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Abstract In this paper, we propose locally and asymptotically optimal tests (as defined in the Le Cam sense) that are
parametric, Gaussian, and adaptive. These tests aim to address the problem of testing the classical regression model against
the threshold regression model in short panel data, where n is large and 7' is small. The foundation of these tests is the
Local Asymptotic Normality (LAN) property. We derive the asymptotic relative efficiencies of these tests, specifically in
comparison to the Gaussian parametric tests. The results demonstrate that the adaptive tests exhibit higher asymptotic power
than the Gaussian tests. Additionally, we conduct simulation studies and analyze real data to evaluate the performance of the
suggested tests, and the results confirm their excellent performance.
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1. Introduction

Several researchers have conducted studies on regression analysis, a statistical method primarily used to examine
the relationship between dependent and independent variables. Among the most notable forms of nonlinear
regression models is the threshold regression model, which has attracted considerable attention in both statistics
and econometrics. The Panel Threshold Regression (PTR) model was initially proposed by [17], who developed
a threshold model for non-dynamic panels with individual fixed effects. The Panel Smooth Transition Regression
(PSTR) models were introduced by [15], while the Panel Smooth Transition Autoregressive (PSTAR) models were
popularized by [13]. These models have found broad applications in various real-life problems, including economics,
finance, monetary policy, environmental studies, and medical sciences, and have demonstrated their superiority over
classical linear regression models. For instance, [14] showed that applying a PSTR model to French-listed firms
from 2009 to 2017 revealed a non-linear relationship between family ownership and firm performance. Similarly,
[7] found that the impact of imported technology on industrial employment was non-linear and depended on the
level of technology imports. Using a PSTR model on data from developed and developing countries over the period
2000-2019, they demonstrated that threshold effects played a crucial role in determining the employment outcomes
of technology imports. In the environmental domain, [11] investigated a non-linear association between the blue
economy, renewable energy, and environmental sustainability in the Middle East and North Africa (MENA) region
during 2000-2022. Moreover, [32] showed that the finance—growth relationship was non-linear using panel threshold
models on annual data for 153 countries from 2011 to 2020.
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1612 EFFICIENT TEST FOR THRESHOLD REGRESSION MODELS

In this paper, our focus will be on the PTR model, which is defined as follows:
Yit :,u+51zit1(q“§0)+52xit1(qit>0) + €it, 1= 1,...,71; t= 17"'7T7 (1)

where y;; is a panel observation for individual ¢ and time ¢ (i = 1,...,n (large n); t =1,...,T (small 7)), N = nT
is the sample size. The regression parameters are y and (51, 32) . The threshold variable g;; and the regressor x;; are
scalar. The indicator function is denoted as 1. The sequence of unobservable random variables {e;+,1 < i <n,1 <
t < T} isanii.d. with mean zero, finite variance 0']%, and probability density f : ¢ — f(¢) := (1/0y) fi(e/os) (Where
f1 € Fa).

Several methods have been established in the literature for estimating the parameters of threshold regression models.
These methods include the method of least squares, the nonlinear least squares method, and the concentrated simulated
maximum likelihood method. Examples of these methods can be found in the works of [17, 15, 13, 9].

Before addressing the problem of estimating the parameters of model (1), it is crucial to determine whether it is
indeed a threshold regression model and how to proceed with the test.

Clearly, model (1) reduces to the classical regression model

Yir =+ Py t+eq, i=1,....n;t=1,...,T,

if and only if 3; = 52 = 3. The problem we are addressing is related to the detection problem. More specifically, this
problem involves the testing of the null hypothesis H : 81 = f2 = [ with unspecified p, 3, O'J%, and f; against the
alternative hypothesis H1 : 51 # fPs.

An alternative intuitive way of writing (1) is:

Yit = i+ Bz + Baxy + e, (2)
one traditional method to eliminate the scalar parameter p is to center y;¢, x;;, and m;g The equation (2) becomes:

Yie = B1X5; + BoXib + i, 3)

n

2.

i=1

- T _
> xy, and ozt =
1¢=1

where Yy =y — 7y, X, =2

M=

1
Yit, T= =
1 i

M=

ey ot T
=, and X, =z, —2t. §=

2|~
il

n T
+ > 3 @, are the means respectively of y;;, z;;, and ;).

i=1t=1

The main technical tool used in this study is Le Cam’s asymptotic theory of statistical experiments and the properties

of LAN families. For more information, refer to [21, 22]. This powerful method has been successfully applied to
various inference problems. Relevant references on this topic include [6, 1, 25, 12, 28].

In a LAN family, the random vector Agff) (), referred to as a central sequence, is the \/n-normalized derivative
of the logarithm of the likelihood function with respect to the parameter 6. Intuitively, this vector measures both
the direction and magnitude in which the logarithm of the likelihood changes when the parameter is locally
perturbed. It summarizes all the local information in the data and enables the construction of asymptotically optimal

tests. Within this framework, the logarithm of the likelihood ratio can be locally approximated as T(")/A;T)(G) —

%T(")/F;T) (6)7(™), where the central sequence Agff) (0) follows an asymptotically normal distribution with mean zero
under the null hypothesis, mean I'¢, ()7 under the alternative hypothesis, and covariance matrix I'¢, (6) under both
hypotheses.

