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Abstract A concept of subdifferential of a vector-valued mapping is introduced, called generalized weak ε-
subdifferential.We establish existence theorems and investigate their main properties, and provide illustrative examples
to clarify the construction. This construction extends and unifies several existing notions of approximate subgradients in
vector optimization, including the Pareto weak subdifferential. We establish some formulas of the generalized weak ε-
subdifferential for the sum and the difference of two vector-valued mappings. A relationship between the generalized weak
ε-subdifferential and a directional derivative is presented. We discuss the positive homogeneity of the generalized weak
ε-subdifferential. As application of the calculus rules, we establish necessary and sufficient optimality conditions for a
constrained vector optimization problem with the difference of two vector-valued mappings.
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1. Introduction

In the past few decades, there has been notable theoretical progress in the development of the approximate
vector subdifferential for extended vector-valued mappings [1, 2, 3, 4, 5, 6, 7, 8, 9]. It is one of the crucial
concepts in vector optimization, since it characterizes the approximate efficient optimal solutions and admits a
rich calculus. Important contributions date back to the 1980s, when Kutateladze [9] introduced the framework
of ε-convex programming and Loridan [10] proposed the notion of ε-solutions in vector minimization problems.
El Maghri [4, 5] and Gutiérrez, Huerga, López, Novo and their collaborators [1, 2, 3, 11, 12] developed various
versions of ε-subdifferentials and investigated their calculus rules.

Thirteen years ago, the authors Li and Guo [8] introduced a concept of approximate subdifferential of a vector
mapping. This concept, which was defined via a norm, called generalized strong ε-subdifferential. This notion of
the subdifferential is global and weaker than the strong subdifferential and adapted to nonconvex mappings. The
authors also investigated its properties, provided some characterizations, and established certain calculus rules.

Motivated by [8], we define and study the concept of Pareto approximate subdifferential, called generalized weak
ε-subdifferential. Our motivation arises from the fact that the existing generalized strong ε-subdifferential (Li and
Guo [8]) is often too restrictive and may even be empty in many practical situations, which limits its applicability
in vector optimization problems. As emphasized by El Maghri and Laghdir [4], the weak subdifferential provides
a more flexible and stable framework than the strong one, since it remains nonempty under weaker regularity
assumptions and allows the establishment of necessary and sufficient optimality conditions in vector optimization
problems.
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The present study falls within the broad framework of approximate subdifferential concepts in vector
optimization. Indeed, the rise of nonconvex and nonsmooth problems has led to the development of generalized
subdifferentials, such as the Clarke subdifferential [13] and the limiting subdifferential of Mordukhovich [14],
which offer greater robustness and stability than the classical strong subdifferential. The recent work of Van
Ackooij et al. [15] illustrates the relevance of the ε-subdifferential concept in the study of weakly convex functions.
In the vector setting, O. Benslimane et al. [16] have recently established sufficient optimality conditions for an ε-
weak Pareto minimal point by introducing the ε-pseudo-Diff-Max property. Likewise, A. Ed-dahdah et al. [17]
derived a calculus formula for the subdifferential of the difference of two vector-valued functions, which allows
one to obtain necessary and sufficient optimality conditions for constrained optimization problems. In this context,
our contribution aims to establish some new formulas for the generalized weak ε-subdifferential of the sum and
the difference of two vector mappings and give sufficient and necessary optimality conditions for weak efficient
minimizers of vector optimization problems.

The organization of the paper is as follows: Section 2 provides a review of relevant concepts and previous findings
that are utilized in the current study. In section 3, we will be interested in proving the existence theorem of the
generalized weak ε-subgradient. We also discuss the relationship with the notions of weak ε-subgradient [4, 5, 6]
and generalized strong ε-subgradient [8]. In section 4, we investigate various properties of the generalized weak ε-
subdifferential and examine the relationship between the directional derivative of a vector-valued mapping and the
generalized weak ε-subdifferential. So, it presents the calculus rules of the generalized weak ε-subdifferential for
the difference and the sum of two vector-valued mappings. In section 5, we study the global necessary and sufficient
optimality conditions of a constrained vector optimization problem (VOP) for the difference of two vector-valued
mappings. Finally, the paper ends with a conclusion and future work.

2. Preliminaries

We present in this section, some preliminaries needed in the sequel. In the entirety of this paper,
(
X1, ∥.∥X1

)
and(

X2, ∥.∥X2

)
are two normed vector spaces. The space X2 is ordered by the following relations: For u2, w2 ∈ X2,

u2 ≤C2
w2 ⇐⇒ w2 − u2 ∈ C2

u2 <C2 w2 ⇐⇒ w2 − u2 ∈ intC2,

where ∅ ̸= C2 ⊂ X2 is a convex cone such that intC2 ̸= ∅ (topological interior). We adjoin to X2 two abstract
elements +∞2 and −∞2 such that − (+∞2) = −∞2, (+∞2)− (+∞2) = +∞2 and u2 −∞2 ≤C2

w2, ∀u2, w2 ∈ X2

u2 ≤C2
w2 +∞2 = +∞2, ∀u2, w2 ∈ X2 ∪ {+∞2}

α. (+∞2) = +∞2, ∀α ≥ 0

We use the notations X∗
1 and X∗

2 to represent the topological dual spaces of X1 and X2, respectively. The duality
pairing in X1 (resp. in X2) is denoted by ⟨u∗

1, u1⟩ (u∗
1 ∈ X∗

1 , u1 ∈ X1) (resp. ⟨u∗
2, u2⟩, u∗

2 ∈ X∗
2 and u2 ∈ X2). Let

L(X1, X2) be the set of all continuous linear operators from X1 to X2. We denote by C∗
2 for the positive polar cone

of C2 where
C∗

2 := {u∗
2 ∈ X∗

2 : ⟨u∗
2, u⟩ ≥ 0, ∀u ∈ C2} .

