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Trigonometric Functions Algorithm : A Novel Metaheuristic Algorithm for
Engineering Problems
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Abstract This paper deals with the design of a novel metaheuristic algorithm called Trigonometric Functions Algorithm
(TFA) for efficient solving of engineering problems. The fundamental inspiration for this new algorithm is based on a
mathematical model inspired by the hunting and attack technique of grey wolves and using trigonometric functions. For
better exploration and exploitation of the search space, several random and adaptive variables are used. The various stages
of well-arranged TFA are described and mathematically modeled. In order to prove the effectiveness and robustness of
TFA, many engineering optimization problems of different difficulties were solved and a statistical study was made. The
optimization results obtained with TFA were compared with the results of other state-of-the-art algorithms. Statistical and
comparative studies showed that TFA achieves the best results and generally ranks first among the solved problems. The
study of the sensitivity of TFA related to several parameters shows that TFA has a high degree of stability giving it the ability
to efficiently solve optimization problems. In summary, the various studies have highlighted the efficiency, robustness and
superiority of TFA compared to other competing algorithms and thus allow us to conclude that TFA remains a better option
for solving technical design optimization problems.
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1. Introduction

In a fast-growing and competitive world, decision-makers, inventors and engineers urgently need efficient, robust
and effective optimization methods that can effectively solve optimization problems for a rational use of raw
materials and/or resources in all sectors for sustainable development. Several metaheuristic methods inspired by
several phenomena exist in the literature for solving optimization problems.
Some are inspired by natural phenomena such as evolutionary algorithms such as : Genetic Algorithm (GA)[1],
Differential Evolution (DE)[2], etc.
Others are inspired by swarm intelligence such as the behavior of certain animals, such as : Particle Swarm
Optimization (PSO)[3], Predators Attacks Techniques Algorithm (PATA)[4], Zebra Optimization Algorithm
(ZOA)[5], Tasmanian Devil Optimization (TDO)[6], Northern Goshawk Optimization (NGO)[7], Dung Beetle
Optimizer (DBO)[8], Golden Jackal Optimization (GJO)[9], The Whale Optimization Algorithm (WOA)[10],
Grey Wolf Optimizer (GWO)[11],etc, or certain behaviors of men such as : a new human-based metaheuristic
algorithm for solving optimization problems on the base of simulation of driving training process (DTBO)[12],
a new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing
training (STBO)[13], etc.
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Other metaheuristics are inspired by physical laws such as : a Gravitational Search Algorithm (GSA)[14], a Multi-
Verse Optimizer (MVO)[15], etc, and other metaheuristics by mathematical models such as : The Arithmetic
Optimization Algorithm (AOA)[16], a new optimization algorithm based on Average and Subtraction of the Best
and worst members of the population for solving various Optimization problems (ASBO)[17], a Sine Cosine
Algorithm (SCA)[18], etc.
Despite this multitude of methods, most of them have numerous shortcomings. Most existing metaheuristics suffer
from poor exploration and/or exploitation of the search space [10, 15, 16, 17, 18]. Generally, when a metaheuristic
is rich in exploration, it is poor in exploitation and vice versa. This does not give them the ability to avoid local
optima in favor of global optima.
Thus, to somewhat overcome this shortcoming that metaheuristics generally encounter, we propose in this work
a new metaheuristic called Trigonometric Functions Algorithm (TFA) capable of balancing the exploration and
exploitation phases for an efficient resolution of technical design optimization problems. The different stages of
the TFA algorithm were designed by taking inspiration from the hunting and attack technique of gray wolves and
using trigonometric functions. The arrangement and consistency of the different stages of TFA allow it to properly
explore and exploit the search space and avoid local optima in favor of global optima.
The main innovative contributions of TFA are as follows :
-Maintaining a well-diversified population of solutions through controlled and intelligent perturbation of search
agents by trigonometric functions during the optimization process,
-Avoiding premature convergence through a nonlinear convergence control parameter,
-The gradual transition from the exploration phase to the exploitation phase due to the convergence control
parameter and the properties of trigonometric functions,
Avoiding local optima due to the oscillatory movements of the cosine and sine functions and the unbounded nature
of the tangent function.
To highlight the effectiveness, robustness and performance of TFA, several engineering design optimization
problems of different difficulties were successfully solved. A comparative and statistical study was carried out
to prove the performance and superiority of TFA in the field of optimization.
For a clear understanding of this work, the document is structured as follows: after an introduction to the section
(1), section (2) is first devoted to describing the proposed new metaheuristic, then the optimization results and
performance study of TFA are presented in section (3), and finally we conclude with a conclusion and outlook in
section (4).