The local asymptotic normality results play a crucial role in this treatment as they provide guidance for constructing
parametric tests that are optimal, both locally and asymptotically. Next, we discuss the derivation of Gaussian tests,
which are optimal under Gaussian densities and remain valid even under non-Gaussian densities. In parametric models,
the density function f of the innovation is predetermined. However, these models are better suited for practical
situations where f is unspecified. This motivates us to consider semiparametric models. The fact that f is generally
unknown leads to a decrease in efficiency when compared to parametric situations. When this decrease is zero, the
semiparametric model is considered adaptive since both parametric and semiparametric bounds coincide for all f. For
further details, please refer to [16, 3, 10, 27].
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Threshold regression models offer greater flexibility than traditional linear models in capturing complex
relationships between variables. Ignoring these threshold effects can lead to misleading conclusions, underscoring
the importance of testing the null hypothesis of linearity against the alternative PTR specification to ensure model
adequacy. Motivated by this consideration, this study focuses on detecting the presence of threshold effects in
regression frameworks. More precisely, it aims to test a classical regression model against an alternative that introduces
a threshold component in short panel settings characterized by a large cross-sectional dimension (n) and a small time
dimension (7). Building on the local asymptotic normality property, the paper develops locally and asymptotically
optimal tests. Two types of procedures are proposed: parametric procedures—applicable when the error density f; is
specified, with the Gaussian test (f1 = far(0,1)) as a particular case—and adaptive procedures designed for situations
in which f; is unspecified. We derive the asymptotic relative efficiencies of adaptive tests in comparison to Gaussian
parametric tests. The methodology is supported through Monte Carlo simulations and an empirical application
examining the relationship between urbanization and carbon dioxide emissions, demonstrating the robustness of both
the Gaussian and adaptive tests, which also outperform the likelihood ratio tests proposed by [17].

After this introduction, the rest of the paper is organized as follows. Subsection 2.1 provides the main definitions and
assumptions, while Subsection 2.2 establishes the LAN property. In Subsection 3.1, we propose the optimal parametric
test (for specified f1), and in Subsection 3.2, we present the specific case of the Gaussian test. Subsection 3.3 is
dedicated to adaptive tests. Asymptotic relative efficiencies with respect to the Gaussian test are derived in Section 4.
Section 5 is devoted to validating our theoretical results through numerical simulations using the RStudio program.
In Section 6, we apply our proposed tests to a real dataset that investigates the relationship between urbanization and
carbon dioxide emissions, using both RStudio and Stata programs. Finally, we provide some conclusions.

2. Local asymptotic normality

2.1. Notations and main technical assumptions

(n)
Denote by Po§ Bih

’ ’ N\
IP’S:%) 5,304, 18 the probability distribution of the observations Yy = (Yl(”) ,YQ(") S A0 ) , where Yi(”) =

(Yi1,Yio, .-, YiT)/ generated by model (3).
The main technical tool used below is local asymptotic normality with respect to (UJ%, b1, B2), at (0']%, 3, 3), of the
families of distributions

the probability distribution under the null hypothesis 57 = 52 = 5. Under the alternative,

,PJ(CT) = {Pf:,;;)»ﬁl,ﬁz;fl : JJ% > 0 and (51, 52) € Rz} '

To establish the properties of a LAN, certain technical assumptions need to be made regarding the density f
(Assumption (A)) and the asymptotic behaviour of the regressors (Assumption (B)). We are listing these assumptions
here for clarity.
Assumption (A)
(A.l) f(z) >0, Vz e R; /azf(:z:)d:c =0;0< O'ch = / 22 f(x)dr < oo;

R R
(A.2) f is absolutely continuous on bounded intervals, i.e., there exists f such that

b
f) = f(a) = / f/(z)dx forall a <,
and, letting ¢ := — f’/ f, assume that
L(f) = / 63 (2) f(x)de and J, (f) = / 263 () f (x)dx are finite.
R R

Letting
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1614 EFFICIENT TEST FOR THRESHOLD REGRESSION MODELS

61(x) = 07 b, (2/og), To(f) = 07215(1), and Jy(f) = Jy(f1). Moreover, / 67(2)f(x)da =

0 and /xqﬁf(x)f(a;)dm:L

R
Denote by F 4 the class of all densities functions satisfying Assumption (A).
Assumption (B)

n T n
B MY = 135 (R MY = L3 Y (X

=1t=1 i=1t=1
B2 K(n) (le( D)1/, g ()1,
(B.3) M" T>Mi, K§"> —>Ki:M[1/2, i=1,2;

n—oo
(B.4) the classical [26] conditions hold:
1282, O i 00, (XD
lim - =0, li == =0, t=1,....,T

2.2. Local asymptotic normality

In this subsection, we will derive the local asymptotic normality property for the model (3), with respect to the scale
parameter JJ% and the vector of regression parameters of interest (f1, 82)’, for a fixed density f; € F4.

To do this, let 7(") := (71(7"),72("),T§n))’, where 7'1”), 72("), and ’T( ") are three real sequences such that 7(")'7(")
is uniformly bounded as n — oco. Let 0 := (O']%, 3, 3)’. We also consider 6 + n~1/2~(")7(") the sequences of local
alternatives characterized by small perturbations, where

1 0 0
yW =10 K" 0

o o KM

The test is equivalent to
Pé?}l 7™ = 7{" against IP’E)JF) g, 7 ),
Denote by A9+n 120y () () /0 f the logarithm of the likelihood ratio for IP’E‘H_) S1/2 ) () f against ]P( ) . Then,
L —1/2 n n).
(n) o O+n—1/24(n) 7(n); f
Agfn-1/2y00 7 ;5 7= 108 ( L;f ) :

where Loy ,-1/25m) 70,5 = H H fYie — B X, —BQX;Q) is the likelihood function under the alternative

z 1t=
hypothesis, and Lg,; = H H f (Y — BX;;) is the likelihood function under the null hypothesis.
i=1t=1
Fori=1,...,nandt=1,...,T, the standardized residual is defined as follows:

Zip = Zis(0) := 07 (Yir — BXur)-

It is important to note that, under the null hypothesis, it is equivalent to £;; /o ¢. The following proposition establishes
the local asymptotic normality result for a fixed density f; with respect to afc and the vector of regression parameters
of interest (31, 82)’.