We say that a mapping g : X1 −→ X2 ∪ {+∞2} is C2-convex if for every b ∈ [0, 1] and u1, w1 ∈ X1,

g(bu1 + (1− b)w1) ≤C2
bg(u1) + (1− b)g(w1).

g is said to be C2-concave if −g is C2-convex. We denote the effective domain of g : X1 −→ X2 ∪ {+∞2} by

domg := {u ∈ X1 : g(u) ∈ X2}.

If domg ̸= ∅, we say that g is proper.
For every v̄ ∈ X1, we define the function φv̄(u) := ∥u− v̄∥X1

, ∀u ∈ X1.
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Definition 2.1
([8], [22]) Let g : X1 −→ X2 ∪ {+∞2} be a mapping and v̄ ∈ domg.

1. The strong subdifferential of g at v̄ is the set

∂sg(v̄) := {R ∈ L(X1, X2), g(v̄)−R(v̄) ≤C2 g(u)−R(u), ∀u ∈ X1} .

2. The set
∂wg(v̄) := {R ∈ L(X1, X2),∄u ∈ X1, g(u)−R(u) <C2 g(v̄)−R(v̄)} .

is the weak subdifferential of g at v̄.
3. For every ε ∈ C2, the generalized strong ε-subdifferential of g at v̄ is the set

∂s
εg(v̄) := {R ∈ L(X1, X2) : g(v̄)−R(v̄)− φv̄(u)ε ≤C2

g(u)−R(u), ∀u ∈ X1} .

If v̄ /∈ domg, we set ∂sg(v̄) = ∂wg(v̄) = ∂s
εg(v̄) := ∅.

Let us note that
∂s
εg (v̄) = ∂s(φv̄(.)ε+ g) (v̄) .

If X2 = R and C2 = R+, the strong and weak subdifferential are just the subdifferential of convex analysis :

∂g(v̄) = {u∗
1 ∈ X∗

1 , g(v̄)− ⟨u∗
1, v̄⟩ ≤ g(u)− ⟨u∗

1, u⟩ , ∀u ∈ X1} .

For v̄ ∈ X1 and r > 0, the open ball of radius r and center v̄ is defined by

B(v̄, r) = {u ∈ X1, φv̄(u) < r}.

Definition 2.2
([8]) Let ε ∈ C2. A mapping g : X1 −→ X2 ∪ {+∞2} is said to be generalized lower locally ε-Lipschitz at v̄ if

∃r > 0, g(v̄)− φv̄(u)ε ≤C2
g(u), ∀u ∈ B(v̄, r). (1)

If (1) holds for every u ∈ X1, we say that g is generalized lower ε-Lipschitz at v̄.

3. Generalized weak ε-subdifferential

Motivated by the paper [8], we introduce the concept of generalized weak ε-subdifferential and we discuss some
properties and calculus rules.

Definition 3.1
Let g : X1 −→ X2 ∪ {+∞2} be a mapping, ε ∈ C2 and v̄ ∈ domg. The set

∂w
ε g(v̄) := {R ∈ L(X1, X2) : ∄u ∈ X1, g(u)−R(u) <C2

g(v̄)−R(v̄)− φv̄(u)ε} ,

is called the generalized weak ε-subdifferential of g at v̄. Every R ∈ ∂w
ε g(v̄) is called a generalized weak ε-

subgradient of g at v̄.
If v̄ /∈ domg, we set ∂w

ε g(v̄) := ∅.

Let us note that
∂s
εg (v̄) = ∂s(φv̄(.)ε+ g) (v̄) ⊆ ∂w(φv̄(.)ε+ g) (v̄) = ∂w

ε g (v̄) ,

and when ε = 0, ∂w
ε g (v̄) = ∂wg (v̄).
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2252 GENERALIZED WEAK ε-SUBDIFFERENTIAL AND APPLICATIONS

Example 3.1
Let

g : R −→ R2

u 7−→ (0,−|u|) (2)

The space R2 is equipped with the convex cone R2
+. For ε =

(
1, 1

2

)
, R = (0, 0) and v̄ = 0. Since −|u| ≤ 0 and

− |u| ≤ − 1
2 |u|, then

∄u ∈ R, g (u)−R (u) <R2
+
g(v̄)−R(v̄)− |u− v̄| ε,

i.e. R ∈ ∂w
ε g (v̄).

Remark 3.1
Let us note that if X1 = Rm, X2 = Rn, and (ε+ int(C2)) ∩ (−C2) = ∅ then, the generalized weak ε-subdifferential
of g becomes the weak (C, h)-subdifferential of f at v̄, where C = ε+ int(C2) and h(., v̄) = φv̄. defined in [12].

Now, by introducing the notion of generalized weakly lower locally ε-Lipschitz mapping, we present existence
theorems of generalized weak ε-subgradient.

Definition 3.2
Let ε ∈ C2. A mapping g : X1 −→ X2 ∪ {+∞2} is called generalized weakly lower locally ε-Lipschitz at v̄ if

∃r > 0,∄u ∈ B(v̄, r), g(u)− g(v̄) <C2
−φv̄(u)ε. (3)

If (3) does not hold for every u ∈ X1, then g is said to be generalized weakly lower ε-Lipschitz at v̄.

Proposition 3.1
Let ε ∈ C2. If a mapping g : X1 −→ X2 ∪ {+∞2} is generalized lower locally ε-Lipschitz at v̄ then it is
generalized weakly lower locally ε-Lipschitz at v̄.

Proof
As g is generalized lower locally ε-Lipschitz at v̄, then there exists r > 0 :

−φv̄(u)ε ≤C2 g (u)− g (v̄) , ∀u ∈ B(v̄, r). (4)

We proceed by contradiction. Suppose that g is not generalized weakly lower locally ε-Lipschitz at v̄, then for
B(v̄, r), there exists some u0 ∈ B(v̄, r) such that

g (u0)− g (v̄) <C2
−φv̄(u0)ε

i.e.
g (u0)− g (v̄) + φv̄(u0)ε ∈ −int(C2). (5)

For u = u0 in (4) , we have
−φv̄(u0)ε− g (u0) + g (v̄) ∈ −C2. (6)

From (5) and (6), we deduce 0 ∈ −int(C2)− C2 ⊂ −int(C2). This is a contradiction.