2. Trigonometric Functions Algorithm

In this section, the different steps of the proposed new metaheuristic are presented.

2.1. Inspiration

The Trigonometric Functions Algorithm (TFA) metaheuristic is designed using a mathematical model that partially
mimics the hunting and attacking techniques of grey wolves in nature and uses trigonometric functions [11, 18].

2.2. Mathematical modeling

In this subsection, mathematical models modeling the search, hunting and attack techniques of grey wolves and
using trigonometric functions are presented in order to design the TFA algorithm.

2.2.1. INITIALIZATION Grey wolves are predators that generally hunt in packs and randomly search for prey
within their hunting territory [4, 5, 11]. The following mathematical model :

X = lb+ rand(N, d)× (ub− lb) (1)
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allows us to obtain a population of solutions of the form below :

X =


X1

X2

...
XN

 =


x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d

... . . . . . .
...

xN,1 xN,2 . . . xN,d

 (2)

modeling the grey wolf population.
with lb, ub indicating the limits of the search space and N, d representing respectively the size of the wolf population
and the dimension of the problem to be solved.

2.2.2. PERFORMANCE EVALUATION In order to determine the best wolf during the hunt, the performance of the
different wolves must be evaluated[5, 11]. Thus, a performance evaluation of each solution is made via the function
to be optimized in the following form :

F (Xi) =


F (X1)
F (X2)

...
F (XN )

 (3)

in order to determine the best solution, denoted Xbest, and save it.
When the problem to be optimized is to be maximized, Xbest is the solution that gave the highest value of the
function to be optimized and the lowest value of the function to be optimized, if the problem is to be minimized.

2.2.3. EXPLORATION AND EXPLOITATION PHASES Generally, exploration of the search space and hunting are
guided by a leader wolf, which is not necessarily the best wolf[11]. Thus, TFA uses the mathematical models
below, where model (4) models the exploration phase and models (6) and (7) model the exploitation phase.
Since the leader wolf is not necessarily the best wolf, it is chosen as follows: for each search agent, a random
integer vector K of length N − 1 is generated in the interval [1, N ] and the agent occupying the position of the first
component of the vector K is always chosen. Depending on the performance of the search agent relative to the
leader agent, the search agent adapts its position using the following mathematical model (4) :

Xi(t+ 1) =

{
Xi(t) + rand().(Xleader(t)−Xi(t)) if f(Xi(t)) > f(Xleader(t)),

Xi(t) + rand().(Xi(t)−Xleader(t)), else
(4)

a(t) = 2
(
1−

√
t

T

)
Ai(t) = 2.a(t).rand()− a(t), i ∈ {1, 2, 3}

(5)


X1(t) = Xi(t) + cos(A1(t)).

(
Xbest(t)−Xj(t)

)
X2(t) = Xi(t) + sin(A2(t)).

(
Xbest(t)−Xj(t)

)
X3(t) = Xi(t) + tan(A3(t)).

(
Xbest(t)−Xj)(t)

) (6)

A priori, the best position sought, which is the position of the prey, is not known in advance, so an average position
is used in the mathematical model (7) for this purpose.

Xi(t+ 1) =
X1(t) +X2(t) +X3(t)

3
, i ∈ {1, . . . , N} (7)

where a(t), depending on t, is a coefficient that decreases from 2 to 0. T indicates the maximum number of iterations
and t indicates the number of the current iteration. rand() is a function that randomly generates a number in [0, 1].
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Xi(t), Xleader(t), Xbest(t) and Xj(t), i, j ∈ {1, . . . , N} represent respectively the current position of wolf i, the
current position of the leader wolf, the position of the best wolf, and a randomly chosen position of wolf j.
In mathematical model (6), trigonometric functions are used for the following reasons :
-The oscillatory and bounded nature of the cosine and sine functions allows other candidate solutions to oscillate
around the best solution, which leads to a global exploration of the space and prevents getting stuck in local
minimum areas. It also allows for better exploitation in order to improve the quality of the best solution.
-The unbounded nature of the tangent function also allows, on the one hand, a large search space to be covered,
which leads to better exploration of the space and, on the other hand, the tangent having very steep slopes around
±π

2
leads to unpredictable and rapid movements of the search agents, which promotes stochastic behavior, which

is very necessary to combat stagnation.
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Figure 1. Left : Cosine and Sine functions curves in [−π,+π]; Right : Tangente function curve in [−π,+π]

-As the number of iterations increases and draws to a close, the amplitudes of the trigonometric functions
decrease, promoting a gradual transition from the exploration phase to the exploitation phase.
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Figure 2. Behavior of the parameters cos(A1), sin(A2), and tan(A3) during the optimization process.