Proposition 1
Let Assumption (B) holds. Fix f; € F4. Then the family ’P)(ff) is LAN (for n — oo with T fixed) at any 6 =
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(0]20, B, 8)’, with central sequence

n T
AR (6) 7 2 2 (0 (Z)Zi = 1)
1;1 i=1t=
n n 1/2 n B
AP ©O) = | AP, 0) | = p 2 X 0nlZi) Xy x| W
(n) n T
1=1t=1
and information matrix
T é(']cb(fl) - 1) 0 0
F_fl (0) T (F_ﬁ,pq )1<p q<3 = ? 0 I¢(f1) I(b(fl)cg() , (5)
o d (n)
0 Li(f)OY  Iy(h)

where C( = K"KV X=X+ and X- X+ = & P X; X
More precisely, for any (") := ((o;(™)2, (") )y such that n!/2((a;(™)? — 6%), n'/2(K(™)=1(3™ _ ) and

n'/2(K{M)- L (8™ — ) are O(1), and for any bounded sequence 7(™) € R?, we have, under p)

p(m.f,2 A T —> 00,

(n)

(n) 9(n)+n 1/2 (n).,-(n);fl
Ag(n>+n 1/24(n) 7(n) /9(n). £ = log d]P(n)
0™ 1

' (n 1 ' (n
— 7 Agcl)(g(n)) _ 5T(n) 1“}1)(9)7(”) +o,(1),
and " : .
CE0)) 7 2A8 (00) <55 N (0, Isxs)

Proof of Proposition 1

The proof consists of checking that the six conditions (Conditions 1.2 to 1.7) in Lemma 1 of [33] are satisfied,
uniformly in the vicinity of (a]%, B, ). This is straightforward for all but one of them, Condition 1.2, on which we
concentrate here. That condition actually follows (see Lemma 2 Swensen) if we manage to establish the quadratic
mean differentiability, in the neighborhood of any (U?, B, B), of

(O’fx,ﬁl,ﬁg) — q 2 B1. Bnyl( ) |: fl ( (Y B1 X~ _62X+)>:| )

with X~ and X € R. This last is established using the following Lemma.

Lemma 1
Let Assumption (B) holds and fix f; € F 4. Define, for Y € R,

1 1 Y —BX Y BX
Do—fqg 2 8.6:f1 Y) = @q;;‘i,ﬁﬂ%fl (Y) ((O’f) on ( of ) - 1) 7

3 _ L Y - BXYN y-
D545 g 505 Y Iy s = 20, 103.8.8:1 (¥)ér, o X

Y—ﬁx) X+
of

m»—-

1 1 1
2 i 2
D252 6, 65: 11 )1y pyes = 201 1o3.8.8: Y)ér (
Then, as s, r, and v — 0,
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[ 2
L /R _q5§+s,ﬁ+nﬂ;f1 (Y) - qé}%+s,5,5;fl (Y) —rDg, QE?+5751,[52;J‘-1 (Y) |[31B2ﬂ} dY =o (r2) ,
[ 2
2. /R _CI%.;_S,ﬁ,ﬁM;fl Y) - q§?+87575;f1 (V) - UDB?qj?-ﬂﬂth;fl (Y) oy sy dy = o (v?),
3. /R :qf;ﬂ,ﬁ,ﬁ; L Y) = qfiw; (V)= sD(,jchf% 55ip (Y)} 2dY =0 (s?),
M1 L s\’ ]i)"? qfﬁﬁ,ﬁ;ﬁ () 5
* /]R _qf?+s’ﬁ+r’ﬁ+”;fl ¥) - qu%’ﬁ’ﬁ;fl )= Z Dﬂlq%vﬁlﬁz;h (Y) lg,=po=p :| =

1
1
DB?qU?«ﬁlﬁz%fl ) lpy=p5=5
5 2
0 r .
v
Proof of Lemma 1

1. Let ( :=Y — BX. Then the part (1) takes the form

[l H) - () )

1 1 ¢ ? 2
— =02, 5.5 (T BX)0y ()X } d¢=o(r?),
2 fo s R S "

is equivalent to

Nl
—~
I

|

=
|
N~—

I
~

ol
—
)
N~—

I

il

which is equivalent to

r 2(0)
hence, for proving that, it is sufficient to prove that
1 _ 1 / 2
. {Mc —rXT) - £5Q 11 X} o,
r0 /R r 2f2(C)
We have
g SHC=rXT) = 2O A X )~ fE(Q) —rX T
r—0 r r—0 —rX— r
= (14©) x (-x7)
LSO
27200
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and

X 1 2
| st o] «
t=C

Afl[fac_hi)_fao]zczﬁji@2[

r
—rX~ [T ¢-rX7 rq / L 9
—pX— [t t . N )

- r? /t=—oo /C=t+7'X_ |:2f (t)f (t):| d(dt

— 00

<<—Xﬁ[+® Ff@uv%wrm

=—00

< {‘ﬁ?_}gjﬁT” [éf%wféluﬂth

< /R {Zf’(t)fQ(t)X—} i

This completes the proof of part (1) of Lemma 1.
2. The proof follows similarly to part (1).
3. The problem here reduces to the classical case of linear models considered by [33].
4. The result here follows from (1), (2), and (3) above. This completes the proof of Lemma 1.

O
O

Based on convergence from X~ X+ to ux- x+ as n — oo and (B.3)-subsequences, the information matrix I‘gfll) (9)
converges to

T é(‘]fb(fl) -1) 0 0
Ly (0) = = 0 Is(f1)  Le(f)pex | > 6)
s 0 Iy(f1)poy I4(f1)

where Hex = KlKQ,UX7X+.

In the case of a Gaussian distribution (where f; = f; standardized normal density A/(0, 1)), this is considered an
exceptional case. However, ¢, (z), Jo(f1), and I4(f1) are reduced to x, 3, and 1, respectively. It is easy to confirm
that equations (4), (5), and (6) also simplify to

n T
55 2 2 (28 —1)
i=1t=1
n n_1/2 n T _ "
AV (0) = ——— | X% ZuX, K" |
i=1t=1
n T
23 ZuXi Ky
i=1t=1
1
a0 0
n T n
e =510 1 o,
o o o1
and
= 00
Lar(0) == -2 0 1 Hex
0 HCx 1
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The result of Proposition | allows us to construct parametric tests that are asymptotically optimal under a specified
f1- It is important to note that these tests are only valid under the specified f;. Afterward, we will propose tests such
as Gaussian and adaptive tests, which are valid under general densities.