Remark 3.2
The reverse of Proposition 3.1 is false. In fact, we consider the space R2 equipped with convex cone R2

+ and the
following mapping

g : R −→ R2

u 7−→ (0,−|u|) (7)

The mapping g is generalized weakly lower locally ε-Lipschitz at v̄ = 0, where ε = (1, 1
2 ).

Let us prove that g is not generalized lower locally ε-Lipschitz at v̄. Let r > 0 and u0 ∈ B(v̄, r)\ {0}. We have

g (u0)− g (v̄) + |u0 − v̄|ε =
(
|u0|,−

1

2
|u0|

)
/∈ R2

+,

then g is not generalized lower locally ε-Lipschitz at v̄.
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Proposition 3.2
Let g : X1 −→ X2 ∪{+∞2} be a mapping and ε ∈ C2. If g is generalized weakly lower ε-Lipschitz at v̄, then g is
generalized weakly ε-subdifferentiable at v̄.

Proof
As g is generalized weakly lower ε-Lipschitz at v̄, i.e.

∄u ∈ X1, g(u)− g(v̄) <C2
−φv̄(u)ε,

then
∄u ∈ X1, g(u)− 0 <C2 g(v̄)− 0− φv̄(u)ε

i.e. 0 ∈ ∂w
ε g(v̄), then g is generalized weakly ε-subdifferentiable at v̄.

Remark 3.3
Let us note that the class of mappings g : X1 −→ X2 ∪{+∞2} satisfying 0 ∈ ∂w

ε g(v̄) are generalized weakly lower
ε-Lipschitz at v̄.

Theorem 3.1
Let ε ∈ C2 and g : X1 −→ X2 ∪{+∞2} be a C2-convex mapping. If g is generalized weakly lower locally ε-
Lipschitz at v̄, then g is generalized weakly ε-subdifferentiable at v̄.

Proof
Let us prove that g is generalized weakly lower ε-Lipschitz at v̄. Suppose the contrary, i.e. there exists u0 ∈ X1

such that
g(u0)− g(v̄) <C2 −φv̄(u0)ε

i.e.
g(u0)− g(v̄) + φv̄(u0)ε ∈ − int(C2). (8)

Let r > 0 and b ∈ ]0, 1], then there exists a = v̄ + b (u0 − v̄) ∈ B(v̄, r). Since g is C2-convex, we get

g(a) = g(bu0 + (1− b)v̄) ≤C2
bg(u0) + (1− b)g(v̄),

i.e.
g(a)− bg(u0)− (1− b)g(v̄) ∈ −C2. (9)

Since b.int(C2) ⊂ int(C2), it follows from (8) that

bg(u0)− bg(v̄) + ∥b(u0 − v̄)∥X1
ε ∈ −int(C2). (10)

Adding (9) and (10) and by taking into account that −C2 − int(C2) ⊆ −int(C2), we get

g(a)− g(v̄) + φv̄(a)ε ∈ −int(C2)

This contradicts the fact that g is generalized weakly lower locally ε-Lipschitz at v̄. Hence according to Proposition
3.2, g is generalized weakly ε-subdifferentiable at v̄.

Proposition 3.3
Let g : X1 −→ X2 ∪{+∞2} be a mapping. We have

∂wg (v̄) ⊂ ∂w
ε g (v̄) , ∀ε ∈ C2.
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Proof
Let R ∈ ∂wg(v̄), and suppose that for some ε0 ∈ C2, R /∈ ∂w

ε0g(v̄). Hence, there exists some u0 ∈ X such that

g (u0)−R (u0) <C2
g (v̄)−R (v̄)− φv̄(u0)ε0,

i.e.
g (u0)−R (u0)− g (v̄) +R (v̄) + φv̄(u0)ε0 ∈ −int(C2). (11)

As −φv̄(u0)ε0 ∈ −C2 and −C2 − int(C2) ⊆ −int(C2), it follows from (11) that

g(u0)−R(u0)− g(v̄) +R(v̄) ∈ −int(C2),

which yields that R /∈ ∂wg(v̄). This is a contradiction.

Remark 3.4
From Proposition 3.3, we have ∂wg(v̄) ⊂ ∂w

ε g(v̄) for any ε ∈ C2, but the reverse inclusion does not hold. In fact,
let us consider the space R2 equipped with the convex cone R2

+ and the following mapping

g : R −→ R2

u 7−→ (1, u) .

Let ε = (1, 2), v̄ = 0 and R = (−1,−1). Then{
∄u ∈ R, g (u)−R (u) <R2

+
g(v̄)−R(v̄)− |u− v̄| ε

g (u)−R (u) <R2
+
g (v̄)−R (v̄) , ∀u < 0

which yields that R ∈ ∂w
ε g (v̄) and R /∈ ∂wg (v̄).

4. Properties and calculus rules

This section presents some properties of the generalized weak ε-subdifferential. Additionally, it presents the
calculus rules for the generalized weak ε-subdifferential of the difference and sum of two vector-valued mappings.

Proposition 4.1
Let v̄ ∈ X1 and g : X1 −→ X2 ∪ {+∞2} be a mapping. We have

1.
⋂

ε∈C2\{0}
∂w
ε g(v̄) = ∂wg(v̄).

2.
⋂

η∈C2\{0}
∂w
ε+ηg(v̄) = ∂w

ε g(v̄), ∀ε ∈ C2.

