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Abstract In this paper, we propose locally and asymptotically optimal tests (as defined in the Le Cam sense) that are
parametric, Gaussian, and adaptive. These tests aim to address the problem of testing the classical regression model against
the threshold regression model in short panel data, where n is large and T is small. The foundation of these tests is the
Local Asymptotic Normality (LAN) property. We derive the asymptotic relative efficiencies of these tests, specifically in
comparison to the Gaussian parametric tests. The results demonstrate that the adaptive tests exhibit higher asymptotic power
than the Gaussian tests. Additionally, we conduct simulation studies and analyze real data to evaluate the performance of the
suggested tests, and the results confirm their excellent performance.
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1. Introduction

Several researchers have conducted studies on regression analysis, a statistical method primarily used to examine
the relationship between dependent and independent variables. Among the most notable forms of nonlinear
regression models is the threshold regression model, which has attracted considerable attention in both statistics
and econometrics. The Panel Threshold Regression (PTR) model was initially proposed by [17], who developed
a threshold model for non-dynamic panels with individual fixed effects. The Panel Smooth Transition Regression
(PSTR) models were introduced by [15], while the Panel Smooth Transition Autoregressive (PSTAR) models were
popularized by [13]. These models have found broad applications in various real-life problems, including economics,
finance, monetary policy, environmental studies, and medical sciences, and have demonstrated their superiority over
classical linear regression models. For instance, [14] showed that applying a PSTR model to French-listed firms
from 2009 to 2017 revealed a non-linear relationship between family ownership and firm performance. Similarly,
[7] found that the impact of imported technology on industrial employment was non-linear and depended on the
level of technology imports. Using a PSTR model on data from developed and developing countries over the period
2000–2019, they demonstrated that threshold effects played a crucial role in determining the employment outcomes
of technology imports. In the environmental domain, [11] investigated a non-linear association between the blue
economy, renewable energy, and environmental sustainability in the Middle East and North Africa (MENA) region
during 2000–2022. Moreover, [32] showed that the finance–growth relationship was non-linear using panel threshold
models on annual data for 153 countries from 2011 to 2020.
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In this paper, our focus will be on the PTR model, which is defined as follows:

yit = µ+ β1xit1(qit≤0) + β2xit1(qit>0) + εit, i = 1, . . . , n; t = 1, . . . , T, (1)

where yit is a panel observation for individual i and time t (i = 1, . . . , n (large n); t = 1, . . . , T (small T )), N = nT
is the sample size. The regression parameters are µ and (β1, β2)

′. The threshold variable qit and the regressor xit are
scalar. The indicator function is denoted as 1(.). The sequence of unobservable random variables {εit, 1 ≤ i ≤ n, 1 ≤
t ≤ T} is an i.i.d. with mean zero, finite variance σ2

f , and probability density f : ε 7→ f(ε) := (1/σf )f1(ε/σf ) (where
f1 ∈ FA).

Several methods have been established in the literature for estimating the parameters of threshold regression models.
These methods include the method of least squares, the nonlinear least squares method, and the concentrated simulated
maximum likelihood method. Examples of these methods can be found in the works of [17, 15, 13, 9].

Before addressing the problem of estimating the parameters of model (1), it is crucial to determine whether it is
indeed a threshold regression model and how to proceed with the test.

Clearly, model (1) reduces to the classical regression model

yit = µ+ βxit + εit, i = 1, . . . , n; t = 1, . . . , T,

if and only if β1 = β2 = β. The problem we are addressing is related to the detection problem. More specifically, this
problem involves the testing of the null hypothesis H0 : β1 = β2 = β with unspecified µ, β, σ2

f , and f1 against the
alternative hypothesis H1 : β1 ̸= β2.

An alternative intuitive way of writing (1) is:

yit = µ+ β1x
−
it + β2x

+
it + εit, (2)

one traditional method to eliminate the scalar parameter µ is to center yit, x−
it , and x+

it . The equation (2) becomes:

Yit = β1X
−
it + β2X

+
it + εit, (3)

where Yit = yit − y, X−
it = x−

it − x−, and X+
it = x+

it − x+. y = 1
N

n∑
i=1

T∑
t=1

yit, x− = 1
N

n∑
i=1

T∑
t=1

x−
it , and x+ =

1
N

n∑
i=1

T∑
t=1

x+
it are the means respectively of yit, x−

it , and x+
it .

The main technical tool used in this study is Le Cam’s asymptotic theory of statistical experiments and the properties
of LAN families. For more information, refer to [21, 22]. This powerful method has been successfully applied to
various inference problems. Relevant references on this topic include [6, 1, 25, 12, 28].

In a LAN family, the random vector ∆(n)
f1

(θ), referred to as a central sequence, is the
√
n-normalized derivative

of the logarithm of the likelihood function with respect to the parameter θ. Intuitively, this vector measures both
the direction and magnitude in which the logarithm of the likelihood changes when the parameter is locally
perturbed. It summarizes all the local information in the data and enables the construction of asymptotically optimal
tests. Within this framework, the logarithm of the likelihood ratio can be locally approximated as τ (n)

′
∆

(n)
f1

(θ)−
1
2τ

(n)′Γ
(n)
f1

(θ)τ (n), where the central sequence ∆(n)
f1

(θ) follows an asymptotically normal distribution with mean zero
under the null hypothesis, mean Γf1(θ)τ under the alternative hypothesis, and covariance matrix Γf1(θ) under both
hypotheses.

The local asymptotic normality results play a crucial role in this treatment as they provide guidance for constructing
parametric tests that are optimal, both locally and asymptotically. Next, we discuss the derivation of Gaussian tests,
which are optimal under Gaussian densities and remain valid even under non-Gaussian densities. In parametric models,
the density function f of the innovation is predetermined. However, these models are better suited for practical
situations where f is unspecified. This motivates us to consider semiparametric models. The fact that f is generally
unknown leads to a decrease in efficiency when compared to parametric situations. When this decrease is zero, the
semiparametric model is considered adaptive since both parametric and semiparametric bounds coincide for all f . For
further details, please refer to [16, 3, 10, 27].
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Threshold regression models offer greater flexibility than traditional linear models in capturing complex
relationships between variables. Ignoring these threshold effects can lead to misleading conclusions, underscoring
the importance of testing the null hypothesis of linearity against the alternative PTR specification to ensure model
adequacy. Motivated by this consideration, this study focuses on detecting the presence of threshold effects in
regression frameworks. More precisely, it aims to test a classical regression model against an alternative that introduces
a threshold component in short panel settings characterized by a large cross-sectional dimension (n) and a small time
dimension (T ). Building on the local asymptotic normality property, the paper develops locally and asymptotically
optimal tests. Two types of procedures are proposed: parametric procedures—applicable when the error density f1 is
specified, with the Gaussian test (f1 = fN (0,1)) as a particular case—and adaptive procedures designed for situations
in which f1 is unspecified. We derive the asymptotic relative efficiencies of adaptive tests in comparison to Gaussian
parametric tests. The methodology is supported through Monte Carlo simulations and an empirical application
examining the relationship between urbanization and carbon dioxide emissions, demonstrating the robustness of both
the Gaussian and adaptive tests, which also outperform the likelihood ratio tests proposed by [17].

After this introduction, the rest of the paper is organized as follows. Subsection 2.1 provides the main definitions and
assumptions, while Subsection 2.2 establishes the LAN property. In Subsection 3.1, we propose the optimal parametric
test (for specified f1), and in Subsection 3.2, we present the specific case of the Gaussian test. Subsection 3.3 is
dedicated to adaptive tests. Asymptotic relative efficiencies with respect to the Gaussian test are derived in Section 4.
Section 5 is devoted to validating our theoretical results through numerical simulations using the RStudio program.
In Section 6, we apply our proposed tests to a real dataset that investigates the relationship between urbanization and
carbon dioxide emissions, using both RStudio and Stata programs. Finally, we provide some conclusions.