3. Locally asymptotically optimal tests

We are interested in testing the null hypothesis §; = $2 = £ in model (3). This model includes an unspecified error
density f; € F4, which is a semiparametric hypothesis. The null hypothesis can be formally expressed as:

= U = U U U}

g1EFA 91€FA 02>0 BER

Parametric alternatives takes the form (for fixed density f1 € F4)

= U U U {Pt(‘%)ﬁl»ﬁ%fl}'

O’?>0 B1ER B2€R

The parameter 012‘- is a nuisance parameter, while (51, 32)’ is the vector of regression parameters of interest. Before

addressing the semiparametric hypothesis 7—[(()”) (unspecified density), let’s first examine the parametric problem of
testing 'H(()") (f1) (with fy specified) against Hﬁ") (f1)-

3.1. Optimal parametric tests

As mentioned earlier, the Le Cam theory of LAN experiments permits the construction of tests that are locally
asymptotically most stringent. The fundamental concept is the weak convergence of the sequence of local experiments
to the Gaussian shift model. For a comprehensive discussion on locally asymptotically optimal testing in LAN families,
please refer to [37, 21, 36].

In this subsection, we construct locally asymptotically optimal tests (i.e., the most stringent tests) in the presence of
a nuisance parameter for testing the null hypothesis 31 = 2 = [ in model (3). We assume that the innovation density
f1 specified. The main consequence of the LAN results is that, for each 6 = (UJ%, B,5)’, and for given f; € Fa4, the
sequences of local experiments

E000) = {5 ooy, | TER?Y,

converge weakly to the Gaussian shift experiments (I' 7, (f) given in (6))
£ (0) == {N (Tp (O)7. T, (0)) | T € R},

while the central sequence A(n)( ) under pi converges in distribution to the Gaussian vector A =

0+n— 1/2,),(71)7- f1
(A1, Az, A3) ~ N (T4, (0)7,T,(6)). The classical theory of hypothesis testing in Gaussian shifts (see Section 11.9
in [21]) provides the general form for locally asymptotically most stringent tests of hypotheses in LAN models. In this

case, the null hypothesis 7—[ U U { ((T”) 8t } and the local alternative ’Hﬁ") (f1) can be expressed as:
07>0B€ER
HEY (1) 7€ M(Q) against H (f1) 2 7 & M(Q),

10

0
0 1 1).Such tests,

where M () is the linear subspace of dimension 2 of R? generated by the matrix Q' := (
should be based on

QY () == ALY (0) [117 (0) - AT (0)2) 7| AT (0).
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Through mathematical calculations, the statistical of the test can be expressed as follows:

1 2
QY(0) = —— ) AL0) - AP (0))
2 (T 0(0) = T14(6) ) (257% )
0-12” (A(") (9) A(”) (9))2
= n 13 - 11; ’ (7)
2T I4(f1)(1— C) V1 s
1 n T 2
- bn (Zu) (X K — XK } :
2N1¢(f1)(1—0§1)){;; ) (XK = X 17)

Remark 1
The statistic QSZIL) (#) can be written as the quadratic form

n n n)~1/2 n)t/? n — n)t/? n)- n
QR (0) = AP OTT T (0) [Foxs — T @Q@TE @@ T O 10 (007 0),

2

)

= [a@ r5 " @) o)

/
where A(0) = I3y — Fgff)l ’ (G)Q(Q’Fgc?)(H)Q)flﬁ’I‘l(fT)l/Q (0) is an idempotent symmetric matrix.

The proposed test mentioned above is still unsatisfactory because it involves the parameter 6, which is unspecified
under the null hypothesis 7—[(()") (f1). To address this issue, we introduce an estimate 0 := () := (52, 3(") (W)Y of
0 satisfying the following assumptions:

Assumption (C) The estimate 6(™) is such that

(C.1) /n-consistent, i.e., for all f; € F4 and all € > 0, there exist ¢ := ¢ (f1,6,¢) and N := N (f1, 6, ) such that

(n)
under IE”G? B e have

P(\/ﬁHé(") —9” >c) <e Vn>N.

(C.2) Locally asymptotically discrete, i.e., the number of possible values of 6(") in intervals of the form (6 —

n=2¢,0 + n=1/2¢€), € > 0, is eventually bounded, as n — oo, under Pg’;)ﬂ,h.
f bl
Note that several estimates, such as the maximum likelihood estimates, the Yule-Walker estimates, the M-estimates,
and the least square estimates, satisfy the condition (C.1) on the rate of convergence in probability. Part (C.2) has little
practical implications. .
The proposition below demonstrates that replacing () with # does not affect the asymptotic behaviour of the test
statistic (7).

Proposition 2 .
Suppose that Assumptions (A) and (B) hold, denote by §(™) a deterministic sequence satisfying Assumptions (C').

Then, under IP’(T;) as n — oo, we have

o2 Bifr
(a)
AP (G — A (9) = —n'2T( ()77 (0 — 0) + 0p(1).
(b)
(3200 — A = (400) - AZ0) + or(1)
Proof

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1620 EFFICIENT TEST FOR THRESHOLD REGRESSION MODELS

(a) Asymptotic local linearity implies:

A9 402y A (6) = T (9)7™ 1 op(1).

1

If we choose 7(") = n1/2y(M ™" (§() — §), we will have (a).

(b) Letting 13 = (1,1)’. From (a), under P as n — 0o,

U?7ﬂ;fl’
AP, 4(67) = ALY, 4(8) = —n 2T, (0038 12(B™) — ) + op(1)
B 1/2T L) 1 ngl) K™ 0 < B(n) -8 )
T P e 0 K™ )\ gm-p
+ OP(l)v

then

(B522007) = 2%,0)) — (AFLO™) ~ ALL ) =0+ 0r(1)

(4520 = ATE™) = (A75(0) = A7HO) +or (D).

O

The test based on (7) is locally asymptotically most stringent. To be more precise, applying Le Cam’s Third Lemma
yields the following result.