Proof
1. If v̄ /∈ domg, then the equality is evident. Let v̄ ∈ domg and R ∈

⋂
ε∈C2\{0}

∂w
ε g (v̄), we have

R ∈ ∂w
ε
n
g (v̄) , ∀n ∈ N\ {0} , ∀ε ∈ C2\ {0} ,

that is
g (u)−R(u)− g (v̄) +R (v̄) + φv̄(u)

ε

n
∈ (−intC2)

c
, ∀u ∈ X1, ∀n ≥ 1, ∀ε ∈ C2\ {0} .

where (−int(C2))
c stands for the complement of (−int(C2)). Since (−intC2)

c is closed, hence when n −→ +∞,
we have

g (u)−R(u)− g (v̄) +R (v̄) ∈ (−intC2)
c
, ∀u ∈ X1,
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i.e R ∈ ∂wg (v̄). The reverse inclusion follows from Proposition 3.3.
2. We have, for any ε ∈ C2 ⋂

η∈C2\{0}

∂w
ε+ηg(v̄) =

⋂
η∈C2\{0}

∂w (g + φv̄(.)ε+ φv̄(.)η) (v̄)

=
⋂

η∈C2\{0}

∂w
η (g + φv̄(.)ε) (v̄)

= ∂w (g + φv̄(.)ε) (v̄)

= ∂w
ε g(v̄).

We say that Rn −→ R in L(X1, X2) in the sense of the topology of pointwise convergence, if for any
u ∈ X1, ∥Rn (u)−R (u)∥X2

−→ 0.

Proposition 4.2
For any ε ∈ C2, the set ∂w

ε g(v̄) is closed in L(X1, X2).

Proof
Let Rn ∈ ∂w

ε g(v̄) and Rn −→ R in the sense of the topology of pointwise convergence as n −→ +∞. By
Rn ∈ ∂w

ε g(v̄), we have

g(u)−Rn(u)− g(v̄) +Rn(v̄) + φv̄(u)ε ∈ (−int(C2))
c
, ∀u ∈ X1, ∀n ∈ N,

Since (−int(C2))
c is closed, and we get as n −→ +∞

g(u)−R(u)− g(v̄) +R(v̄) + φv̄(u)ε ∈ (−int(C2))
c
, ∀u ∈ X1

i.e. R ∈ ∂w
ε g(v̄).

For a C2-convex function g, the generalized weak ε-subdifferential is described by the directional derivative.

Proposition 4.3
Let ε ∈ C2, g : X1 −→ X2 ∪ {+∞2} be a C2-convex mapping and v̄ ∈ domg. Suppose that g′ (v̄, .), the directional
derivative of g at v̄, exists i.e. for any h ∈ X1,

g′ (v̄, h) := lim
α→0+

g (v̄ + αh)− g (v̄)

α

exists in X2, in sense of norm convergence, and the cone C2 is closed, then

∂w
ε g(v̄) =

{
R ∈ L(X1, X2) : ∄h ∈ X, g′(v̄, h) <C2

R (h)− ∥h∥X1
ε
}
.

Proof
This proposition follows directly from Proposition 3.2 in [22], taking into account that ∂w

ε g(v̄) = ∂wgε(u), where
gε := g + φv̄(.)ε, and that g′ε (v̄, h) = g′ (v̄, h) + ∥h∥X1

ε.

Remark 4.1
The following example shows that ∂w

ε g (v̄) is not generally a convex subset in L (X1, X2). Let

g : R −→ R2

u 7−→ (1, u)
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The space R2 is equipped with the convex cone R2
+. We have

R ∈ ∂w
ε g (v̄) ⇐⇒ ∄u ∈ R, g (u)− g (v̄) + |u− v̄| ε <R2

+
R (u− v̄) .

Let ε =
(
0, 1

2

)
, v̄ = 0, R1 = (1, 0) and R2 = (0, 4). then{

∄u ∈ R,
(
0, u+ 1

2 |u|
)
<R2

+
(u, 0)

∄u ∈ R,
(
0, u+ 1

2 |u|
)
<R2

+
(0, 4u) .

which means that R1 ∈ ∂w
ε g (v̄) and R2 ∈ ∂w

ε g (v̄). But, for u = 1, we have

g (1)− g (0) + |1− 0| ε <R2
+

1

2
R1 (1− 0) +

1

2
R2 (1− 0) .

i.e. 1
2R1 +

1
2R2 /∈ ∂w

ε g (v̄) and hence ∂w
ε g (v̄) is not a convex subset in L (X1, X2).

Proposition 4.4
Let ε ∈ C2, v̄ ∈ X1 and g : X1 −→ X2 ∪{+∞2} be a mapping. Then

α∂w
ε g (v̄) = ∂w

αε (αg) (v̄) , ∀α > 0.

Proof
If v̄ /∈ domg, the equality is obvious. Let v̄ ∈ domg and α>0, we have

R ∈ α∂w
ε g (v̄) ⇐⇒ 1

α
R ∈ ∂w

ε g (v̄)

which is equivalent to

1

α
R(u)− g (u)− 1

α
R (v̄) + g (v̄)− φv̄(u)ε ∈ (int(C2))

c
, ∀u ∈ X1

i.e.
R(u)− αg (u)−R (v̄) + αg (v̄)− φv̄(u)αε ∈ α (int(C2))

c
, ∀u ∈ X1.

As α. (int(C2))
c
= (intC2)

c, for any α>0, then

R(u)− αg (u)−R (v̄) + αg (v̄)− φv̄(u)αε ∈ (int(C2))
c
, ∀u ∈ X1.

i.e.
R ∈ α∂w

ε g (v̄) ⇐⇒ R ∈ ∂w
αε (αg) (v̄) .

We recall the notion of star-difference, which will be used to derive calculus rules for the generalized weak
ε-subdifferential of a difference.

Definition 4.1
([8]) The star difference of two subsets E and F of X1 is given by

E
∗
− F = {u ∈ X1 : u+ F ⊂ E} .

We adopt the convention that E
∗
− F := ∅ if E = ∅, F ̸= ∅ and E

∗
− F := X1 if F = ∅. Such an operation has

been used in several works among which are [18, 19, 20, 21, 17]. Clearly, for F nonempty, one has E
∗
− F + F ⊂ E

and E
∗
− F ⊂ E − F .