2. Local asymptotic normality

2.1. Notations and main technical assumptions

Denote by P(n)

σ2
f ,β;f1

the probability distribution under the null hypothesis β1 = β2 = β. Under the alternative,

P(n)

σ2
f ,β1,β2;f1

is the probability distribution of the observations Y (n) =
(
Y

(n)′

1 , Y
(n)′

2 , . . . , Y
(n)′

n

)′
, where Y

(n)
i :=

(Yi1, Yi2, . . . , YiT )
′ generated by model (3).

The main technical tool used below is local asymptotic normality with respect to (σ2
f , β1, β2), at (σ2

f , β, β), of the
families of distributions

P(n)
f1

:=
{
P(n)

σ2
f ,β1,β2;f1

: σ2
f > 0 and (β1, β2) ∈ R2

}
.

To establish the properties of a LAN, certain technical assumptions need to be made regarding the density f
(Assumption (A)) and the asymptotic behaviour of the regressors (Assumption (B)). We are listing these assumptions
here for clarity.
Assumption (A)

(A.1) f(x) > 0, ∀x ∈ R;
∫
R
xf(x)dx = 0; 0 < σ2

f :=

∫
R
x2f(x)dx < ∞;

(A.2) f is absolutely continuous on bounded intervals, i.e., there exists f ′ such that

f(b)− f(a) =

∫ b

a

f ′(x)dx for all a < b,

and, letting ϕf := −f ′/f , assume that

Iϕ(f) :=

∫
R
ϕ2
f (x)f(x)dx and Jϕ (f) :=

∫
R
x2ϕ2

f (x)f(x)dx are finite.

Letting

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1614 EFFICIENT TEST FOR THRESHOLD REGRESSION MODELS

ϕf (x) = σ−1
f ϕf1(x/σf ), Iϕ(f) = σ−2

f Iϕ(f1), and Jϕ(f) = Jϕ(f1). Moreover,
∫
R
ϕf (x)f(x)dx =

0 and
∫
R
xϕf (x)f(x)dx = 1.

Denote by FA the class of all densities functions satisfying Assumption (A).
Assumption (B)

(B.1) M
(n)
1 = 1

N

n∑
i=1

T∑
t=1

(X−
it )

2, M (n)
2 = 1

N

n∑
i=1

T∑
t=1

(X+
it )

2;

(B.2) K
(n)
1 = (M

(n)
1 )−1/2, K(n)

2 = (M
(n)
2 )−1/2;

(B.3) M
(n)
i −−−−→

n→∞
Mi, K

(n)
i −−−−→

n→∞
Ki = M

−1/2
i , i = 1, 2;

(B.4) the classical [26] conditions hold:

lim
n→∞

max
1≤i≤n

(X−
it )

2

n∑
i=1

T∑
t=1

(X−
it )

2

= 0, lim
n→∞

max
1≤i≤n

(X+
it)

2

n∑
i=1

T∑
t=1

(X+
it)

2

= 0, t = 1, . . . , T .

2.2. Local asymptotic normality

In this subsection, we will derive the local asymptotic normality property for the model (3), with respect to the scale
parameter σ2

f and the vector of regression parameters of interest (β1, β2)
′, for a fixed density f1 ∈ FA.

To do this, let τ (n) := (τ
(n)
1 , τ

(n)
2 , τ

(n)
3 )′, where τ

(n)
1 , τ

(n)
2 , and τ

(n)
3 are three real sequences such that τ (n)

′
τ (n)

is uniformly bounded as n → ∞. Let θ := (σ2
f , β, β)

′. We also consider θ + n−1/2γ(n)τ (n) the sequences of local
alternatives characterized by small perturbations, where

γ(n) =

 1 0 0

0 K
(n)
1 0

0 0 K
(n)
2

 .

The test is equivalent to

P(n)
θ;f1

: τ
(n)
2 = τ

(n)
3 against P(n)

θ+n−1/2γ(n)τ(n);f1
: τ

(n)
2 ̸= τ

(n)
3 .

Denote by Λ
(n)

θ+n−1/2γ(n)τ(n)/θ;f
the logarithm of the likelihood ratio for P(n)

θ+n−1/2γ(n)τ(n);f
against P(n)

θ;f . Then,

Λ
(n)

θ+n−1/2γ(n)τ(n)/θ;f
:= log

(
Lθ+n−1/2γ(n)τ(n);f

Lθ;f

)
,

where Lθ+n−1/2γ(n)τ(n);f =
n∏

i=1

T∏
t=1

f(Yit − β1X
−
it − β2X

+
it ) is the likelihood function under the alternative

hypothesis, and Lθ;f =
n∏

i=1

T∏
t=1

f(Yit − βXit) is the likelihood function under the null hypothesis.

For i = 1, . . . , n and t = 1, . . . , T , the standardized residual is defined as follows:

Zit = Zit(θ) := σ−1
f (Yit − βXit).

It is important to note that, under the null hypothesis, it is equivalent to εit/σf . The following proposition establishes
the local asymptotic normality result for a fixed density f1 with respect to σ2

f and the vector of regression parameters
of interest (β1, β2)

′.

Proposition 1
Let Assumption (B) holds. Fix f1 ∈ FA. Then the family P(n)

f1
is LAN (for n → ∞ with T fixed) at any θ =
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(σ2
f , β, β)

′, with central sequence

∆
(n)
f1

(θ) :=


∆

(n)
f1;1

(θ)

∆
(n)
f1;2

(θ)

∆
(n)
f1;3

(θ)

 :=
n−1/2

σf



1
2σf

n∑
i=1

T∑
t=1

(ϕf1(Zit)Zit − 1)

n∑
i=1

T∑
t=1

ϕf1(Zit)X
−
itK

(n)
1

n∑
i=1

T∑
t=1

ϕf1(Zit)X
+
itK

(n)
2


, (4)

and information matrix

Γ
(n)
f1

(θ) :=
(
Γ
(n)
f1;pq

(θ)
)
1≤p,q≤3

:=
T

σ2
f


1

4σ2
f
(Jϕ(f1)− 1) 0 0

0 Iϕ(f1) Iϕ(f1)C
(n)
X

0 Iϕ(f1)C
(n)
X Iϕ(f1)

 , (5)

where C
(n)
X = K

(n)
1 K

(n)
2 X−X+ and X−X+ = 1

N

n∑
i=1

T∑
t=1

X−
itX

+
it .

More precisely, for any θ(n) := ((σf
(n))2, β(n), β(n))′ such that n1/2((σf

(n))2 − σ2
f ), n

1/2(K
(n)
1 )−1(β(n) − β), and

n1/2(K
(n)
2 )−1

(
β(n) − β

)
are O(1), and for any bounded sequence τ (n) ∈ R3, we have, under P(n)

θ(n);f1
, as n → ∞,

Λ
(n)

θ(n)+n−1/2γ(n)τ(n)/θ(n);f1
:= log

dP(n)

θ(n)+n−1/2γ(n)τ(n);f1

dP(n)

θ(n);f1


= τ (n)

′
∆

(n)
f1

(θ(n))− 1

2
τ (n)

′
Γ
(n)
f1

(θ)τ (n) + op(1),

and
(Γ

(n)
f1

(θ))−1/2∆
(n)
f1

(θ(n))
L−→ N (0, I3×3) .