Proposition 3
Suppose that Assumptions (A), (B), and (C) hold. Then,

(i) Q(f?)(é(”)) = ngll)(@) + op(1) is asymptotically chi-square, with 1 degrees of freedom under IP((,?}I, and

asymptotically noncentral chi-square, still with 1 degrees of freedom but with noncentrality parameter py, :=

TI,(f)(A—pey)

- der P\")
207 (72 — 73)* under

0+n—1/2~y(n) 1, fl
(ii) the sequence of tests rejecting the null hypothesis 7—[0 )( f1) whenever Q;T) (0(™) exceeds the (1 — a)-quantile
of a chi-square distribution with one degree of freedom, i.e. Q}?)(é(”)) > Xilfa, is locally asymptotically

optimal (most stringent), at asymptotic level «, for ’H,én) (f1) against

U U U {#2 it

>0 B1ER B2eR

(iii) the sequence of tests has asymptotic power 1 — F (X:f 1—aiP f1) at ]Pe Y12y where F (., py, ) denotes
the noncentral chi-square distribution function with one degree of freedom an(’iY noncentrality parameter py, .

Proof

(i) Follows from:

Stat., Optim. Inf. Comput. Vol. 15, March 2026
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« Proposition 2(b) implies that, under Py} , as n — oo,
(A6 - A (é<">))2 (At 0) - A}T? (9))2
[l ) (s )
< (A% o ATR0™) + ( Afh(0) = Af5(0)
= op(1) x [2 (A?f, A(” ) }

= Op(l).

(e (0™))2.

M=

n
* Letting 67, an estimator of o7 is defined as: 67, := + 21 t
1=

1
Hence,

~2
n)rAln Un n
QY (™) = —2Q§3<9> +op(1),
Q(”)( 9) + op(1).
Under IP)(QT_L; : (Agcn_)Q(H) - A;n) 0 )) NN( M) then
sJ 1 1, 17 Uf

2

= (af%0) - a7L0) | = Q% ©) ~
VaTL (- o)

From Le Cam’s Third Lemma, we have under IF’é 12 gy

(A(”) 0) — A(n) (9)) ~ N <TI¢(fl)(1 - ,UCx)( Ty — T3), 2TI¢(f1)(1 - MCx)) _

f1;2 f1;3 2
1 1 O-f O—f

So that

oy ) 0y A® () o [ VT = pox) (2 — 73)
V2T, ()1 — oy (A522(0) = A7) ~ ( V2o, ’1> '

Cochran’s Theorem leads to

idi (A%50) = ATLO) | =80 ~ ion),
V2T L)1 - 05?))

VIIs(f1)(A—poy )(T2—73) _ Tle(f)(A—pcx)
V20

207 (72 — 73)°, which gives the desired result under
s

with Pf =
(n)

. P9+"*1/2'Y(".‘>T%f1' . . .
(i1) Stringency is a consequence of the weak convergence of local experiments to Gaussian shifts, see [21].

(iii) We know that the power of the test is defined by
Prob {rejecting ’H;")(H) / H;")(Q + nil/zy(")r)} = Prob [Q(f?)(ﬁ) > X1l /T2 # 73]
=1-F (X1 airn)-
O
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3.2. Gaussian test

In this subsection, we will construct the Gaussian test Q(Nn) (0). The Gaussian central sequences Aﬁ(}?z (9) and A(Nn;)?) (9)
will allow us to obtain asymptotically optimal tests under f1 = far(o,1). These tests will also efficiently detect panel
threshold regression in the parametric Gaussian model, which is characterized by Gaussian disturbances. It is highly
desirable to extend the validity of the Gaussian optimal test to general densities g; in a broad class of densities.
Define

n T
n i — 7-(n)
o o (A0 e (52
A . (9) = =
N;2,3 (n) o n T (n)
Ajris(0) >N ZuX K"
i=11=1
Then, under IF’g ; , (A(n) 9) — AX}&(G)) is asymptotically normal with zero mean and variance %

(n)
0+n—1/2y()7:g,°

are jointly binormal. Therefore, the desired result can be obtained by applying Le Cam’s Third

However, it is clear that, still under PP

A(”)
O+n=1/2y() 1 /059,
Lemma.

The Gaussian test may then be based on a statistic of the form

(n) _ 1 A(n) 9 A(n) 9 2
Qx(9) P (rx;}m(a) fr}y}%(e)) ( 0 (0) — AR )) 7
Z,

RIS

2N(1 i=1 t=1

the central sequence Al N 2 3(0) and the log-likelihood

®)

2
(ant? )|

The asymptotic linearity holds for A(Nn;)2,3(9) not just under ]P’f9 ]2 , but under IP’( ) . Then, under ]P’( ) , and for any
bounded sequences 7(") = (Tl("), 72("), 72(")) € R®and 1, T(”) ( 2("), 2(")) € Rz, asn — 0o W1th T fixed,

Ay 50 + 020y AR (0) = —T5P, 501278 +0p(1), ©)

with

n T (n) n n nN)~v_— v
F.S\/)g1'2 3(9) = %n) Cx , such as Cg() :Ki l)KZ( ,)XiXJr'
TS Cx 1
The next result is immediate from (9). Let Assumption (B) holds, assume that 0" satisfies Assumptions (C) and fix
0 € R% x R?, we have

(A0 = ALE™)) = (A(0) ~ A (60)) +op(1). (10)

Proposition 4
Let Assumptions (A4), (B) and, (C') hold, for any g; € Fa. Then,

(i) Q(Nn)(é(”)) = Q(N”)(H) + 0,(1) is asymptotically chi-square, with 1 degrees of freedom under P((;;Lg)l’ and

asymptotically noncentral chi-square, still with 1 degrees of freedom but with noncentrality parameter pyr :=
T(-—pcy) (n)
202 = 0+n—1/2~(n) 1, g1
(i1) the sequence of tests rejecting the null hypothesis U U U {IP’((:; Bin
g1EF A 02>O BER
is locally asymptotically optimal (most stringent), at asymptotic level o, against alternatives of the form

U U U {2 )

02>0 B1€R B2eR

(72 — 73)* under P\"

} whenever Q(Nn)(é(")) > X1 1—as
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(iii) the sequence of tests has asymptotic power 1 — F (X%,l—a; pN) at PG—}-)TL /20 (m) gy

Proof
Let 62 an estimator of o2, under IP’((;_L{])1 ,asn — 00,

% =0 +op(1). (11)
Using (10) and (11), one verifies (i). (ii) and (iii) of Proposition 4 follow the same way from Proposition 3. O

3.3. Adaptive test

The approach considered so far has been a parametric one. The central sequences A(”) (#) and the information matrices

Fg:f)(é)) are associated with a specified f;. The test described in Proposition 3 has a strong parametric flavor, but
its validity and optimality only hold at f;. Specifying f or f; in practice is quite unrealistic. A more reasonable
approach is a semiparametric one where f; remains completely unspecified. This is our motivation for considering the
semiparametric model. Thus, the semiparametrically efficient test achieves asymptotically the parametric efficiency
bound at any f; and performs asymptotically as well as the parametrically efficient test. In this case, we are referring
to the adaptive test.