2.2.4. CONSTRAINT MANAGEMENT TECHNIQUE Although there are several constraint management techniques
in the literature, constraint management in TFA is similar to that in the metaheuristics PATA[4], ZOA[5], and
GWO[11] and is as follows :
For an optimization problem of the following form :

min f(x)

gi(x) ≤ 0 i = 1, . . . ,m

hj(x) = 0 i = 1, . . . , p

x ∈ Rn

(8)
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Constraints are penalized as follows :

ρ1

m∑
i=1

max(0, gi(x))
2 + ρ2

p∑
i=1

|hj(x)| (9)

where ρ1, ρ2 are penalty coefficients generally chosen empirically such that the more the constraint is violated, the
more the solution is penalized.
Thus, the optimization problem becomes :min f(x) + ρ1

m∑
i=1

max(0, gi(x))
2 + ρ2

p∑
i=1

|hj(x)|

lb ≤ x ≤ ub

(10)

2.2.5. REPETITION PROCESS AND PSEUDO-CODE The TFA algorithm is an iterative algorithm with a population
of solutions. At each iteration, it identifies the best general solution, saves it, and attempts to improve it as the
number of iterations increases. At the end of the iterations, it returns the best solution as the optimal solution to the
problem. The TFA algorithm is as follows :

Algorithm 1 Pseudo-code of TFA
1. Initialize the algorithm parameters (N,T, lb, ub, d, f ),
2. Initialize the wolf population X with X = lb+ rand(N, d).(ub− lb).,
3. For t = 1 : T ,
4. For i = 1 : N ,
5. Calculate F (Xi),
6. end for,
7. Xbest(t) assigns the best grey,

8. a(t) = 2
(
1−

√
t

T

)
,

9. For i = 1 : N ,
10. Determine Xleader(t),
11. If f(Xi(t)) > f(Xleader(t)),
12. Xi(t+ 1) = Xi(t) + rand().(Xleader(t)− I.Xi(t)),
13. Else,
14. Xi(t+ 1) = Xi(t) + rand().(Xi(t)−Xleader(t)) ,
15. End
16. j = floor(rand() ∗N) + 1;
17. While j == i
18. j = floor(rand() ∗N) + 1 ;
19. End while
20. A1(t) = 2.a(t).rand()− a(t)
21. X1(t) = Xi(t) + cos(A1(t)).(Xbest(t)−Xj(t))
22. A2(t) = 2.a(t).rand()− a(t)
23. X2(t) = Xi(t) + sin(A2(t)).(Xbest(t)−Xj(t))
24. A3(t) = 2.a(t).rand()− a(t),
25. X3(t) = Xi(t) + tan(A3(t)).(Xbest(t)−Xj)(t),

26. Xi(t+ 1) =
X1(t) +X2(t) +X3(t)

3
,

27. End for,
28. End for,
29. Return Xbest(T ) as the optimal solution,

2.2.6. COMPUTATIONAL COMPLEXITY In this subsection, an analysis of the complexity of TFA proposed in this
work is performed. The complexity of TFA depends heavily on three main steps: the initialization process of the
solution population, the evaluation of solution performance, and the updating of solutions.
The technique used to initialize the solution population in TFA is similar to that used in the nine other comparative
algorithms in this work, which has a complexity equal to O(N.d) [5, 6, 7].
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In one iteration:
- The process of evaluating the performance of solutions is given by O(N.c) where c is the cost of evaluation per
solution. Since the cost of evaluation depends heavily on the dimension d of the problem, this complexity can be
approximated by O(N.d).
- The complexity of determining the best solution is given by O(N).
Thus, for all iterations, the total complexity of the evaluation is given by O(N.T.d) and that of determining the best
solution by O(N.T ).
During the optimization process, each member of the solution population is updated in two phases, each of which
has a complexity equal to O(N.T.d) and its performance is evaluated[5, 6, 7].
Thus, the total complexity of updating search agents is equal to O(2.N.T.d). This gives TFA a total complexity of
O(N.d) +O(N.T ) +O(N.T.d) +O(2.N.T.d), which is approximately equal to O(N.T (2 + 3.d)).

3. Results and Discussions

In this section, the ability of the proposed TFA algorithm to solve engineering optimization problems is
implemented on four technical design challenges, such as tension/compression spring design, pressure vessel
design, welded beam design, and speed reducer design, which are all minimization problems [5, 6, 7, 9, 16].