Proof of Proposition 1
The proof consists of checking that the six conditions (Conditions 1.2 to 1.7) in Lemma 1 of [33] are satisfied,
uniformly in the vicinity of (σ2

f , β, β). This is straightforward for all but one of them, Condition 1.2, on which we
concentrate here. That condition actually follows (see Lemma 2 Swensen) if we manage to establish the quadratic
mean differentiability, in the neighborhood of any (σ2

f , β, β), of

(
σ2
f , β1, β2

)
7→ q

1
2

σ2
f ,β1,β2;f1

(Y ) =

[
1

σf
f1

(
1

σf

(
Y − β1X

− − β2X
+
))] 1

2

,

with X− and X+ ∈ R. This last is established using the following Lemma.

Lemma 1
Let Assumption (B) holds and fix f1 ∈ FA. Define, for Y ∈ R,

Dσ2
f
q

1
2

σ2
f ,β,β;f1

(Y ) =
1

4σ2
f

q
1
2

σ2
f ,β,β;f1

(Y )

((
Y − βX

σf

)
ϕf1

(
Y − βX

σf

)
− 1

)
,

Dβ1q
1
2

σ2
f ,β1,β2;f1

(Y ) |β1=β2=β
=

1

2σf
q

1
2

σ2
f ,β,β;f1

(Y )ϕf1

(
Y − βX

σf

)
X−,

Dβ2q
1
2

σ2
f ,β1,β2;f1

(Y ) |β1=β2=β
=

1

2σf
q

1
2

σ2
f ,β,β;f1

(Y )ϕf1

(
Y − βX

σf

)
X+.

Then, as s, r, and v → 0,
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1.
∫
R

[
q

1
2

σ2
f+s,β+r,β;f1

(Y )− q
1
2

σ2
f+s,β,β;f1

(Y )− rDβ1q
1
2

σ2
f+s,β1,β2;f1

(Y ) |β1=β2=β

]2
dY = o

(
r2
)
,

2.
∫
R

[
q

1
2

σ2
f+s,β,β+v;f1

(Y )− q
1
2

σ2
f+s,β,β;f1

(Y )− vDβ2q
1
2

σ2
f+s,β1,β2;f1

(Y ) |β1=β2=β

]2
dY = o

(
v2
)
,

3.
∫
R

[
q

1
2

σ2
f+s,β,β;f1

(Y )− q
1
2

σ2
f ,β,β;f1

(Y )− sDσ2
f
q

1
2

σ2
f ,β,β;f1

(Y )

]2
dY = o

(
s2
)
,

4.
∫
R

[
q

1
2

σ2
f+s,β+r,β+v;f1

(Y )− q
1
2

σ2
f ,β,β;f1

(Y )−

 s
r
v

′


Dσ2
f
q

1
2

σ2
f ,β,β;f1

(Y )

Dβ1
q

1
2

σ2
f ,β1,β2;f1

(Y ) |β1=β2=β

Dβ2
q

1
2

σ2
f ,β1,β2;f1

(Y ) |β1=β2=β


]2
dY =

o


∥∥∥∥∥∥
 s

r
v

∥∥∥∥∥∥
2
 .

Proof of Lemma 1

1. Let ζ := Y − βX . Then the part (1) takes the form

∫
R

[(
1√

σ2
f + s

) 1
2

f
1
2
1

(
ζ − rX−√

σ2
f + s

)
−
(

1√
σ2
f + s

) 1
2

f
1
2
1

(
ζ√

σ2
f + s

)

− r
1

2
√
σ2
f + s

q
1
2

σ2
f+s,β,β;f1

(ζ + βX)ϕf1

(
ζ√

σ2
f + s

)
X−
]2
dζ = o

(
r2
)
,

is equivalent to ∫
R

[
f

1
2 (ζ − rX−)− f

1
2 (ζ)− r

2
f

1
2 (ζ)ϕf (ζ)X

−
]2
dζ = o

(
r2
)
,

which is equivalent to ∫
R
r2
[
f

1
2 (ζ − rX−)− f

1
2 (ζ)

r
+

1

2

f ′(ζ)

f
1
2 (ζ)

X−
]2
dζ = o

(
r2
)
,

hence, for proving that, it is sufficient to prove that

lim
r→0

∫
R

[
f

1
2 (ζ − rX−)− f

1
2 (ζ)

r
+

1

2

f ′(ζ)

f
1
2 (ζ)

X−
]2
dζ = 0.

We have

lim
r→0

f
1
2 (ζ − rX−)− f

1
2 (ζ)

r
= lim

r→0

f
1
2 (ζ − rX−)− f

1
2 (ζ)

−rX− × −rX−

r

=
(
f

1
2 (ζ)

)′
×
(
−X−)

= −1

2

f ′(ζ)

f
1
2 (ζ)

X−,
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and ∫ +∞

ζ=−∞

[
f

1
2 (ζ − rX−)− f

1
2 (ζ)

r

]2
dζ =

∫ +∞

ζ=−∞

1

r2

[ ∫ ζ−rX−

t=ζ

1

2
f ′(t)f

−1
2 (t)dt

]2
dζ

≤ −rX−

r2

∫ +∞

ζ=−∞

∫ ζ−rX−

t=ζ

[
1

2
f ′(t)f

−1
2 (t)

]2
dtdζ

≤ −rX−

r2

∫ +∞

t=−∞

∫ t

ζ=t+rX−

[
1

2
f ′(t)f

−1
2 (t)

]2
dζdt

≤
[
−rX−

r

]2 ∫ +∞

t=−∞

[
1

2
f ′(t)f

−1
2 (t)

]2
dt

≤ (−X−)2
∫ +∞

t=−∞

[
1

2
f ′(t)f

−1
2 (t)

]2
dt

≤
∫
R

[
−1

2
f ′(t)f

−1
2 (t)X−

]2
dt.

This completes the proof of part (1) of Lemma 1.
2. The proof follows similarly to part (1).
3. The problem here reduces to the classical case of linear models considered by [33].
4. The result here follows from (1), (2), and (3) above. This completes the proof of Lemma 1.

Based on convergence from X−X+ to µX−X+ as n → ∞ and (B.3)-subsequences, the information matrix Γ
(n)
f1

(θ)
converges to

Γf1(θ) :=
T

σ2
f

 1
4σ2

f
(Jϕ(f1)− 1) 0 0

0 Iϕ(f1) Iϕ(f1)µCX

0 Iϕ(f1)µCX
Iϕ(f1)

 , (6)

where µCX
= K1K2µX−X+ .

In the case of a Gaussian distribution (where f1 = fN ; standardized normal density N (0, 1)), this is considered an
exceptional case. However, ϕf1(x), Jϕ(f1), and Iϕ(f1) are reduced to x, 3, and 1, respectively. It is easy to confirm
that equations (4), (5), and (6) also simplify to

∆
(n)
N (θ) :=

n−1/2

σ



1
2σ

n∑
i=1

T∑
t=1

(
Z2
it − 1

)
n∑

i=1

T∑
t=1

ZitX
−
itK

(n)
1

n∑
i=1

T∑
t=1

ZitX
+
itK

(n)
2


,

Γ
(n)
N (θ) :=

T

σ2


1

2σ2 0 0

0 1 C
(n)
X

0 C
(n)
X 1

 ,

and

ΓN (θ) :=
T

σ2

 1
2σ2 0 0
0 1 µCX

0 µCX
1

 .
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The result of Proposition 1 allows us to construct parametric tests that are asymptotically optimal under a specified
f1. It is important to note that these tests are only valid under the specified f1. Afterward, we will propose tests such
as Gaussian and adaptive tests, which are valid under general densities.