As Q(")( ) depends on the unknown density f; through the score function ¢y,, it is natural to consider an
appropriate estimation of this function. Let (a,,) and (b,,) be two sequences of positive numbers converging to zero.
Consider a kernel k(.) that satisfies the Conditions K of [30]. Denote by f1 .o and f1 1 WO functions defined for
TyY11s -+, YnT € vay

n T
F 1 T — Yit
in 5 sy Yn = k| ——— R
frnr (5911 YnT) Na. ZZ ( - )
1 n T 2 y
F — Yit
f{;nT(w§y117-'-aynT) ::WZZICI ()

Letting
flonr (Zit; Z11s -+ Zn)
b + fronr (Zis; Zts - -y Zor)

bnr (Zit) == —

n T R ~
Considering the following estimates of oF and Iy(f1) respectively, 62 := % > 3 (€i(0))? and I,y :=

1=1t=1
n T
~ ; 2 Oar(Zit)-
et
Al () n-1/2 2 T = g™
Agn)(g) "i=1t=1 it 42
and

2T1(g1)(1— #cx)

under IPG o (A(" (0) — Ag’” (9)) is asymptotically normal with zero mean and variance o

Now, we can propose an adaptive test to test the null hypothesis (w1th unspemﬁed innovation

density) U 7—[0 (91) U U U { o2 Bign } against the local alternative 7—[1 (g91)- The adaptive test is
g1E€EFA g1E€Fa 0'_2>0,66]R

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1624 EFFICIENT TEST FOR THRESHOLD REGRESSION MODELS

written in the following form:
n T

O™ (6) = [Z

2NI T(l - i=1 t=1

2
bur(Zun) (X”Ki"’—Xith"))} : (12)

Using the linearity of A(")( 0) under P{") | g, € F4, for any bounded sequences (™ = (7\") (" z{"y c g3

0;91
and 1,75 = (r{™, 7{")" € R2, as n — oo with T fixed,

A0+ n= 24700y — AL (0) =~ 5(0) 1278 + 0p (1),

T 1 oW
T 5(6) = —514(g1) ( o ) :
g1;4, 0—3 Cg() 1
Proposition 5

Let Assumptions (A), (B), and (C) hold, and that the sequences (a,,) and (b,,) converging to zero. Then, under IP’( )
and as n — oo, we have:

@ T8 - _E,’f)g 5= op(1);

(i) AZH(0™) = Aga s (00) = op (1)

with

Proposition 6
Let Assumptions (A), (B), and (C) hold, and that the sequences (a,,) and (b,,) converging to zero. for any g; € Fa.
Then,

i) QM (O™ = é?)(ﬂ) +op(1) is asymptotically chi-square, with 1 degrees of freedom under IP)E)T,Z)I, and

asymptotically noncentral chi-square, still with 1 degrees of freedom but with noncentrality parameter p :=

Tis(g91)(1—pcy) (r

207 Ty — 7'3) under P™)

O0+n—1/2~ym) 1, g1

(ii) the sequence of tests rejecting the null hypothesis U U U {IPE:? Big } whenever Q(”)(é(”)) > X%,l—oﬂ
91€Fa 02>0B€R
is locally asymptotically optimal (most stringent), at asymptotic level o, against alternatives of the form

Uuuu {Pgﬂl,ﬂz,gl}'

02>0 B1ER B2€R

(iii) the sequence of tests has asymptotic power 1 — F (X%koﬁ p) at P0+n /2o 7igy

The test statistic Q") (9(")) thus defines an adaptive test, which is optimal but remains valid under a large class of
densities.

4. Asymptotic relative efficiencies

The squared ratios of noncentrality parameters under local alternatives are used to calculate the Asymptotic Relative

Efficiencies (AREs) of the adaptive test based on Q(") with respect to the Gaussian test based on Q(Nn). In order
to compare the performance of the adaptive and parametric tests, we calculate the AREs for the adaptive tests in
comparison to the Gaussian tests under density g; € Fa4.

Proposition 7
The AREs under g; € F4, of the adaptive tests based on Q(") with respect to the Gaussian test based on QJ(\?}), when
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(n)

. (n) .
testing Pe;gl against P9+n,1/27(n)7;g1 ,

are

2
ARE, (Q™ Q) = (pj’v) — (Ly(g))? (13

Table 1 provides numerical values of (13) for Q(") under various density functions g;: Normal, Logistic, Double
Exponential, Student-t3, skew-normal s\ (10), and skew-Student st5(10) (refer to [5] for a definition of skew normal
and skew-t densities).

The obtained results are satisfactory. Furthermore, it is evident from Table 1 that the AREs of the suggested
adaptive tests are consistently greater than or equal to one when compared to the parametric Gaussian tests across
all distributions. In the case of the Normal distribution, the AREs are equal to one. Therefore, the adaptive tests
demonstrate superior performance compared to the Gaussian tests for all density functions.