3.1. Simulation studies

The performance of the proposed algorithm is compared to the performance of twelve other state-of-the-art
metaheuristics such as ZOA, TDO, NGO, AOA, DBO, GJO, ASBO, WOA, GWO, PSO, DE and GA.
The proposed TFA algorithm and each of the algorithms mentioned are executed in thirty independent
implementations, each execution comprising five hundred iterations.
The general parameters for all algorithms are the size of the solution population N , the maximum number of
iterations T , the problem dimension d, and the search space [lb, ub]. The remaining parameters are specific to each
algorithm.
The implementations are performed in the MATLAB R2020a environment with a 64-bit operating system
computer, x64 processor Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz with 8.00GB RAM.
The optimization results for each problem were reported in a table using five indicators: the best optimal solution
(Best), the average of the optimal solutions obtained (Mean), the standard deviation of these solutions (Std), the
median (Median), and the worst solution (Worst).

3.1.1. Tension/compression spring design problems The design of a tension/compression spring is an optimization
problem whose main objective is to reduce the weight of the spring [4, 5, 16].
Figure 3 presents the scheme and mathematical formulation of this problem. The statistical results of the
optimization are reported in Table 1. The convergence curves and boxplot of performance of TFA and other
competing algorithms are shown in Figure 4.

3.1.2. Pressure vessel design problem The pressure vessel design problem is an engineering optimization problem
with the objective to evaluate the optimal thickness of shell (Ts = x1), thickness of head (Th = x2), inner radius
(R = x3), and length of shell (L = x4) such that the total cost of material, forming, and welding is minimized
accounting for constraints [4, 5, 16].
Figure 5 presents the scheme and mathematical formulation of the problem. The statistical results are presented in
Table 2 and the convergence and performance curves in Figure 6.
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Figure 3. Schematic view and mathematical formulation of the tension/compression spring design problem [5, 16].

Table 1. Statistical results for the tension/compression spring design problem

Algorithm
Best Mean std Median Worst

TFA 0.012665232788319 0.012665236984553 0.000000015919007 0.012665232851741 0.012665318514362
ZOA 0.012668500848822 0.013046077154204 0.000329487689804 0.012942205963493 0.013979832422859
TDO 0.012666551401355 0.012676998639520 0.000010717640638 0.012676399993037 0.012727450215429
NGO 0.012665997501453 0.012675079496948 0.000011876766097 0.012671000047615 0.012731829340704
AOA 0.013197598316181 0.019135331215311 0.011590980394300 0.013239713565894 0.064189096595329
DBO 0.012719053710187 0.013681351919925 0.001733745282979 0.013049424335061 0.018479548067360
GJO 0.012698961077449 0.012852143939329 0.000195674466581 0.012761440963046 0.013612271154547

ASBO 0.012745224527006 0.013082872996868 0.000238267051120 0.013059802085022 0.013820793060232
WOA 0.012665744420485 0.013650874881519 0.001321371447425 0.013087086394657 0.017773933021309
GWO 0.012671644908351 0.012801036663875 0.000204330370293 0.012737980836286 0.013674443300573
PSO 0.012670259812914 0.013427338904796 0.001074131764219 0.013063440797390 0.017694045750243
DE 0.012707957806864 0.012931050849562 0.000236317086298 0.012854634908652 0.013518467259336
GA 0.012675733619420 0.012900518707469 0.000163257070609 0.012873842733649 0.013335454109050
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Figure 4. Left : Convergence curves of TFA and competitor algorithms; Right : Boxplot of performance of TFA and
competitor algorithms
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Figure 5. Schematic view and mathematical formulation of the pressure vessel design problem[5, 16].

Table 2. Statistical results for the pressure vessel design problem

Algorithm
Best Mean standard deviation Median Worst

TFA 5885.332773601228 5885.332773601228 0 5885.332773601228 5885.332773601228
ZOA 6.548.665684409157 7.383.300672760658 0.465.430353326781 7.307.932816930937 8.295.875051716388
TDO 5885.338672313107 5911.200355786549 46.747557586522 5891.508636500136 6109.574202349156
NGO 5885.332788746427 5924.368149621047 64.476211622026 5897.925153977478 6154.091271137160
AOA 7963.3997586812 47603.1560038019 38864.7442317307 34115.5617692369 156155.6856961688
DBO 5885.332773601228 6457.074150143470 646.117139394803 5957.231297260766 7319.000702032429
GJO 5910.376878268812 6303.991541703866 525.585775290289 5995.188169868685 7306.793269404162