3. Locally asymptotically optimal tests

We are interested in testing the null hypothesis β1 = β2 = β in model (3). This model includes an unspecified error
density f1 ∈ FA, which is a semiparametric hypothesis. The null hypothesis can be formally expressed as:

H(n)
0 :=

⋃
g1∈FA

H(n)
0 (g1) :=

⋃
g1∈FA

⋃
σ2
g>0

⋃
β∈R

{
P(n)
σ2
g,β;g1

}
.

Parametric alternatives takes the form (for fixed density f1 ∈ FA)

H(n)
1 (f1) :=

⋃
σ2
f>0

⋃
β1∈R

⋃
β2∈R

{
P(n)

σ2
f ,β1,β2;f1

}
.

The parameter σ2
f is a nuisance parameter, while (β1, β2)

′ is the vector of regression parameters of interest. Before

addressing the semiparametric hypothesis H(n)
0 (unspecified density), let’s first examine the parametric problem of

testing H(n)
0 (f1) (with f1 specified) against H(n)

1 (f1).

3.1. Optimal parametric tests

As mentioned earlier, the Le Cam theory of LAN experiments permits the construction of tests that are locally
asymptotically most stringent. The fundamental concept is the weak convergence of the sequence of local experiments
to the Gaussian shift model. For a comprehensive discussion on locally asymptotically optimal testing in LAN families,
please refer to [37, 21, 36].

In this subsection, we construct locally asymptotically optimal tests (i.e., the most stringent tests) in the presence of
a nuisance parameter for testing the null hypothesis β1 = β2 = β in model (3). We assume that the innovation density
f1 specified. The main consequence of the LAN results is that, for each θ = (σ2

f , β, β)
′, and for given f1 ∈ FA, the

sequences of local experiments
ξ
(n)
f1

(θ) :=
{
P(n)

θ+n−1/2γ(n)τ ;f1
| τ ∈ R3

}
,

converge weakly to the Gaussian shift experiments (Γf1(θ) given in (6))

ξf1(θ) :=
{
N (Γf1(θ)τ,Γf1(θ)) | τ ∈ R3

}
,

while the central sequence ∆
(n)
f1

(θ) under P(n)

θ+n−1/2γ(n)τ ;f1
converges in distribution to the Gaussian vector ∆ =

(∆1,∆2,∆3)
′ ∼ N (Γf1(θ)τ,Γf1(θ)). The classical theory of hypothesis testing in Gaussian shifts (see Section 11.9

in [21]) provides the general form for locally asymptotically most stringent tests of hypotheses in LAN models. In this
case, the null hypothesis H(n)

0 (f1) :=
⋃

σ2
f>0

⋃
β∈R

{
P(n)

σ2
f ,β;f1

}
and the local alternative H(n)

1 (f1) can be expressed as:

H(n)
0 (f1) : τ ∈ M(Ω) against H(n)

1 (f1) : τ /∈ M(Ω),

where M(Ω) is the linear subspace of dimension 2 of R3 generated by the matrix Ω′ :=

(
1 0 0
0 1 1

)
. Such tests,

should be based on

Q
(n)
f1

(θ) := ∆
(n)′
f1

(θ)
[
Γ
(n)−1

f1
(θ)− Ω(Ω′Γ

(n)
f1

(θ)Ω)−1Ω′
]
∆

(n)
f1

(θ).
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Through mathematical calculations, the statistical of the test can be expressed as follows:

Q
(n)
f1

(θ) =
1

2
(
Γ
(n)
f1;22

(θ)− Γ
(n)
f1;23

(θ)
) (∆(n)

f1;2
(θ)−∆

(n)
f1;3

(θ)
)2

,

=
σ2
f

2TIϕ(f1)(1− C
(n)
X )

(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)2

,

=
1

2NIϕ(f1)(1− C
(n)
X )

[ n∑
i=1

T∑
t=1

ϕf1(Zit)
(
X−

itK
(n)
1 −X+

itK
(n)
2

)]2
.

(7)

Remark 1
The statistic Q

(n)
f1

(θ) can be written as the quadratic form

Q
(n)
f1

(θ) = ∆
(n)′
f1

(θ)Γ
(n)−1/2

f1
(θ)
[
I3×3 − Γ

(n)1/2

f1
(θ)Ω(Ω′Γ

(n)
f1

(θ)Ω)−1Ω′Γ
(n)1/2

f1
(θ)
]
Γ
(n)−1/2

f1
(θ)∆

(n)
f1

(θ),

=
∥∥∥A(θ) Γ

(n)−1/2

f1
(θ)∆

(n)
f1

(θ)
∥∥∥2 ,

where A(θ) = I3×3 − Γ
(n)1/2

f1
(θ)Ω(Ω′Γ

(n)
f1

(θ)Ω)−1Ω′Γ
(n)1/2

f1
(θ) is an idempotent symmetric matrix.

The proposed test mentioned above is still unsatisfactory because it involves the parameter θ, which is unspecified
under the null hypothesis H(n)

0 (f1). To address this issue, we introduce an estimate θ̂ := θ̂(n) := (σ̂2
n, β̂

(n), β̂(n))′ of
θ satisfying the following assumptions:
Assumption (C) The estimate θ̂(n) is such that

(C.1)
√
n-consistent, i.e., for all f1 ∈ FA and all ε > 0, there exist c := c (f1, θ, ε) and N := N (f1, θ, ε) such that

under P(n)

σ2
f ,β;f1

, we have

P
(√

n
∥∥∥θ̂(n) − θ

∥∥∥ > c
)
< ε ∀n ≥ N.

(C.2) Locally asymptotically discrete, i.e., the number of possible values of θ̂(n) in intervals of the form (θ −
n−1/2ξ, θ + n−1/2ξ), ξ > 0, is eventually bounded, as n → ∞, under P(n)

σ2
f ,β;f1

.

Note that several estimates, such as the maximum likelihood estimates, the Yule-Walker estimates, the M-estimates,
and the least square estimates, satisfy the condition (C.1) on the rate of convergence in probability. Part (C.2) has little
practical implications.

The proposition below demonstrates that replacing θ̂(n) with θ does not affect the asymptotic behaviour of the test
statistic (7).

Proposition 2
Suppose that Assumptions (A) and (B) hold, denote by θ̂(n) a deterministic sequence satisfying Assumptions (C).
Then, under P(n)

σ2
f ,β;f1

, as n → ∞, we have

(a)

∆
(n)
f1

(θ̂(n))−∆
(n)
f1

(θ) = −n1/2Γ
(n)
f1

(θ)γ(n)−1

(θ̂(n) − θ) + oP (1).

(b) (
∆

(n)
f1;2

(θ̂(n))−∆
(n)
f1;3

(θ̂(n))
)
=
(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)
+ oP (1).

Proof
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(a) Asymptotic local linearity implies:

∆
(n)
f1

(θ + n−1/2γ(n)τ (n))−∆
(n)
f1

(θ) = −Γ
(n)
f1

(θ)τ (n) + oP (1).

If we choose τ (n) = n1/2γ(n)−1

(θ̂(n) − θ), we will have (a).
(b) Letting 12 = (1, 1)′. From (a), under P(n)

σ2
f ,β;f1

, as n → ∞,

∆
(n)
f1;2,3

(θ̂(n))−∆
(n)
f1;2,3

(θ) = −n1/2Γ
(n)
f1;2,3

(θ)γ
(n)−1

2,3 12(β̂
(n) − β) + oP (1)

= −n1/2T

σ2
f

Iϕ(f1)

(
1 C

(n)
X

C
(n)
X 1

)(
K(n)−1

0

0 K(n)−1

)(
β̂(n) − β

β̂(n) − β

)
+ oP (1),

then (
∆

(n)
f1;2

(θ̂(n))−∆
(n)
f1;2

(θ)
)
−
(
∆

(n)
f1;3

(θ̂(n))−∆
(n)
f1;3

(θ)
)
= 0 + oP (1),

(
∆

(n)
f1;2

(θ̂(n))−∆
(n)
f1;3

(θ̂(n))
)
=
(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)
+ oP (1).