Table 1. Asymptotic relative efficiencies of adaptive test compared to their Gaussian counterpart

Densities g3 N l De ts | sN(10) | st5(10)
ARE,, (Q™ Q) | 1.0000 | 1.2026 | 4.0000 | 4.0000 | 9.1063 | 9.1641

5. Simulation

In order to enhance the interpretation and validity of the theoretical results presented in the previous sections,
we conducted a simulation experiment using Rstudio programming. The purpose of this section is to assess the
performance of the proposed tests at an asymptotic level of & = 5%. Now, let’s evaluate the following model:

Yie = b1 X5, +52X;tr+5itv i=1,...,n=100, t=1,...,T = 10, (14)
where,
e B =1,
® 35 =01+ A2, Ao =0 for null hypothesis, and A = 0.025, 0.05, 0.075, 0.1 for increasingly several
alternatives,

e the x;;’s are i.i.d. uniform (—10,10), X;, = z;, — 2~ and X;} = 2, — 2+,
e the g;’s are i.i.d. with a symmetric density: Gaussian (N), logistic (/), double exponential (De), Student
with v = 3 degrees of freedom (¢3), and an asymmetric density: skew-normal sA/(§) and skew-Student st5(3)

densities (both with skewness parameter value 6 = 10).

To evaluate the performance of the proposed procedures using finite samples, we generated 2500 independent samples
of size N = nT = 1000 from model (14). For each replication, we conducted the following tests at the asymptotic
level o = 5%: the likelihood ratio test for panel threshold effects proposed by [17], the Gaussian test based on QY;)
(see Proposition 4), and the adaptive test based on Q(") in (12). For the adaptive test, we used the Gaussian kernel
k(z) =1/V2mexp (—2?/2), with a,, = 0.9 and b,, = 0.01.

Rejection frequencies are reported in Figure 1, and they strongly support the outstanding overall performance of
the adaptive test. Moreover, both the Gaussian and the adaptive test outperform the likelihood ratio test of [17] across
all considered error densities g;. It is also evident that the adaptive test Q(”) has significantly greater power than the
Gaussian test Q(Nn) under logistic (), double exponential (De), Student (¢3), skew-normal sA(10), and skew-Student

st5(10) distributions. Additionally, it is noteworthy that the adaptive test Q™) performs equally well as the Gaussian
test QJ(\’}) under Normal (N) density.
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Figure 1. Rejection frequencies (out of 2500 replications), for A2 = 0 (null hypothesis), 0.025, 0.05, 0.075, 0.1 (alternative
hypotheses), with error density g; that is Gaussian (N), logistic (1), double exponential (De), Student (t3), skew-normal
(sN(10)), and skew-Student (st5(10)) of the Gaussian, Adaptive, and Likelihood Ratio tests.
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6. Real data analysis

Numerous factors have been presented in the current literature to explain pollution, such as tourism [34], economic
growth [19], renewable energy [4], and urbanization [35]. However, previous literature [29] indicates that it is difficult
to determine a priori the effect of urbanization on CO2 emissions. While research on the urbanization—-CO5 linkage
is growing, the findings remain inconsistent, which can be attributed to the various econometric techniques used. The
current body of literature discussing this issue can be divided into two opposing groups. The first group supports the
idea of a linear relationship [23], while the second group supports the idea of a non-linear relationship [31] between
these two variables. Moreover, the results of previous studies vary from country to country. For example, [24] reported
a negative effect, whereas [2] found a positive effect of urbanization on the environment.

Based on panel data from 15 emerging countries during 1995-2015, [20] discovered a non-linear relationship
between COy emissions and urbanization. They found that urbanization contributes relatively strongly to carbon
dioxide emissions up to a certain level, and their analysis relied on Hansen’s approach. In the present study, we revisit
the same dataset, focusing on a shorter period (1995-2004). We apply Gaussian and adaptive tests to this subset,
which are considered more powerful than the Hansen test, allowing us to examine threshold effects within a short
panel context.

To analyze the potential presence of non-linearity, we utilize the PTR model, as introduced by [17]. Specifically, we
examine the following form of the model:

Yie = pi + B1eal (qie <)+ Boxul (g > ) +eu, i=1,...,nt=1,...,T,

where y;; represents the CO5 emissions in country ¢ during period ¢, u; and €;; respectively represent the country-
specific fixed effects and random errors. It is assumed that this error is independently and identically distributed (i.i.d.)
with a mean of 0 and a variance of o2. In addition, ¢;; denotes the threshold variable for each country in the sample
during time ¢, ~y is the threshold value, and 1(.) serves as an indicator for the two regimes with different regression
slopes 3 and /3.

To detect the threshold phenomenon, [17] used the following test statistic.

_ S5 =501

Fy
52

)

where S, represents the residual sum of squares for errors in the linear model, S; represents the residual sum of squares
for errors in the panel threshold estimation model, and 62 represents the residual variance of the panel threshold
estimation. The null hypothesis states that +y is not identified, implying a linear relationship. The alternative hypothesis
suggests the presence of at least one threshold.

Ho: 1 =pP2=pFand H : 51 # Ba.

However, there are cases where multiple thresholds exist, resulting in three distinct regimes or more. Similar to the F
test used for a model with a single threshold, we can assess the significance of the second threshold by applying the
likelihood ratio test using the F5 statistic outlined below.
S1(%) — S5(4
Fy = 1(%) - 2(’7)7
o
where S; (%) represents the residual sum of squared errors resulting from estimating the first threshold, S5 (%) and 62
are the residual sum of squared errors and the residual variance from the second threshold estimation, respectively.
For any given threshold ~, the slope coefficient can be estimated using Ordinary Least Squares (OLS);

5 -1

Bly) = (X"(7)'X" (7))

The vector of the regression residuals is:

X* (7)Y,

() =Y = X*(7)B(),
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and the sum of the squared errors is:
Si(y) =&"()'e" (7). (15)

[8, 18] suggested using the least squares method to estimate . The simplest approach is to minimize the concentrated
S1 in equation (15). Therefore, the least squares estimator of - is:

4 = argmin Sy (7).
¥

When we obtain 9, the slope coefficient estimate is B = B(ﬁ) The residual vector is €* = £*(%¥), and the estimator of
the residual variance is:

7 = 76) = =y ) () = gy S1(9)

Our study used a balanced panel dataset that included 15 emerging countries from 1995 to 2004. These countries are
Argentina, Bangladesh, Brazil, China, India, Indonesia, Malaysia, Mexico, Pakistan, Philippines, Russian Federation,
South Africa, Thailand, Turkey, and Ukraine. The study incorporated the following variables: COy emissions
(measured in metric tons per capita), urban population (as a percentage of the total population), GDP per capita
(measured in constant 2015 US dollars), renewable energy consumption (as a percentage of total final energy
consumption), and trade (as a percentage of GDP). These data series were obtained from the World Bank’s World
Development Indicators (2024).