The following concept is an extension of the notion of approximately pseudo-dissipativity, which was introduced
by Penot in [18].
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Definition 4.2
([23]) Let K : X1 ⇒ L(X1, X2) be a set-valued mapping. K is said to be approximately pseudo-dissipative (APD)
at v̄ ∈ X1 if for any ε ∈ intC2,

∃r > 0, ∀u ∈ B (v̄, r) , ∃R ∈ K (u) ,∃R̃ ∈ K (v̄) : (R− R̃) (u− v̄) ≤C2
φv̄(u)ε.

Example 4.1
Let X1 = R, X2 = R2, C2 = R2

+ and f(u) = (u2, |u|). We have

∂sf(u) =

 {0} × [−1, 1], u = 0
{(2u, 1)}, u > 0
{(2u,−1)}, u < 0.

Then ∂sf is APD at v̄ = 0 (see [23]).

Now, we introduce the notion of pseudo-dissipativity as below and we will discuss its relationship with the
approximately pseudo-dissipativity.

Definition 4.3
A set valued mapping K : X1 ⇒ L (X1, X2) is called pseudo-dissipative (PD) at v̄ ∈ X1 if

∃r > 0, ∀u ∈ B (v̄, r) , ∃R ∈ K (u) ,∃R̃ ∈ K (v̄) :
(
R− R̃

)
(u− v̄) ≤C2 0.

Let us note that if f is generalized lower ε-Lipschitz at v̄ and generalized ε-subdifferentiable on a neighborhood
of v̄, then we can verify that the generalized strong ε-subdifferential of f at v̄, ∂s

εf(v̄), is PD at v̄.

Example 4.2
Let F = (f1, . . . , fm) : Rn → Rm where each fi is a convex function. For each x ∈ Rn, define

K(u) := − ∂sF (u) =
{
− (ξ1, . . . , ξm) : ξi ∈ ∂sfi(u)

}
.

Then K is pseudo-dissipative.
Indeed, for any u, v̄ ∈ Rn, take R = −ξ ∈ K(u) and R̃ = −ξ̃ ∈ K(ū), with ξi ∈ ∂sfi(u) and ξ̃i ∈ ∂sfi(ū). Since

each ∂sfi is monotone, we have

⟨ξi − ξ̃i, u− v̄⟩ ≥ 0 for all i = 1, ..., n,

which implies

(R− R̃)(u− v̄) =
(
− ⟨ξ1 − ξ̃1, u− v̄⟩, . . . ,−⟨ξm − ξ̃m, u− v̄⟩

)
∈ −Rm

+ = −C2.

Therefore, K is pseudo-dissipative.

Proposition 4.5
If a set valued mapping K : X1 ⇒ L (X1, X2) is PD at v̄ ∈ X1, then K is APD at v̄.

Proof
Let ε ∈ int(C2). Since K is PD at v̄ , then

∃r > 0, ∀u ∈ B(v̄, r),∃R ∈ K (u) , ∃R̃ ∈ K (v̄) : −
(
R− R̃

)
(u− v̄) ∈ C2. (12)

As
φv̄(u)ε ∈ C2. (13)

By adding (12) and (13), we have

∃r > 0, ∀u ∈ B (v̄, r) , ∃R ∈ K (u) ,∃R̃ ∈ K (v̄) : φv̄(u)ε−
(
R− R̃

)
(u− v̄) ∈ C2,
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i.e.
∃r > 0, ∀u ∈ B (v̄, r) , ∃R ∈ K (u) ,∃R̃ ∈ K (v̄) :

(
R− R̃

)
(u− v̄) ≤C2 φv̄(u)ε,

then K is APD at v̄.

Remark 4.2
The reverse of Proposition 4.5 is false. In fact, the mapping ∂sg in Example 4.1 is APD at v̄ = 0, however is not
PD at v̄. Indeed, let r > 0. For u = −r

2 ∈ B(v̄, r) and for any R ∈ ∂sg (u) and any R̃ ∈ ∂sg (v̄) we have

R = (2u,−1) and R̃ = (0, a), for some a ∈ [−1, 1],

then (
R− R̃

)
(u− v̄) =

(
2x2, x− au

)
/∈ −R2

+

hence ∂sg is not PD at v̄ = 0.

Lemma 4.1
Let g : X1 −→ X2 ∪ {+∞2} be a mapping and v̄ ∈ domg. If g is C2-concave and ∂sg is PD at v̄, then for all
u ∈ X1, there exists a mapping Ru ∈ ∂sg (v̄) such that

g (u)−Ru(u)− g (v̄) +Ru (v̄) ∈ −C2.

Proof
Since ∂sg is PD at v̄, then there exists some r > 0 such that, for any z ∈ B (v̄, r), there exist Az ∈ ∂sg (z) and
Bz ∈ ∂sg (v̄) satisfying

(Az −Bz) (z − v̄) ∈ −C2. (14)

Let u ∈ X1, there exist some y(u) ∈ B (v̄, r) and b ∈ ]0, 1] satisfying

y(u) = v̄ + b (u− v̄) .

Therefore, from (14), there exist Ly(u) ∈ ∂sg (y(u)) and Sy(u) ∈ ∂sg (v̄) satisfying(
Ly(u) − Sy(u)

)
(y(u)− v̄) ∈ −C2 ⇐⇒ b

(
Ly(u) − Sy(u)

)
(u− v̄) ∈ −C2.

Since b > 0 and C2 is a cone, we get (
Ly(u) − Sy(u)

)
(u− v̄) ∈ −C2. (15)

Since Ly(u) ∈ ∂sg (y(u)), i.e
g (y(u))− g (v̄)− Ly(u) (y(u)− v̄) ∈ −C2,

and y(u) = bu+ (1− b) v̄, we have

g (bu+ (1− b) v̄)− g (v̄)− bLy(u) (u− v̄) ∈ −C2. (16)

Since g is C2-concave, we get

bg (u)− g (bu+ (1− b) v̄) + (1− b) g (v̄) ∈ −C2. (17)

From (16) and (17) we have
bg (u)− bLy(u) (u− v̄)− bg (v̄) ∈ −C2,

i.e
g (u)− Ly(u) (u− v̄)− g (v̄) ∈ −C2. (18)

By adding (15) and (18), we get
g (u)− Sy(u) (u− v̄)− g (v̄) ∈ −C2.