ASBO 6976.5020978769 21591.1120301172 41285.3372480498 9580.2129616768 226007.3971110758
WOA 6513.94170155727 11550.06742029256 8145.38254335810 8683.26347685146 46940.92716292769
GWO 5893.280815465118 6214.751032721023 463.073156951266 5957.636049150820 7218.287340577674
PSO 5919.397948599343 6274.306270868351 294.235154209288 6160.543610928559 6999.581112727349
DE 5895.752036076108 6225.454123614910 253.952005185361 6176.927517177426 6753.337733001699
GA 5933.174354969110 6243.308277486108 280.321490521061 6209.553651448397 7319.000702032429
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Figure 6. Left : Convergence curves of TFA and competitor algorithms; Right : Boxplot of performance of TFA and
competitor algorithms

3.1.3. Welded beam design problem The welded beam is a common engineering optimisation problem with an
objective to find an optimal set of the dimensions h = x1, l = x2, t = x3, and b = x4 such that the fabrication cost of
the beam is minimized [4, 5, 16].
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The scheme and mathematical formulation of this design problem are presented in Figure 7. In Table 3 are presented
the statistical results of the optimization and the convergence and performance curves in Figure 8.

Figure 7. Schematic view and mathematical formulation of the welded beam design problem[5, 16].

Table 3. Statistical results for the welded beam design problem

Algorithm
Best Mean standard deviation Median Worst

TFA 1.724852308597364 1.724852308597363 0.000000000000001 1.724852308597364 1.724852308597364
ZOA 1.725395156190328 1.900142840951764 0.155664207477050 1.910586504048673 2.226296255556301
TDO 1.724852308899247 1.724852336991362 0.000000064728449 1.724852315330008 1.724852653703401
NGO 1.724852308975615 1.724852548350067 0.000000963314587 1.724852323045800 1.724857603183851
AOA 1.947181200782214 2.499607469346151 0.338093773639409 2.516309528163525 3.262054473581157
DBO 1.724856929249184 1.767462431921528 0.058941320807906 1.733775475095067 1.993433445517653
GJO 1.729050142557291 1.736763570894445 0.006619715974791 1.734682331280755 1.754556987880942

ASBO 1.815033721397199 2.974174322151296 0.730109160331940 3.206198528990591 4.014796952108314
WOA 1.886878530963351 2.923232551057374 0.937322945279733 2.689217347343203 6.345665795446908
GWO 1.727043578162027 1.729605808805834 0.002360413997967 1.728984302918515 1.738569928936277
PSO 1.724852313712982 1.832217163481421 0.237000293812207 1.725838954769771 2.945963721748117
DE 1.794593321903436 2.049950215908519 0.159185780686323 2.046866687516128 2.416617923903347
GA 1.774212852288099 2.029510805152706 0.191555312072770 1.998470176201013 2.637868265883140

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1800 TRIGONOMETRIC FUNCTIONS ALGORITHM

0 100 200 300 400 500
Iteration

100

105

1010

1015

B
es

t 
sc

o
re

 o
b

ta
in

ed

Welded beam design

ZOA
TDO
NGO
AOA
DBO
GJO
ASBO
WOA
GWO
PSO
DE
GA
TFA

TFA
ZOA
TDO
NGO
AOA
DBO
GJO

ASBO
W

OA
GW

O
PSO DE GA

2

2.5

3

3.5

4

4.5

5

Welded beam design 

Figure 8. Left : Convergence curves of TFA and competitor algorithms; Right : Boxplot of performance of TFA and
competitor algorithms

3.1.4. Speed reducer design problem The objective is to minimize the total weight of the speed reducer. There are
nine constraints, including limits on gear tooth bending stress, surface stress, transverse deformations of shafts 1 and
2 due to the transmitted force, and stresses in shafts 1 and 2 [4, 5, 16].
The scheme and mathematical formulation of this problem are shown in Figure 9. The statistical results of solving
this problem are shown in Table 4 and the curves illustrating the convergence and performance of TFA and the other
algorithms are shown in Figure 10.