The construction of our single threshold model is as follows:

In(coq,,) = p+ B1In(urb;)1 (In(urb;y) < ) + B2 In(urby)1 (In(urb;y) > )

16
+ B3 In(gdpit) + Baln(reny) + Bs ln(trade;r) + 4. (16)

To investigate non-linearity, we utilized Hansen’s panel threshold approach. After rejecting the null hypothesis, we
conducted tests to determine the optimal number of thresholds for our model. To assess the presence of a single
threshold, we performed 1000 bootstrap estimations. The results of this analysis are presented in Tables 2 and 3.
Table 2 presents the estimates for the single threshold at 3.1608, with a 95% confidence interval ranging from 3.1442
to 3.2223. The anti-log of the threshold value, 3.1608, corresponds to 23.59%, indicating that the threshold level is at
23.59% urbanization. Moving on to Table 3, it displays the significance level of a single threshold. We discovered that
the test results for a single threshold are significant at the 5% level, with a bootstrap p-value of 0.0030. Furthermore,
the F-statistic exceeds the critical value, providing evidence in support of non-linearity and rejecting the notion of a
linear relationship between urbanization and carbon emissions.

Table 2. Estimation of a model with a single threshold

95% Confidence Interval (CI)

Model | Threshold | Lower | Upper
Th-1 3.1608 | 3.1442 | 3.2223

Table 3. Test for the single threshold model

Threshold | RSS* | MSEP | F)-stat | Probability | Crit 10% | Crit 5% | Crit 1%
Single | 0.1918 | 0.0014 | 45.0600 0.0030 23.6213 | 27.5134 | 33.9653

aRSS is the Residual Sum of Squares; "MSE is the Mean Squared Error.
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We will now analyze the occurrence of double and triple thresholds in the relationship between urbanization and
carbon dioxide emissions. The empirical results of the tests for single, double, and triple thresholds are presented in
Table 4. This table includes estimates obtained from 1000 bootstrapping iterations, which are used to approximate the
presence of double and triple thresholds. The estimates indicate that a single threshold is statistically significant, with
a p-value of 0.0030. However, the double and triple thresholds are not statistically significant, with probability values
of 0.1870 and 0.3510, respectively. Based on these results, we can conclude that there is only one threshold level in
the relationship between urbanization and carbon emissions.

Table 4. Test for multiple threshold models

Threshold | RSS MSE | F statistic | Probability | Crit 5%
Single | 0.1918 | 0.0014 | 45.0600 0.0030 | 27.5134
Double | 0.1632 | 0.0012 | 24.5000 0.1870 | 60.4149
Triple | 0.1436 | 0.0010 | 19.1200 0.3510 73.7865

Prior to discussing the numerical outcomes, the following algorithm outlines the computational steps required to
obtain the adaptive test statistic Q™) used in the empirical application.

Algorithm 1 Pseudocode for Computing the Adaptive Test Statistic QM

Step 1: Data import
Load data and define variables In(coz), In(urbd), In(gdp), In(ren), and In(trade).
Step 2: Splitting urban variable by threshold
Define the threshold + and split In(urb) into Inurb™ and Inurb™ based on .
Step 3: Centering variables
Center all variables and compute K {n), K én), and Cg;b).
Step 4: Null model estimation
Based on the centered variables obtained in Step 3, estimate the linear model under H and compute the residuals
Z.
9: Step 5: Kernel-based estimation of density and derivative
10: Define bandwidth a,, and regularization parameter b,,.
11: Estimate the density f; using a kernel density.
12: Estimate the derivative f; using the derivative of the kernel.
13: Step 6: Score function and Fisher information
14; Compute the estimated score ¢, 7(Z).
15: Compute the estimated Fisher information I nT-
16: Step 7: Test statistic and p-value
17: Compute the test statistic Q(") defined in equation (12) and the associated p-value.

SIS I B e

Now, let’s compare the Gaussian test based on Q(Nn), the adaptive test based on Q(”), and the Hansen test based

on Fi (refer to Table 5). The observed values of the statistical tests are as follows: Q(Nn) = 25.0157 (p-value =
5.6866 x 10~7), Q(”) = 14.4197 (p-value = 0.0002), and F} = 45.0600 (p-value = 0.0030). These results indicate
that all three tests lead to the same conclusion: H : 51 = B2 = (3 should be rejected at the usual significance levels
(a = 5%). Moreover, the findings suggest that the proposed tests (Gaussian and adaptive) are more powerful than the
likelihood ratio test.
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Table 5. Gaussian, adaptive and likelihood ratio tests

Test | Calculated value | Critical value p-value
QY 25.0157 3.8414 | 5.6866 x 10~7
Q™ 14.4197 3.8414 0.0002

P 45.0600 27.5134 0.0030

7. Conclusions

The approach used in this paper allows for testing the classical regression model (without a threshold) against the
panel threshold regression model (with large n and small T') for both specified and unspecified error density. Optimal
parametric, Gaussian, and adaptive tests are derived based on the LAN property. The adaptive tests exhibit remarkably
high ARE values compared to their Gaussian counterparts. Simulation results, based on rejection frequencies, confirm
the strong performance of the proposed tests and show that they outperform Hansen’s likelihood ratio test. In particular,
the adaptive test demonstrates the highest empirical power. A real example illustrating the relationship between
urbanization and carbon dioxide emissions confirms the presence of a single threshold effect, rejecting the classical
regression model in favor of the threshold specification. The results further highlight the superiority of the Gaussian
and adaptive tests over Hansen’s likelihood ratio test in detecting threshold effects.

Supplementary materials

For reproducibility and convenience, the R code for the real data application of both the adaptive and Gaussian
tests is provided online and can be accessed on GitHub at: https://github.com/DOUNIABOURZIK/
Adaptive—-and-Gaussian-Tests—-Panel-Threshold-Regression.git
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