By setting Sy(u) := Ru, we obtain

g (u)−Rx (u)− g (v̄) +Ru (v̄) ∈ −C2.
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Theorem 4.1
Let ε ∈ C2, g, h : X1 −→ X2 ∪{+∞2} be two mappings and v̄ ∈ domh ∩ domg. Then

∂w
ε (h− g) (v̄) ⊆ ∂w

ε h(v̄)
∗
− ∂sg(v̄),

with equality if g is C2-concave and ∂sg is PD at v̄.

Proof
Let A ∈ ∂w

ε (h− g) (v̄) i.e.

∄u ∈ X1, (h− g) (u)−A(u)− (h− g) (v̄) +A(v̄) + φv̄(u)ε ∈ −int(C2).

We prove that
A+R ∈ ∂w

ε h(v̄), ∀R ∈ ∂sg(v̄).

Suppose, on the contrary, that there exists T ∈ ∂sg(v̄) such that A+ T /∈ ∂w
ε h(v̄), then there exists u0 ∈ X1 such

that
h (u0)−A (u0 − v̄)− h (v̄)− T (u0 − v̄) + φv̄(u0)ε ∈ −int(C2). (19)

As T ∈ ∂sg(v̄), i.e
−g(u0) + T (u0 − v̄) + g(v̄) ∈ −C2, (20)

hence by adding (19) and (20), and using the fact that −C2−intC2 ⊂ −intC2, we obtain

(h− g) (u0)−A (u0)− (h− g) (v̄) +A (v̄) + φv̄(u0)ε ∈ −int(C2),

which contradicts the fact that A ∈ ∂w
ε (h− g) (v̄). Now, let us show the reverse inclusion under, the conditions that

g is C2-concave and ∂sg is PD at v̄. Let L ∈ ∂w
ε h(v̄)

∗
− ∂sg(v̄). Suppose, on the contrary that L /∈ ∂w

ε (h− g) (v̄),
then, there exists u0 ∈ X1 such that

(h− g) (u0)− L (u0)− (h− g) (v̄) + L (v̄) + φv̄(u0)ε ∈ −int(C2). (21)

By Lemma 4.1, there exists a mapping Ru0 ∈ ∂sg (v̄) satisfying

g (u0)−Ru0
(u0)− g (v̄) +Ru0

(v̄) ∈ −C2, (22)

Adding (21) and (22), we get

h(u0)− (L+Ru0) (u0)− h(v̄) + (L+Ru0)(v̄) + φv̄(u0)ε ∈ −int(C2),

which means that L+Ru0
/∈ ∂w

ε h(v̄). The fact that L ∈ ∂w
ε h(v̄)

∗
− ∂sg(v̄) and Ru0

∈ ∂sg (v̄), it follows that L+
Ru0 ∈ ∂w

ε h(v̄). This is a contradiction. Then L ∈ ∂w
ε (h− g)(v̄) and thus we obtain the equality ∂w

ε (h− g) (v̄) =

∂w
ε h(v̄)

∗
− ∂sg(v̄).

Corollary 4.1
Let h, g : X1 −→ X2 ∪ {+∞2} be two mappings, v̄ ∈ domh ∩ domg. If for some η ∈ C2, g + φv̄(.)η is C2-
concave and ∂s

ηg is PD at v̄, then for all ε ∈ C2, we have

∂w
ε (h− g) (v̄) = ∂w

ε+ηh(v̄)
∗
− ∂s

ηg(v̄).

Proof
Note that

h− g = (h+ φv̄(.)η)− (g + φv̄(.)η) .

As g + φv̄(.)η is C2-concave, ∂s
ηg(v̄) = ∂s (g + φv̄(.)η) is PD at v̄, then the desired result is obtained by applying

Theorem 4.1, and by replacing h and g respectively by h+ φv̄(.)η and g + φv̄(.)η.
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In what follows, we establish the calculus rules of the generalized weak ε-subdifferential for the sum. For this
aim, we will need the concept of weak-regular subdifferentiability of a vector-valued mapping.

Definition 4.4
([22]) A mapping h : X1 −→ X2 ∪ {+∞2} is said to be weak-regular subdifferentiable at v̄ ∈ domh if

∂ (u∗
2 ◦ h) (v̄) = u∗

2 ◦ ∂sh (v̄) , ∀u∗
2 ∈ C∗

2\ {0} .

Theorem 4.2
Let g, h : X1 −→ X2 ∪ {+∞2} be two C2-convex vector-valued mappings and v̄ ∈ domh ∩ domg. If g is weak-
regular subdifferentiable at v̄ and continuous at a point v0 ∈ domh ∩ domg, then for every ε ∈ C2, we have

∂w
ε (h+ g) (v̄) = ∂w

ε h (v̄) + ∂sg (v̄) .

Proof
Since h is C2-convex then, the mapping hε := h+ φv̄(.)ε is C2-convex, and since g is continuous at v0 ∈
domh ∩ domg then,the qualification conditions of Moreau–Rockafellar holds. As g is C2-convex and weak-regular
subdifferentiable at v̄, then the hypotheses of Theorem 4.1 in [22] is satisfied, it follows that

∂w
ε (h+ g)(v̄) = ∂w (hε + g) (v̄) = ∂whε(v̄) + ∂sg(v̄) = ∂w

ε h(v̄) + ∂sg(v̄).

Corollary 4.2
Let h, g : X1 −→ X2 ∪ {+∞2} be two C2-convex mappings with g is continuous at a point v0 ∈ domh ∩ domg.
If for some η ∈ C2, the mapping gη := g + φv̄(.)η is weak-regular subdifferentiable at v̄, then

∂w
ε+η (h+ g) (v̄) = ∂w

ε h (v̄) + ∂s
ηg (v̄) .

Proof
Just apply Theorem 4.2 for h and gη.