The test based on (7) is locally asymptotically most stringent. To be more precise, applying Le Cam’s Third Lemma
yields the following result.

Proposition 3
Suppose that Assumptions (A), (B), and (C) hold. Then,

(i) Q
(n)
f1

(θ̂(n)) = Q
(n)
f1

(θ) + oP (1) is asymptotically chi-square, with 1 degrees of freedom under P(n)
θ;f1

, and
asymptotically noncentral chi-square, still with 1 degrees of freedom but with noncentrality parameter ρf1 :=
TIϕ(f1)(1−µCX

)

2σ2
f

(τ2 − τ3)
2 under P(n)

θ+n−1/2γ(n)τ ;f1
;

(ii) the sequence of tests rejecting the null hypothesis H(n)
0 (f1) whenever Q(n)

f1
(θ̂(n)) exceeds the (1− α)-quantile

of a chi-square distribution with one degree of freedom, i.e. Q(n)
f1

(θ̂(n)) > χ2
1,1−α, is locally asymptotically

optimal (most stringent), at asymptotic level α, for H(n)
0 (f1) against

⋃
σ2
f>0

⋃
β1∈R

⋃
β2∈R

{
P(n)

σ2
f ,β1,β2;f1

}
;

(iii) the sequence of tests has asymptotic power 1−F
(
χ2
1,1−α; ρf1

)
, at P(n)

θ+n−1/2γ(n)τ ;f1
, where F (., ρf1) denotes

the noncentral chi-square distribution function with one degree of freedom and noncentrality parameter ρf1 .

Proof

(i) Follows from:
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• Proposition 2(b) implies that, under P(n)
θ;f1

, as n → ∞,(
∆

(n)
f1;2

(θ̂(n))−∆
(n)
f1;3

(θ̂(n))
)2

−
(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)2

=
[(

∆
(n)
f1;2

(θ̂(n))−∆
(n)
f1;3

(θ̂(n))
)
−
(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)]

×
[(

∆
(n)
f1;2

(θ̂(n))−∆
(n)
f1;3

(θ̂(n))
)
+
(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)]

= oP (1)×
[
2
(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)
+ oP (1)

]
= oP (1).

• Letting σ̂2
n an estimator of σ2

f is defined as: σ̂2
n := 1

N

n∑
i=1

T∑
t=1

(εit(θ̂
(n)))2.

Hence,

Q
(n)
f1

(θ̂(n)) =
σ̂2
n

σ2
f

Q
(n)
f1

(θ) + oP (1),

= Q
(n)
f1

(θ) + oP (1).

Under P(n)
θ;f1

:
(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)
∼ N

(
0,

2TIϕ(f1)(1−µCX
)

σ2
f

)
, then σf√

2TIϕ(f1)(1− C
(n)
X )

(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)2

= Q
(n)
f1

(θ) ∼ χ2
1.

From Le Cam’s Third Lemma, we have under P(n)

θ+n−1/2γ(n)τ ;f1
:

(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)
∼ N

(
TIϕ(f1)(1− µCX

)

σ2
f

(τ2 − τ3),
2TIϕ(f1)(1− µCX

)

σ2
f

)
.

So that

σf√
2TIϕ(f1)(1− µCX

)

(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)
∼ N

(√
TIϕ(f1)(1− µCX

)(τ2 − τ3)√
2σf

, 1

)
.

Cochran’s Theorem leads to σf√
2TIϕ(f1)(1− C

(n)
X )

(
∆

(n)
f1;2

(θ)−∆
(n)
f1;3

(θ)
)2

= Q
(n)
f1

(θ) ∼ χ2
1(ρf1),

with ρf1 =

(√
TIϕ(f1)(1−µCX

)(τ2−τ3)√
2σf

)2

=
TIϕ(f1)(1−µCX

)

2σ2
f

(τ2 − τ3)
2, which gives the desired result under

P(n)

θ+n−1/2γ(n)τ ;f1
.

(ii) Stringency is a consequence of the weak convergence of local experiments to Gaussian shifts, see [21].
(iii) We know that the power of the test is defined by

Prob
[
rejecting H(n)

f (θ) / H(n)
f (θ + n−1/2γ(n)τ)

]
= Prob

[
Q

(n)
f1

(θ) > χ2
1,1−α / τ2 ̸= τ3

]
= 1−F

(
χ2
1,1−α; ρf1

)
.

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1622 EFFICIENT TEST FOR THRESHOLD REGRESSION MODELS

3.2. Gaussian test

In this subsection, we will construct the Gaussian test Q(n)
N (θ). The Gaussian central sequences ∆(n)

N ;2(θ) and ∆
(n)
N ;3(θ)

will allow us to obtain asymptotically optimal tests under f1 = fN (0,1). These tests will also efficiently detect panel
threshold regression in the parametric Gaussian model, which is characterized by Gaussian disturbances. It is highly
desirable to extend the validity of the Gaussian optimal test to general densities g1 in a broad class of densities.
Define

∆
(n)
N ;2,3(θ) :=

∆
(n)
N ;2(θ)

∆
(n)
N ;3(θ)

 :=
n−1/2

σ


n∑

i=1

T∑
t=1

ZitX
−
itK

(n)
1

n∑
i=1

T∑
t=1

ZitX
+
itK

(n)
2

 .

Then, under P(n)
θ;g1

,
(
∆

(n)
N ;2(θ)−∆

(n)
N ;3(θ)

)
is asymptotically normal with zero mean and variance 2T (1−µCX

)

σ2 .

However, it is clear that, still under P(n)

θ+n−1/2γ(n)τ ;g1
, the central sequence ∆

(n)
N ;2,3(θ) and the log-likelihood

Λ
(n)

θ+n−1/2γ(n)τ/θ;g1
are jointly binormal. Therefore, the desired result can be obtained by applying Le Cam’s Third

Lemma.
The Gaussian test may then be based on a statistic of the form

Q
(n)
N (θ) =

1

2
(
Γ
(n)
N ;22(θ)− Γ

(n)
N ;23(θ)

) (∆(n)
N ;2(θ)−∆

(n)
N ;3(θ)

)2
,

=
1

2N(1− C
(n)
X )

[ n∑
i=1

T∑
t=1

Zit

(
X−

itK
(n)
1 −X+

itK
(n)
2

)]2
.

(8)

The asymptotic linearity holds for ∆(n)
N ;2,3(θ) not just under P(n)

θ;fN
, but under P(n)

θ;g1
. Then, under P(n)

θ;g1
, and for any

bounded sequences τ (n) = (τ
(n)
1 , τ

(n)
2 , τ

(n)
2 )′ ∈ R3 and 12τ

(n)
2 := (τ

(n)
2 , τ

(n)
2 )′ ∈ R2, as n → ∞ with T fixed,

∆
(n)
N ;2,3(θ + n−1/2γ(n)τ (n))−∆

(n)
N ;2,3(θ) = −Γ

(n)
N ,g1;2,3

(θ)12τ
(n)
2 + oP (1), (9)

with

Γ
(n)
N ,g1;2,3

(θ) =
T

σσg

(
1 C

(n)
X

C
(n)
X 1

)
, such as C(n)

X = K
(n)
1 K

(n)
2 X−X+.

