (v) is satisfied.

Proof
Let v is also a solution to the FDE (2.1)-(2.2)

(@) -F0) = ioc?!'uumel<u>¢<u,y<u>>+w2<u>]]
- E} S04+ T 1 ()6 (4T ) + 2 <u>1] }
< Za"Z;’ + T (1) D (4 y (1) — e () 6 (1, T ()]
< Z[;f] O () 6y () — S T
< Z 5Bl 4 D (1004 ) - 6 T 0)
< g'cﬂff"uumy(v)—ﬂ(vnr(lw [ w-orras
< ]z:'cjfj'w ) -7 0)
V) -T0) - F b)) < g'yf
- o o -0 < g';

IN

~ §Rw1T7 -t - I/j ~
- (e = e-¢l.
v =70l = 1o et (g j!>
where C' denotes the vector c; and C denotes the vector cj.
-1 .
If [1 - m“’lTv} <E" ”'7) < 0 (e), then |y (v) —y (v)|] < e, which implies that the solution of the FDE

T(7+1) =0 T
(2.1)-(2.2) is consistently stable. O

5. Numerical applications

5.1. Application 1
The relaxation-oscillation equation [24]
“Dy(v)+ Ay(v) = g(v), yenn,n+1],
y0) = 0, =01, ,n. (5.1)
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1 2 3 4

Figure 1. PM solution of (5.2) at many values of  for case (1)

—y=t
— y=0s
— y=08
y=07
— y=06
y=05

Figure 2. ADM solution of (5.2) at many values of ~ for case (1)

It is an important application in control theory [taking A = 1, g(v) = H(7) and H (7) is the unit step function].
The reduced IE of FDE (5.1) is
y(w) = I [H (v) =y (V)] (5.2)

ADM solution: applying ADM to equation (5.2), we get

w(v) = CIM[H (v)],
ye(v) = — Syl y(v)], k>1 (5.3)

PM solution: using PM to equation (5.2), the solution algorithm is

w() = CI"[H @),
ye(v) = yolv) — o [Yu—1 (v)], k>1 5.4)

EM solution: using EM to equation (5.2), the solution algorithm is
1 - m
Xom = 7= (H (Vm) = (X1 +90) —h™7 Zw;wxm_p) , m=1,2,3,---. (5.5)
p=1

From the above solution algorithms we find the following figures: Figures 1-3 show ADM, PM, and EM
solutions at differing values of v (y = 0.5, 0.6, 0.7, 0.8, 0.9, and 1), while Figures 4-6 show ADM, PM, and EM
solutions at differing values of v (y = 1.2, 1.4, 1.6, 1.8, and 2).
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Figure 3. EM solution of (5.2) at many values of ~ for case (1)

XPicard

—_y=12
—y=14
—-_y=16
— y=18
—y=2

Figure 4. PM solution of (5.2) at many values of ~ for case (2)

Figure 5. ADM solution of (5.2) at many values of ~ for case (2)

Table 1, shows the absolute difference (AD) between (ADM, PM, and EM). And Table 2, gives the time used
to get (ADM, PM, and EM ) solutions. We see that the ADM and PM solutions match with each other.

From Table 2, we see that EM takes less time than ADM and PM. Also, ADM takes less time than PM.

If we take a simple case at (o = 1), the exact solution will be (1 — e~?). Table 3, shows the absolute difference
(AD) between the exact solution and (ADM, PM, and EM) solutions.

Also, we add plot error of ADM, Picad and EM approches.
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Figure 6. EM solution of (5.2) at many values of ~ for case (2)

Table 1. AD between (ADM, PM, and EM) of (5.2) aty = 0.5

v

|yADM — yEM\

|yPicard — yEM'

|yADM — yPicm-d\

0.5
1
1.5
2
2.5
3
3.5
4
4.5
)

0.01288530
0.00842845
0.00620493
0.00485923
0.00395817
0.00331341
0.00281746
0.00232473
0.00127888
0.00277928

0.01288530
0.00842845
0.00620493
0.00485923
0.00395817
0.00331341
0.00281746
0.00232473
0.00127888
0.00277928

0.0000000000

0.0000000000

0.0000000000
2.22045 x 10716
4.44089 x 1016
1.11022 x 1016
7.77156 x 10716
1.77636 x 10~15
2.44249 x 1016
8.43769 x 10~1°

Table 2. Time used to (ADM, PM, and EM) solutions of (5.2)

Case no. ADM Time (v=30) PM Time (x =30) EM Time (h =0.1)
(y=05.0 GC‘SS; (518) 0.9, and 1) 118.282 Sec. 823.297 Sec. 0.328 Sec.
Case (2) 125.343 Sec. 323.828 Sec. 0.687 Sec.