Remark 4.3
The computation of the generalized weak ε-subdifferential may be challenging in vector-valued optimization.
Scalarization techniques, where the vector problem is reduced to a family of scalar optimization problems, provide
a natural way to approximate weak ε-subgradients by applying scalar subdifferential calculus to the resulting
scalarized functions. Developing efficient numerical algorithms based on these ideas is an interesting direction for
future research, and we plan to investigate this approach for computing or approximating the generalized weak
ε-subdifferential.

5. Application to VOPs

Let the following VOP:

(P )

{
min(h(u)− g(u))
u ∈ C

where g, h : X1 −→ X2 ∪ {+∞2} are two vector-valued mappings and ∅ ̸= C ⊂ X1. The concept ε-quasi Pareto
solution was given by Loridan [10] for multiobjective optimization problems with the Pareto order and extended
and generalized later by Gutiérrez, López and Novo [11] and Huerga et al. [12]. This type of solution is usually
known in the literature by quasi efficient solution.

Definition 5.1
([10]) Let g : X1 −→ X2 ∪ {+∞2} be a proper mapping, ∅ ̸= C ⊂ X1, v̄ ∈ C ∩ domg and ε ∈ C2. We say that v̄
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is an ε-quasi Pareto solution of g on C if

∄u ∈ C, g(u) <C2
g(v̄)− φv̄(u)ε.

The set of all ε-quasi Pareto solutions of g on C will be denoted by Sw
ε (g, C).

Let us note that if ε = 0, ε-quasi Pareto minimizer becomes weak minimizer i.e.

∄u ∈ C, g(u) <C2
g(v̄).

Proposition 5.1
Let g : X1 −→ X2 ∪ {+∞2} be a proper mapping, ∅ ̸= C ⊂ X1, v̄ ∈ C ∩ domg and ε ∈ C2. If v̄ is a weak
minimizer of g on C, then v̄ is an ε-quasi Pareto solution of g on C.

Proof
Assume that v̄ is a weak minimizer of g on C and v̄ is not an ε-quasi Pareto solution of g on C. Then, there exists
some u0 ∈ C such that

g(u0) + φv̄(u0)ε− g(v̄) ∈ −int(C2)

i.e.
g(u0)− g(v̄) ∈ −int(C2)− φv̄(u0)ε.

As −φv̄(u0)ε ∈ −C2 and −int(C2)− C2 ⊂ −int(C2), it follows that

g(u0)− g(v̄) ∈ −int(C2)

which yields that v̄ is not a weak minimizer of g on C, contradiction.

The following example proves that the ε-quasi Pareto minimizer of g on C is weaker than the weak minimizer.
Let

g : R −→ R2

u 7−→ (u, u)

where the space R2 is equipped with its natural order R2
+. For v̄ = 0 and ε = (1, 0), we have

∄u ∈ R, g (u) <R2
+
g (0)− ε |u− 0|

is fulfilled, then 0 is an ε-quasi Pareto solution for g on R, and since

g (u) <R2
+
g (0) , ∀u < 0

it follows that 0 is not a weak efficient minimizer of g on R.

Now, we give a sufficient and necessary optimality conditions for v̄ to be an ε-quasi Pareto solution for a vector-
valued mapping.

Proposition 5.2
Let g : X1 −→ X2 ∪ {+∞2} be a proper mapping, v̄ ∈ domg and ε ∈ C2. Then v̄ is an ε-quasi Pareto solution of
g on X1 if and only if 0 ∈ ∂w

ε g (v̄).

Proof
We have v̄ is an ε-quasi Pareto solution of g on X1 if and only if

∄u ∈ X1, g(u) <C2
g(v̄)− φv̄(u)ε

i.e.
∄u ∈ X1, g(u)− 0 <C2

g(v̄)− 0− φv̄(u)ε,

which means that 0 ∈ ∂w
ε g (v̄).
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The vector indicator mapping for a nonempty subset C ⊆ X, δvC : X1 −→ X2 ∪ {+∞2} is defined by

δvC (u) :=

{
0 if u ∈ C

+∞2 else.

and the vector normal cone at v̄ ∈ C, in a vector sense, is the set

Nv
s (C, v̄) := {R ∈ L(X1, X2) : R(u− v̄)} ≤C2

0, ∀u ∈ C}.

One can easily verify that ∂sδvC(v̄) = Nv
s (C, v̄). The properness and the C2-convexity of δvC follows immediately

since C is nonempty and convex.

Lemma 5.1
Let g : X1 −→ X2 ∪ {+∞2} be a mapping and ∅ ̸= C ⊂ X1. We have

Sw
ε (g, C) = Sw

ε (g + δvC , X1) .

Proof
Let v̄ ∈ Sw

ε (g + δvC , X1), then v̄ ∈ C ∩ domg. Suppose that v̄ /∈ Sw
ε (g, C), hence

∃u0 ∈ C, g (u0) <C2
g (v̄)− φv̄(u0)ε,

which yields
∃u0 ∈ C, g (u0) + δvC (u0) <C2 g (v̄) + δvC (v̄)− φv̄(u0)ε,

contradicting v̄ ∈ Sw
ε (g + δvC , X1) . Conversely, let v̄ ∈ Sw

ε (g, C), then v̄ ∈ domg ∩ C. If we suppose v̄ /∈
Sw
ε (g + δvC , X1), then

∃u0 ∈ X1, g (u0) + δvC (u0) <C2
g (v̄) + δvC (v̄)− φv̄(u0)ε,

which implies u0 ∈ C ∩ domg and therefore

∃u0 ∈ C, g (u0) <C2 g (v̄)− φv̄(u0)ε,

contradicting v̄ ∈ Sw
ε (g, C).

In order to derive optimality conditions of VOP (P ), we recall that the vector indicator mapping δvC is weak-
regular subdifferentiable (see [22]).