The next result is immediate from (9). Let Assumption (B) holds, assume that θ̂(n) satisfies Assumptions (C) and fix
θ ∈ R∗

+ × R2, we have (
∆

(n)
N ;2(θ̂

(n))−∆
(n)
N ;3(θ̂

(n))
)
=
(
∆

(n)
N ,2(θ)−∆

(n)
N ,3(θ)

)
+ oP (1). (10)

Proposition 4
Let Assumptions (A), (B) and, (C) hold, for any g1 ∈ FA. Then,

(i) Q
(n)
N (θ̂(n)) = Q

(n)
N (θ) + op(1) is asymptotically chi-square, with 1 degrees of freedom under P(n)

θ;g1
, and

asymptotically noncentral chi-square, still with 1 degrees of freedom but with noncentrality parameter ρN :=
T (1−µCX

)

2σ2
g

(τ2 − τ3)
2 under P(n)

θ+n−1/2γ(n)τ ;g1
;

(ii) the sequence of tests rejecting the null hypothesis
⋃

g1∈FA

⋃
σ2
g>0

⋃
β∈R

{
P(n)
σ2
g,β;g1

}
whenever Q(n)

N (θ̂(n)) > χ2
1,1−α,

is locally asymptotically optimal (most stringent), at asymptotic level α, against alternatives of the form⋃
σ2>0

⋃
β1∈R

⋃
β2∈R

{
P(n)
σ2,β1,β2;fN

}
;
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(iii) the sequence of tests has asymptotic power 1−F
(
χ2
1,1−α; ρN

)
, at P(n)

θ+n−1/2γ(n)τ ;g1
.

Proof
Let σ̂2 an estimator of σ2, under P(n)

θ;g1
, as n → ∞,

σ̂2 = σ2 + oP (1). (11)

Using (10) and (11), one verifies (i). (ii) and (iii) of Proposition 4 follow the same way from Proposition 3.

3.3. Adaptive test

The approach considered so far has been a parametric one. The central sequences ∆(n)
f1

(θ) and the information matrices

Γ
(n)
f1

(θ) are associated with a specified f1. The test described in Proposition 3 has a strong parametric flavor, but
its validity and optimality only hold at f1. Specifying f or f1 in practice is quite unrealistic. A more reasonable
approach is a semiparametric one where f1 remains completely unspecified. This is our motivation for considering the
semiparametric model. Thus, the semiparametrically efficient test achieves asymptotically the parametric efficiency
bound at any f1 and performs asymptotically as well as the parametrically efficient test. In this case, we are referring
to the adaptive test.

As Q
(n)
f1

(θ) depends on the unknown density f1 through the score function ϕf1 , it is natural to consider an
appropriate estimation of this function. Let (an) and (bn) be two sequences of positive numbers converging to zero.
Consider a kernel k(.) that satisfies the Conditions K of [30]. Denote by f̂1;nT and f̂ ′

1;nT two functions defined for
x, y11, . . . , ynT ∈ R, by

f̂1;nT (x; y11, . . . , ynT ) :=
1

Nan

n∑
i=1

T∑
t=1

k

(
x− yit
an

)
,

f̂ ′
1;nT (x; y11, . . . , ynT ) :=

1

Na2n

n∑
i=1

T∑
t=1

k′
(
x− yit
an

)
.

Letting

ϕ̂nT (Zit) := −
f̂ ′
1;nT (Zit;Z11, . . . , ZnT )

bn + f̂1;nT (Zit;Z11, . . . , ZnT )
.

Considering the following estimates of σ2
f and Iϕ(f1) respectively, σ̂2

n := 1
N

n∑
i=1

T∑
t=1

(εit(θ̂
(n)))2 and ÎnT :=

1
N

n∑
i=1

T∑
t=1

ϕ̂2
nT (Zit).

Let

∆̂
(n)
2;3 (θ) :=

∆̂
(n)
2 (θ)

∆̂
(n)
3 (θ)

 :=
n−1/2

σ̂n

n∑
i=1

T∑
t=1

ϕ̂nT (Zit)

(
X−

itK
(n)
1

X+
itK

(n)
2

)
,

and

Γ̂
(n)
2;3 (θ) =

T

σ̂2
n

ÎnT

(
1 C

(n)
X

C
(n)
X 1

)
,

under P(n)
θ;g1

,
(
∆̂

(n)
2 (θ)− ∆̂

(n)
3 (θ)

)
is asymptotically normal with zero mean and variance 2TIϕ(g1)(1−µCX

)

σ2
g

.

Now, we can propose an adaptive test to test the null hypothesis (with unspecified innovation
density)

⋃
g1∈FA

H(n)
0 (g1) :=

⋃
g1∈FA

⋃
σ2
g>0

⋃
β∈R

{
P(n)
σ2
g,β;g1

}
against the local alternative H(n)

1 (g1). The adaptive test is
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written in the following form:

Q̂(n)(θ) =
1

2NÎnT (1− C
(n)
X )

[ n∑
i=1

T∑
t=1

ϕ̂nT (Zit)
(
X−

itK
(n)
1 −X+

itK
(n)
2

)]2
. (12)

Using the linearity of ∆̂(n)
2;3 (θ) under P(n)

θ;g1
, g1 ∈ FA, for any bounded sequences τ (n) = (τ

(n)
1 , τ

(n)
2 , τ

(n)
2 )′ ∈ R3

and 12τ
(n)
2 := (τ

(n)
2 , τ

(n)
2 )′ ∈ R2, as n → ∞ with T fixed,

∆̂
(n)
2;3 (θ + n−1/2γ(n)τ (n))− ∆̂

(n)
2;3 (θ) = −Γ

(n)
g1;2,3

(θ)12τ
(n)
2 + oP (1),

with

Γ
(n)
g1;2,3

(θ) =
T

σ2
g

Iϕ(g1)

(
1 C

(n)
X

C
(n)
X 1

)
.

Proposition 5
Let Assumptions (A), (B), and (C) hold, and that the sequences (an) and (bn) converging to zero. Then, under P(n)

θ;g1
and as n → ∞, we have:

(i) Γ̂
(n)
2;3 − Γ

(n)
g1;2,3

= oP (1);

(ii) ∆̂
(n)
2;3 (θ̂

(n))−∆
(n)
g1;2,3

(θ̂(n)) = oP (1).

Proposition 6
Let Assumptions (A), (B), and (C) hold, and that the sequences (an) and (bn) converging to zero. for any g1 ∈ FA.
Then,

(i) Q̂(n)(θ̂(n)) = Q
(n)
g1 (θ) + oP (1) is asymptotically chi-square, with 1 degrees of freedom under P(n)

θ;g1
, and

asymptotically noncentral chi-square, still with 1 degrees of freedom but with noncentrality parameter ρ :=
TIϕ(g1)(1−µCX

)

2σ2
g

(τ2 − τ3)
2 under P(n)

θ+n−1/2γ(n)τ ;g1
;

(ii) the sequence of tests rejecting the null hypothesis
⋃

g1∈FA

⋃
σ2
g>0

⋃
β∈R

{
P(n)
σ2
g,β;g1

}
whenever Q̂(n)(θ̂(n)) > χ2

1,1−α,

is locally asymptotically optimal (most stringent), at asymptotic level α, against alternatives of the form⋃
σ2
g>0

⋃
β1∈R

⋃
β2∈R

{
P(n)
σ2
g,β1,β2;g1

}
;

(iii) the sequence of tests has asymptotic power 1−F
(
χ2
1,1−α; ρ

)
, at P(n)

θ+n−1/2γ(n)τ ;g1
.