(y=12,1.4,1.6,1.8, and 2)

Table 3. AD between exact sol. and (ADM, PM, and EM) solutions of (5.2) aty =1

|yExact — yE’M|

|yEzact — yADM|

|yEa:act — YPicard |

Tk W N e

5.2. Application 2

0.019201
0.0137586
0.00739591
0.00353476
0.00158417

1.11022x10~16
2.22045x1016
0.0000000000
3.33067x 1016
7.93809x 1014

1.11022x10~1°
2.22045x10716
0.0000000000
3.33067x10716
7.93809x 101

The FBM, The circadian rhythm model of variations in brain metabolites are introduced for integer orders in [31].
They consider this model as the ODE [31], here we discuss it with fractional orders in two cases as follows:
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Error of EM
0.020

0.015+

0.010

0.005+

PN T ST S VS S SUE S
1 2 3 4 5

Figure 7. Error of EM solution of (5.2)

Error of ADM
2.x107154

x10715 1

x10715¢

-2.x10715+

Figure 8. Error of ADM solution of (5.2)

Error of PM
2.x10718 1

Figure 9. Error of PM solution of (5.2)

Case (1):
DYy + W )9sin? (0.265v + 0.9)
55+y ' ' o
y(0) = 08 (5.6)
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TN
/ N

N\
AN

il

Figure 10. EM solution of (5.7) at specific values of v = 1 for case (1)

The reduced IE of FBM (5.6) is

2
y(v) = 0.8+ 7 |0.95in (0.2650 +0.9) - y} ,

ADM solution: applying ADM to equation (5.7), we get

yo(v) 0.8+ 17 [0.9sin* (0.2650 + 0.9)] ,
yu(v) = — “r As—1(v)], £>1.

PM solution: using PM to equation (5.7), the solution algorithm is

yo(v) = 0.8+ “I7[0.9sin*(0.2650 + 0.9)] ,
2yN71
C
. = L e
Yr(v) Yo(v) {5'5+yn_1] K

EM solution: the solution algorithm of FBM (5.6) using EM is

2(Xm-1+%0)

X, =
5.5+ (Xim—1+ o)

1 L
= <0.9 sin” (0.265v,, + 0.9) —

—h—WZm};”)ij> ., m=1,2,3--.
j=1

(5.7)

(5.8)

(5.9)

(5.10)

Figures 7-12 show EM solutions at specific values of v (y = 1,0.9, 0.8, 0.7, 0.6, and 0.5), respectively.

Case (2):
0.7y
c .2
D7 = 0. 132 14
y+10'7+y 0.8sin” (0.1325v + 1.4)
y(0) = 64

The solution algorithm of FBM (5.11) using EM is

1
Xm = 7= (O.S sin? (0.1325v,, + 1.4) —

0.7 (Xm—1 + o)
10.7 + (X1 + o)

—h—Wng.”)Xm_.,-) . m=1,23--.
=1

Stat., Optim. Inf. Comput.

(5.11)

(5.12)
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Figure 11. EM solution of (5.7) at specific values of v = 0.9 for case (1)
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/ \
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Figure 12. EM solution of (5.7) at specific values of v = 0.8 for case (1)

YIN
N

\
/ \

\
N

Figure 13. EM solution of (5.7) at specific values of v = 0.7 for case (1)

Figures 13-18 show EM solutions at different values of v (v = 1, 0.9, 0.8, 0.7, 0.6, and 0.5), respectively.

The oscillation’s damping and frequency are influenced by the fractional order +, as the fractional order ~
decreases, it affects how the system reflects past states. The solution to the relaxation-oscillation equation exhibits
increased damping, characteristic of systems with stronger memory effects. Higher values of « allow the behavior
to look like standard models with faster oscillations, as lower values tend to slow down the response, resulting
in more durable oscillations and less damping. In terms of mathematics, varying + modifies the system’s phase
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Figure 14. EM solution of (5.7) at specific values of v = 0.6 for case (1)
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Figure 15. EM solution of (5.7) at specific values of v = 0.5 for case (1)
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Figure 16. EM solution of (5.7) at specific values of v = 1 for case (2)

and amplitude, which affects how it responds over time. This means that different metabolic or circadian rhythms,
such as slower or longer swings, can be modeled by the fractional order. In general, changing v makes it easier to
comprehend and execute biological and physical processes that occur in the real world.
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Figure 17. EM solution of (5.7) at specific values of v = 0.9 for case (2)

Figure 18. EM solution of (5.7) at specific values of v = 0.8 for case (2)
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Figure 19. EM solution of (5.7) at specific values of v = 0.7 for case (2)

6. Conclusion

In this research, we introduce analytical and numerical solutions to a nonlinear FDEs with Caputo derivatives. This
kind of this equations have a lot of important applications such as the circadian rhythm model of variations in brain
metabolites and the relaxation-oscillation equation. The existence and uniqueness of its solution are demonstrated.
Three different methods are used to get the solution: two analytical methods (ADM and PM), while the third is
a numerical method (EM). We conduct a comparative analysis of the EM against both the PM and the ADM.
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Figure 20. EM solution of (5.7) at specific values of v = 0.6 for case (2)
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Figure 21. EM solution of (5.7) at specific values of v = 0.5 for case (2)

Our findings demonstrate that PNM is more effectively applicable to get the solution of the FBM because of the
difficulty in evaluating the integrals, while we can get the solution easily by using EM. A comparison between the
three methods is given in example 1, we see that EM takes less time than ADM and PM. Also, ADM takes less
time than PM (see table 2). Moreover, we see that the EM solution coincides with the solutions given in [31] for
integer order (v = 1) which coordinates perfectly with the medical data (see: [31]) and our solution in Figures 7
and 13.
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