Figure 9. Schematic view and mathematical formulation of the speed reducer design problem[5, 16].
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Table 4. Statistical results for the speed reducer design problem

Algorithm
Best Mean standard deviation Median Worst

TFA 2994.471066145981 2994.488256163399 0.094152862524 2994.471066145982 2994.986762747748
ZOA 2.997293349555451 3.004535876641060 0.005162614033988 3.003369676367997 3.017375713695672
TDO 2994.471066146066 2994.471066164749 0.000000026884 2994.471066153120 2994.471066256889
NGO 2994.471066146025 2994.471066166476 0.000000020843 2994.471066165526 2994.471066236879
AOA 3064.905818703883 3185.227573348073 37.424012933474 3196.790253658783 3234.228434730951
DBO 2994.471066145981 3042.830602783940 57.097963158813 3033.748525701569 3202.727133950403
GJO 3010.112519133358 3026.111375716775 8.706783240001 3024.806311134280 3051.052806756329

ASBO 3131.051525152855 4520.544847900663 757.401897082661 4689.515559129180 5541.128153268632
WOA 3037.538738882842 3348.744895937827 587.922374160313 3154.559257986750 5406.149873821764
GWO 3003.440386802583 3012.316605575711 4.957469396078 3012.230009066500 3022.274391975748
PSO 2994.471066145981 2994.471066145983 0.000000000004 2994.471066145981 2994.471066146002
DE 2994.471066145981 2994.471066145983 0.000000000001 2994.471066145981 2994.471066145981
GA 2994.471066145981 2994.471066145983 0.000000000001 2994.471066145981 2994.471066145981
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Figure 10. Left : Convergence curves of TFA and competitor algorithms; Right : Boxplot of performance of TFA and
competitor algorithms

The results shown in Tables 1, 2, 3, and 4 above clearly demonstrate that the TFA metaheuristic outperforms other
competing metaheuristics. TFA exhibits a higher degree of stability compared to other metaheuristics because, on
average, it obtains the best objective function value and also the smallest std value. It also obtains the best possible
results because, in the column of best results, we note that the results obtained by TFA are the best, which is interesting
because all problems are to be minimized.

The curves in Figures 4, 6, 8 and 10 graphically and visibly illustrate the behavior and performance of TFA
compared to other algorithms in determining optimal solutions to an optimization problem.
In summary, the statistical results of the simulations and the different curves show that TFA has a high performance
and manages to provide the best optimal solutions on all the problems solved.

3.2. Sensitivity analysis of the TFA for N and T.

Since TFA is an iterative algorithm with a solution population, it is necessary to analyze its sensitivity with respect to
these two parameters for the four problems solved.
Tables 5, 6, 7, and 8 contain the mean values and standard deviation of the results obtained for different values of N
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and T .)
Curves 11, 12, 13, and 14 below show the sensitivity of TFA with respect to these two parameters with T = 500 and
N = 10, 50, 80, 100 on the one hand and N = 30 and T = 100, 500, 800, 1000 on the other.

Table 5. TFA sensitivity analysis for the tension/compression spring design problem

N
T 100 500 800 1000

10 mean 7603606678119.08 7603606678119.07 7603606678119.07 7603606678119.07
std 41646668960027.35 41646668960027.35 41646668960027.36 41646668960027.36

50 mean 0.012665386767286 0.012665232829692 0.012665232788336 0.012665232788320
std 0.000000655741389 0.000000000140960 0.000000000000050 0.000000000000002

80 mean 0.012665243712660 0.012665232788328 0.012665232788319 0.012665232788319
std 0.000000013949539 0.000000000000043 0.000000000000000 0.000000000000000

100 mean 0.012665238731531 0.012665232788324 0.012665232788319 0.012665232788319
std 0.000000009488043 0.000000000000021 0.000000000000000 0.000000000000000
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Figure 11. TFA sensitivity curve for the number of population members and the maximum number of iterations for the
tension/compression spring design problem.

Table 6. TFA sensitivity analysis for the pressure vessel design problem

N
T 100 500 800 1000

10 mean 6693.825134711047 6459.081732769483 6389.311853480958 6380.374550576166
std 625.084461149458 469.610950462169 530.236599942498 486.319583067739

50 mean 5906.532226333673 5885.332773601228 5885.332773601228 5885.332773601228
std 086.064736788831 0 0 0

80 mean 5885.343585790642 5885.332773601228 5885.332773601228 5885.332773601228
std 0.006639475848 0 0 0

100 mean 5885.348901885253 5885.332773601228 5885.332773601228 5885.332773601228
std 0.024579027038 0 0 0
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Figure 12. TFA sensitivity curve for the number of population members and the maximum number of iterations for the
Pressure vessel design problem.