The test statistic Q̂(n)(θ̂(n)) thus defines an adaptive test, which is optimal but remains valid under a large class of
densities.

4. Asymptotic relative efficiencies

The squared ratios of noncentrality parameters under local alternatives are used to calculate the Asymptotic Relative
Efficiencies (AREs) of the adaptive test based on Q̂(n) with respect to the Gaussian test based on Q

(n)
N . In order

to compare the performance of the adaptive and parametric tests, we calculate the AREs for the adaptive tests in
comparison to the Gaussian tests under density g1 ∈ FA.

Proposition 7
The AREs under g1 ∈ FA, of the adaptive tests based on Q̂(n) with respect to the Gaussian test based on Q

(n)
N , when
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testing P(n)
θ;g1

against P(n)

θ+n−1/2γ(n)τ ;g1
, are

AREg1(Q̂
(n)/Q

(n)
N ) =

(
ρ

ρN

)2

= (Iϕ(g1))
2
. (13)

Table 1 provides numerical values of (13) for Q̂(n) under various density functions g1: Normal, Logistic, Double
Exponential, Student-t3, skew-normal sN (10), and skew-Student st5(10) (refer to [5] for a definition of skew normal
and skew-t densities).

The obtained results are satisfactory. Furthermore, it is evident from Table 1 that the AREs of the suggested
adaptive tests are consistently greater than or equal to one when compared to the parametric Gaussian tests across
all distributions. In the case of the Normal distribution, the AREs are equal to one. Therefore, the adaptive tests
demonstrate superior performance compared to the Gaussian tests for all density functions.

Table 1. Asymptotic relative efficiencies of adaptive test compared to their Gaussian counterpart

Densities g1 N l De t3 sN (10) st5(10)

AREg1(Q̂
(n)/Q

(n)
N ) 1.0000 1.2026 4.0000 4.0000 9.1063 9.1641

5. Simulation

In order to enhance the interpretation and validity of the theoretical results presented in the previous sections,
we conducted a simulation experiment using Rstudio programming. The purpose of this section is to assess the
performance of the proposed tests at an asymptotic level of α = 5%. Now, let’s evaluate the following model:

Yit = β1X
−
it + β2X

+
it + εit, i = 1, . . . , n = 100, t = 1, . . . , T = 10, (14)

where,

• β1 = 7,
• β2 = β1 + λ2, λ2 = 0 for null hypothesis, and λ2 = 0.025, 0.05, 0.075, 0.1 for increasingly several

alternatives,
• the xit’s are i.i.d. uniform (−10, 10), X−

it = x−
it − x− and X+

it = x+
it − x+,

• the εit’s are i.i.d. with a symmetric density: Gaussian (N ), logistic (l), double exponential (De), Student
with ν = 3 degrees of freedom (t3), and an asymmetric density: skew-normal sN (δ) and skew-Student st5(δ)
densities (both with skewness parameter value δ = 10).

To evaluate the performance of the proposed procedures using finite samples, we generated 2500 independent samples
of size N = nT = 1000 from model (14). For each replication, we conducted the following tests at the asymptotic
level α = 5%: the likelihood ratio test for panel threshold effects proposed by [17], the Gaussian test based on Q

(n)
N

(see Proposition 4), and the adaptive test based on Q̂(n) in (12). For the adaptive test, we used the Gaussian kernel
k(x) = 1/

√
2π exp

(
−x2/2

)
, with an = 0.9 and bn = 0.01.

Rejection frequencies are reported in Figure 1, and they strongly support the outstanding overall performance of
the adaptive test. Moreover, both the Gaussian and the adaptive test outperform the likelihood ratio test of [17] across
all considered error densities g1. It is also evident that the adaptive test Q̂(n) has significantly greater power than the
Gaussian test Q(n)

N under logistic (l), double exponential (De), Student (t3), skew-normal sN (10), and skew-Student
st5(10) distributions. Additionally, it is noteworthy that the adaptive test Q̂(n) performs equally well as the Gaussian
test Q(n)

N under Normal (N ) density.
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(a) g1 Gaussian.
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(b) g1 Logistic.
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(c) g1 Double exponential.
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(d) g1 Student-t3.
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(e) g1 Skew-normal sN (10).
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(f) g1 Skew-Student st5(10).

Gaussian test Adaptive test Likelihood Ratio test

Figure 1. Rejection frequencies (out of 2500 replications), for λ2 = 0 (null hypothesis), 0.025, 0.05, 0.075, 0.1 (alternative
hypotheses), with error density g1 that is Gaussian (N ), logistic (l), double exponential (De), Student (t3), skew-normal
(sN (10)), and skew-Student (st5(10)) of the Gaussian, Adaptive, and Likelihood Ratio tests.

Stat., Optim. Inf. Comput. Vol. 15, March 2026



D. BOURZIK, A. LMAKRI, A. MELLOUK AND A. AKHARIF 1627

6. Real data analysis

Numerous factors have been presented in the current literature to explain pollution, such as tourism [34], economic
growth [19], renewable energy [4], and urbanization [35]. However, previous literature [29] indicates that it is difficult
to determine a priori the effect of urbanization on CO2 emissions. While research on the urbanization–CO2 linkage
is growing, the findings remain inconsistent, which can be attributed to the various econometric techniques used. The
current body of literature discussing this issue can be divided into two opposing groups. The first group supports the
idea of a linear relationship [23], while the second group supports the idea of a non-linear relationship [31] between
these two variables. Moreover, the results of previous studies vary from country to country. For example, [24] reported
a negative effect, whereas [2] found a positive effect of urbanization on the environment.

Based on panel data from 15 emerging countries during 1995-2015, [20] discovered a non-linear relationship
between CO2 emissions and urbanization. They found that urbanization contributes relatively strongly to carbon
dioxide emissions up to a certain level, and their analysis relied on Hansen’s approach. In the present study, we revisit
the same dataset, focusing on a shorter period (1995–2004). We apply Gaussian and adaptive tests to this subset,
which are considered more powerful than the Hansen test, allowing us to examine threshold effects within a short
panel context.

To analyze the potential presence of non-linearity, we utilize the PTR model, as introduced by [17]. Specifically, we
examine the following form of the model:

yit = µi + β′
1xit1 (qit ≤ γ) + β′

2xit1 (qit > γ) + εit, i = 1, . . . , n; t = 1, . . . , T,

where yit represents the CO2 emissions in country i during period t, µi and εit respectively represent the country-
specific fixed effects and random errors. It is assumed that this error is independently and identically distributed (i.i.d.)
with a mean of 0 and a variance of σ2. In addition, qit denotes the threshold variable for each country in the sample
during time t, γ is the threshold value, and 1(.) serves as an indicator for the two regimes with different regression
slopes β′

1 and β′
2.

To detect the threshold phenomenon, [17] used the following test statistic.

F1 =
S0 − S1(γ̂)

σ̂2
,

where S0 represents the residual sum of squares for errors in the linear model, S1 represents the residual sum of squares
for errors in the panel threshold estimation model, and σ̂2 represents the residual variance of the panel threshold
estimation. The null hypothesis states that γ is not identified, implying a linear relationship. The alternative hypothesis
suggests the presence of at least one threshold.

H0 : β1 = β2 = β and H1 : β1 ̸= β2.

However, there are cases where multiple thresholds exist, resulting in three distinct regimes or more. Similar to the F1

test used for a model with a single threshold, we can assess the significance of the second threshold by applying the
likelihood ratio test using the F2 statistic outlined below.