Table 7. TFA sensitivity analysis for the welded beam design problem

N
T 100 500 800 1000

10 mean 2.027438418176958 1.904154440762991 1.948330332851710 1.834622862257717
std 0.589843244310975 0.298607067122554 0.446939276851640 0.212855966432791

50 mean 1.724855612394897 1.724852308597363 1.724852308597363 1.724852308597363
std 0.000002375768116 0.000000000000001 0.000000000000001 0.000000000000001

80 mean 1.724853718379197 1.724852308597363 1.724852308597363 1.724852308597363
std 0.000000624453821 0.000000000000001 0.000000000000001 0.000000000000001

100 mean 1.724853534851678 1.724852308597363 1.724852308597363 1.724852308597363
std 0.000000663899694 0.000000000000001 0.000000000000001 0.000000000000001

Table 8. TFA sensitivity analysis for the speed Reducer design problem

N
T 100 500 800 1000

10 mean 3294.006431939565 3241.245965828405 3106.512673313132 3036.421214419665
std 636.954964842616 568.323774671236 318.038567252345 53.469012707518

50 mean 2995.714988729958 2994.471066145983 2994.471066145983 2994.471066145983
std 2.895069910000 0.000000000001 0.000000000001 0.000000000001

80 mean 2994.674162937013 2994.471066145983 2994.471066145982 2994.471066145983
std 1.090283264778 0.000000000001 0.000000000001 0.000000000001

100 mean 2994.478262983979 2994.471066145983 2994.471066145983 2994.471066145983
std 0.028327252303 0.000000000001 0.000000000001 0.000000000001
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Figure 13. TFA sensitivity curve for the number of population members and the maximum number of iterations for the
welded design problem.
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Figure 14. TFA sensitivity curve for the number of population members and the maximum number of iterations for the speed
design problem.

Table 9 contains the results of the ANOVA statistical test in order to statistically visualize the sensitivity of TFA
with respect to N and T .

Table 9. One-way anova test results.

Problems
Parameters N T

F p-value F p-value
Tension/compression spring design 1.52 0.2134 5.26 0.0019

Pressure vessel design 26.85 2.91658e-13 1.99 0.1194
Welded beam design 6.96 0.0002 5.46 0.0015

Speed Reducer design 11.06 7.05041e-08 8.21 5.28461e-05

The data in Tables 5, 6, 7, and 8 show a slight sensitivity of TFA when the population size N is small (N = 10),
because for this value, the solutions found by TFA are significantly different from the other solutions.
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Graphically, the observation is that the curves (in Figures 11, 12, 13 and 14 are almost superimposed on each other,
indicating that TFA has low sensitivity to the size (N ) of the solution population and the maximum number T of
iterations. This confirms once again that TFA has a high degree of stability compared to other competing algorithms,
enabling it to obtain better solutions.
The results of the one-way ANOVA test in Table 9 statistically confirm the above analysis, as some p-values are strictly
less than 0.05.

3.3. Population diversity and exploration-exploitation phases curves of the TFA.

In this subsection, we visualize the evolution of the solution population and the ability of TFA to balance the
exploration and exploitation phases during the optimization process.

The curves in Figures 15, 16, 17, and 18 clearly demonstrate these properties of TFA for the four problems
solved.

100 101 102 103

Iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

P
o

p
u

la
ti

o
n

 d
iv

er
si

ty

Tension/compression spring design

TFA

100 101 102

Iteration

0

0.2

0.4

0.6

0.8

1

P
er

ce
n

ta
g

e

Tension/compression spring design

Exploration
Exploitation

Figure 15. Curves showing population diversity and the exploration and exploitation phases of TFA for the
tension/compression spring design problem.
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Figure 16. Curves showing population diversity and the exploration and exploitation phases of TFA for the pressure design
problem.
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Figure 17. Curves showing population diversity and the exploration and exploitation phases of TFA for the welded design
problem.
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Figure 18. Curves showing population diversity and the exploration and exploitation phases of TFA for the speed design
problem.

We clearly see that the degree of diversity of solutions decreases as the number of iterations increases, which
is logical and characterizes the behavior of a good iterative algorithm with a solution population. In terms to the
management of exploration and exploitation phases, we find that TFA manages to strike a balance between these two
phases during the optimization process, enabling it to explore and exploit the search space appropriately and solve
optimization problems efficiently.

3.4. Statistical analysis

In order to statistically prove the superiority of TFA over other competing algorithms, the Wilcoxon rank sum test,
Friedman test, and tiedrank test are used for this purpose in this subsection [5, 6, 7].

The results of the various tests are recorded in Tables 10, 11, and 12 below.
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Table 10. p-values obtained from Wilcoxon rank sum test.

Algorithms
Problems Tension Pressure Welded Speed

TFA vs ZOA 3.019859359162151e-11 1.720251003131564e-12 1.211780397005987e-12 7.768636411654877e-12
TFA vs TDO 3.019859359162151e-11 1.944284567534306e-11 1.211780397005987e-12 3.035217048933032e-11
TFA vs NGO 3.019859359162151e-11 4.104006707056105e-11 1.211780397005987e-12 1.067590545413501e-11
TFA vs AOA 3.016075319890950e-11 1.720251003131564e-12 1.211780397005987e-12 7.768636411654877e-12
TFA vs DBO 3.000982378980077e-11 1.499284497878838e-08 1.211780397005987e-12 1.162801981623527e-10
TFA vs GJO 3.019859359162151e-11 8.159588532143750e-12 1.211780397005987e-12 7.768636411654877e-12

TFA vs ASBO 3.019859359162151e-11 1.720251003131564e-12 1.211780397005987e-12 7.768636411654877e-12
TFA vs WOA 3.019859359162151e-11 1.720251003131564e-12 1.211780397005987e-12 7.768636411654877e-12
TFA vs GWO 3.019859359162151e-11 2.409814666548896e-11 1.211780397005987e-12 7.768636411654877e-12
TFA vs PSO 3.019859359162151e-11 1.211780397005987e-12 1.720251003131564e-12 3.0512557802644e-02
TFA vs DE 3.019859359162151e-11 1.211780397005987e-12 1.720251003131564e-12 4.949666687210789e-06
TFA vs GA 3.019859359162151e-11 1.211780397005987e-12 1.720251003131564e-12 4.949666687210789e-06

Table 11. Friedman test results.

Compared algorithms Mean.Rank Overal Rank
TFA 1.25 1
ZOA 9.5 12
TDO 3.25 2
NGO 3.5 3
AOA 11.5 13
DBO 9.25 11
GJO 7.25 8

ASBO 9.5 12
WOA 9 10
GWO 5.75 4
PSO 8 9
DE 6.75 7
GA 6.5 5

Table 12. tiedrank test results.

Problems
Algorithms TFA ZOA TDO NGO AOA DBO GJO ASBO WOA GWO PSO DE GA

Tension/compression spring design 1 12 4 2 11 10 6 5 3 7 13 9 8
Pressure vessel design 1 7 2 3 10 11 9 12 13 4 8 6 5
Welded beam design 1 12 2 3 13 6 5 8 9 4 7 10 11

Speed Reducer design 2 7 5 6 12 10 9 13 11 8 4 2 2

The results of the Wilcoxon rank sum test confirm that the TFA algorithm proposed in this work is significantly
superior to the competing algorithms used (p < 5%). The results of the Friedman and Tiedrank tests show that the
TFA algorithm is better and generally ranks first. Figure 19 illustrates this graphically.
In summary, the statistical optimization results, convergence curves, exploration and exploitation performance curves,
and various statistical tests show that TFA has a high degree of stability and outperforms competing algorithms, making
the TFA algorithm robust, efficient, and capable of effectively solving technical design optimization problems.

3.5. Convergence analysis

In this subsection, an analysis of the convergence behavior of the proposed TFA algorithm is performed. The curves
in Figure 2 show that :
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- At the beginning of the optimization process, the amplitudes of the parameters cos(A1), sin(A2) and tan(A3) are
large, causing sudden, large-step oscillatory movements by the search agents, which promotes in-depth exploration of
promising regions of the search space.
- Towards the end of the optimization process, their amplitudes gradually decrease, resulting in reduced movement
and allowing search agents to focus appropriately on exploitation.
According to Berg et al[10, 11, 19], an algorithm with a population of solutions exhibiting such behavior can guarantee
that this algorithm will ultimately converge to a point in the search space.
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Figure 19. Boxplot of rank of TFA and competitor algorithms.

4. Conclusion

In this work, a new iterative algorithm with population of solutions operating on a mathematical model inspired by
the hunting and attack technique of gray wolves and using trigonometric functions called Trigonometrics Functions
Algorithm (TFA) is proposed. This algorithm has been successfully applied to solve several engineering design
optimization problems. The optimization and performance study results have shown that TFA has good performance,
enabling it to efficiently solve optimization problems with or without constraints. TFA remains a better alternative for
efficient solving of practical or engineering design problems. Proposing the multi-objective version of TFA for efficient
determination of Pareto optimal solutions of multi-objective engineering design optimization problems remains the
subject of our future work.
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