F2 =
S1(γ̂)− Sr

2(γ̂)

σ̂2
,

where S1(γ̂) represents the residual sum of squared errors resulting from estimating the first threshold, Sr
2(γ̂) and σ̂2

are the residual sum of squared errors and the residual variance from the second threshold estimation, respectively.
For any given threshold γ, the slope coefficient can be estimated using Ordinary Least Squares (OLS);

β̂(γ) = (X∗(γ)′X∗(γ))
−1

X∗(γ)′Y ∗.

The vector of the regression residuals is:

ε̂∗(γ) = Y ∗ −X∗(γ)β̂(γ),
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and the sum of the squared errors is:
S1(γ) = ε̂∗(γ)′ε̂∗(γ). (15)

[8, 18] suggested using the least squares method to estimate γ. The simplest approach is to minimize the concentrated
S1 in equation (15). Therefore, the least squares estimator of γ is:

γ̂ = argmin
γ

S1(γ).

When we obtain γ̂, the slope coefficient estimate is β̂ = β̂(γ̂). The residual vector is ε̂∗ = ε̂∗(γ̂), and the estimator of
the residual variance is:

σ̂2 = σ̂2(γ̂) =
1

n(T − 1)
ε̂∗′(γ̂)ε̂∗(γ̂) =

1

n(T − 1)
S1(γ̂).

Our study used a balanced panel dataset that included 15 emerging countries from 1995 to 2004. These countries are
Argentina, Bangladesh, Brazil, China, India, Indonesia, Malaysia, Mexico, Pakistan, Philippines, Russian Federation,
South Africa, Thailand, Turkey, and Ukraine. The study incorporated the following variables: CO2 emissions
(measured in metric tons per capita), urban population (as a percentage of the total population), GDP per capita
(measured in constant 2015 US dollars), renewable energy consumption (as a percentage of total final energy
consumption), and trade (as a percentage of GDP). These data series were obtained from the World Bank’s World
Development Indicators (2024).

The construction of our single threshold model is as follows:

ln(co2it) = µ+ β1 ln(urbit)1 (ln(urbit) ≤ γ) + β2 ln(urbit)1 (ln(urbit) > γ)

+ β3 ln(gdpit) + β4 ln(renit) + β5 ln(tradeit) + εit.
(16)

To investigate non-linearity, we utilized Hansen’s panel threshold approach. After rejecting the null hypothesis, we
conducted tests to determine the optimal number of thresholds for our model. To assess the presence of a single
threshold, we performed 1000 bootstrap estimations. The results of this analysis are presented in Tables 2 and 3.
Table 2 presents the estimates for the single threshold at 3.1608, with a 95% confidence interval ranging from 3.1442
to 3.2223. The anti-log of the threshold value, 3.1608, corresponds to 23.59%, indicating that the threshold level is at
23.59% urbanization. Moving on to Table 3, it displays the significance level of a single threshold. We discovered that
the test results for a single threshold are significant at the 5% level, with a bootstrap p-value of 0.0030. Furthermore,
the F1-statistic exceeds the critical value, providing evidence in support of non-linearity and rejecting the notion of a
linear relationship between urbanization and carbon emissions.

Table 2. Estimation of a model with a single threshold

95% Confidence Interval (CI)

Model Threshold Lower Upper

Th-1 3.1608 3.1442 3.2223

Table 3. Test for the single threshold model

Threshold RSSa MSEb F1-stat Probability Crit 10% Crit 5% Crit 1%

Single 0.1918 0.0014 45.0600 0.0030 23.6213 27.5134 33.9653

aRSS is the Residual Sum of Squares; bMSE is the Mean Squared Error.
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We will now analyze the occurrence of double and triple thresholds in the relationship between urbanization and
carbon dioxide emissions. The empirical results of the tests for single, double, and triple thresholds are presented in
Table 4. This table includes estimates obtained from 1000 bootstrapping iterations, which are used to approximate the
presence of double and triple thresholds. The estimates indicate that a single threshold is statistically significant, with
a p-value of 0.0030. However, the double and triple thresholds are not statistically significant, with probability values
of 0.1870 and 0.3510, respectively. Based on these results, we can conclude that there is only one threshold level in
the relationship between urbanization and carbon emissions.

Table 4. Test for multiple threshold models

Threshold RSS MSE F statistic Probability Crit 5%

Single 0.1918 0.0014 45.0600 0.0030 27.5134

Double 0.1632 0.0012 24.5000 0.1870 60.4149

Triple 0.1436 0.0010 19.1200 0.3510 73.7865

Prior to discussing the numerical outcomes, the following algorithm outlines the computational steps required to
obtain the adaptive test statistic Q̂(n) used in the empirical application.

Algorithm 1 Pseudocode for Computing the Adaptive Test Statistic Q̂(n)

1: Step 1: Data import
2: Load data and define variables ln(co2), ln(urb), ln(gdp), ln(ren), and ln(trade).
3: Step 2: Splitting urban variable by threshold
4: Define the threshold γ and split ln(urb) into lnurb− and lnurb+ based on γ.
5: Step 3: Centering variables
6: Center all variables and compute K

(n)
1 , K(n)

2 , and C
(n)
X .

7: Step 4: Null model estimation
8: Based on the centered variables obtained in Step 3, estimate the linear model under H0 and compute the residuals

Z.
9: Step 5: Kernel-based estimation of density and derivative

10: Define bandwidth an and regularization parameter bn.
11: Estimate the density f1 using a kernel density.
12: Estimate the derivative f ′

1 using the derivative of the kernel.
13: Step 6: Score function and Fisher information
14: Compute the estimated score ϕ̂nT (Z).
15: Compute the estimated Fisher information ÎnT .
16: Step 7: Test statistic and p-value
17: Compute the test statistic Q̂(n) defined in equation (12) and the associated p-value.

Now, let’s compare the Gaussian test based on Q
(n)
N , the adaptive test based on Q̂(n), and the Hansen test based

on F1 (refer to Table 5). The observed values of the statistical tests are as follows: Q
(n)
N = 25.0157 (p-value =

5.6866× 10−7), Q̂(n) = 14.4197 (p-value = 0.0002), and F1 = 45.0600 (p-value = 0.0030). These results indicate
that all three tests lead to the same conclusion: H0 : β1 = β2 = β should be rejected at the usual significance levels
(α = 5%). Moreover, the findings suggest that the proposed tests (Gaussian and adaptive) are more powerful than the
likelihood ratio test.
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Table 5. Gaussian, adaptive and likelihood ratio tests

Test Calculated value Critical value p-value

Q
(n)
N 25.0157 3.8414 5.6866× 10−7

Q̂(n) 14.4197 3.8414 0.0002

F1 45.0600 27.5134 0.0030

7. Conclusions

The approach used in this paper allows for testing the classical regression model (without a threshold) against the
panel threshold regression model (with large n and small T ) for both specified and unspecified error density. Optimal
parametric, Gaussian, and adaptive tests are derived based on the LAN property. The adaptive tests exhibit remarkably
high ARE values compared to their Gaussian counterparts. Simulation results, based on rejection frequencies, confirm
the strong performance of the proposed tests and show that they outperform Hansen’s likelihood ratio test. In particular,
the adaptive test demonstrates the highest empirical power. A real example illustrating the relationship between
urbanization and carbon dioxide emissions confirms the presence of a single threshold effect, rejecting the classical
regression model in favor of the threshold specification. The results further highlight the superiority of the Gaussian
and adaptive tests over Hansen’s likelihood ratio test in detecting threshold effects.

Supplementary materials

For reproducibility and convenience, the R code for the real data application of both the adaptive and Gaussian
tests is provided online and can be accessed on GitHub at: https://github.com/DOUNIABOURZIK/
Adaptive-and-Gaussian-Tests-Panel-Threshold-Regression.git
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