Theorem 5.1
Let g, h : X1 −→ X2 ∪ {+∞2} be two given mappings, ∅ ̸= C ⊂ X1, v̄ ∈ domh ∩ domg ∩ C and ε ∈ C2. If h is
C2-convex and continuous at a point v0 ∈ C ∩ domh, g is C2-concave and ∂sg is PD at v̄, then v̄ is an ε-quasi
Pareto solution of (P ) if and only if

∂sg(v̄) ⊆ ∂w
ε h(v̄) +Nv

s (C, v̄) .

Proof
By virtue of Lemma 5.1, we have

min
u∈C

(h(u)− g(u)) = min
u∈X1

(h(u) + δvC(u)− g(u)).

From Proposition 5.2, we have v̄ is an ε-quasi Pareto solution of (P ) if and only if

0 ∈ ∂w
ε (h+ δvC − g)(v̄). (23)

According to Theorem 4.1, we have

∂w
ε (h+ δvC − g)(v̄) = ∂w

ε (h+ δvC) (v̄)
∗
− ∂sg(v̄).
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Therefore (23) becomes equivalent to

0 ∈ ∂w
ε (h+ δvC) (v̄)

∗
− ∂sg(v̄)

i.e.
∂sg(v̄) ⊆ ∂w

ε (h+ δvC) (v̄) .

Note that δvC is C2-convex, proper and weak-regular subdifferentiable at v̄ and since h is continuous at v0 ∈
C ∩ domh = domδvC ∩ domh, it follows from Theorem 4.2 that

∂w
ε (h+ δvC) (v̄) = ∂w

ε h(v̄) + ∂sδvC (v̄)

= ∂w
ε h(v̄) +Nv

s (C, v̄) ,

which yields
∂sg(v̄) ⊆ ∂w

ε h(v̄) +Nv
s (C, v̄) .

Thus v̄ is an ε-quasi Pareto solution of problem (P ) if and only if ∂sg(v̄) ⊆ ∂w
ε h(v̄) +Nv

s (C, v̄).

Example 5.1
Let X1 = R, X2 = R2 with C2 = R2

+ and C = [−1, 2]. Define

h(u) = (|u|+ 1, 0), g(u) = (−u, 0), ∀u ∈ R.

Then h is C2-convex and continuous, g is C2-concave. Take v̄ = 0 ∈ C and ε ∈ R2
+. We check that the vector

normal cone at 0 is Nv
s (C, 0) = {(0, 0)}, ∂sg(0) = {(−1, 0)} and (−1, 0) ∈ ∂w

ε h(0). Hence

∂sg(0) ⊂ ∂w
ε h(0) +Nv

s (C, 0),

Since ∂sg(0) is PD at 0, then the inclusion in Theorem 5.1 holds. Thus v̄ = 0 is an ε-quasi Pareto solution of the
problem (P ).

Example 5.2
Let X1 = R, X2 = R2, C2 = R2

+, and C = [0, 1]. Define the mappings

h(u) = ( |u|+ 1, u2 ), g(u) = (−max(u, 0), −u2 ), ∀u ∈ R.

Consider the point v̄ = 0 ∈ C and ε ∈ R2
+.

The mapping h is C2-convex and the mapping g is C2-concave.
At v̄ = 0, we have

∂sg(0) = [−1, 0]× {0}, [−1, 1]× {0} ⊂ ∂w
ε h(0),

and
Nv

s (C, 0) =]−∞, 0]×]−∞, 0].

It is easy to verify that ∂sg is pseudo-dissipative at v̄ = 0. Indeed, let u ∈ B(v̄, 1) = [−1, 1]. For u > 0 one has
R = (−1,−2u) ∈ ∂sg(u) and for u < 0, R = (0,−2u) ∈ ∂sg(u); taking R̃ = (r1, 0) ∈ ∂sg(0) with r1 ∈ [−1, 0]
yields

(R− R̃)(u− 0) ∈ −C2.

Moreover,
∂sg(0) ⊂ ∂ε

wh(0) +Nv
s (C, 0).

Therefore, all assumptions of Theorem 5.1 are satisfied, and we conclude that v̄ = 0 is an ε-quasi Pareto solution
of the problem (P ).
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Now, we consider the following VOP:

(P ′)

{
min (h (u)− g (u))
l (u) ∈ −C3

where g, h : X1 −→ X2 ∪ {+∞2} and l : X1 −→ X3 ∪ {+∞3} are vector-valued mappings and X3 is a separated
locally convex topological vector space and C3 is a convex cone on X3. In the sequel, L+ (X3, X2) stands for
the set of positive operators R ∈ L (X3, X2) i.e. R (C3) ⊂ C2. The composed vector mapping R ◦ l : X1 −→
X2 ∪ {+∞2} is defined by

(R ◦ l)(u) :=
{

R(l(u)), if u ∈ dom(l)
+∞2, otherwise

Theorem 5.2
If h is a C2-convex mapping, l be a C3-convex mapping, g is C2-concave mapping and ∂sg is PD at v̄. if, in
addition, h is weak-regular subdifferentiable at v̄ ∈ domh and continuous at a point v0 ∈ dom(l) and there exists
R ∈ L+ (X3, X2) such that {

∂sg(v̄) ⊆ ∂w
ε (R ◦ l)(v̄) + ∂sh(v̄)

(R ◦ l) (v̄) = 0

then v̄ is an ε-quasi Pareto solution of (P ′).

Proof
Let us note that

∂sg(v̄) ⊂ ∂w
ε (R ◦ l) (v̄) + ∂sh(v̄)

is equivalent to

0 ∈ (∂w
ε (R ◦ l) (v̄) + ∂sh(v̄))

∗
− ∂sg(v̄). (24)

Since l is C3-convex and R ∈ L+ (X3, X2), it is easy to see that R ◦ l is C2-convex. As h is C2-convex, weak-
regular subdifferentiable at v̄ and continuous at v0 ∈dom(l) = dom (R ◦ l), it follows from Theorem 4.2 that

∂w
ε (R ◦ l + h)(v̄) = ∂w

ε (R ◦ l) (v̄) + ∂sh(v̄)

and thus (24) becomes equivalent to

0 ∈ ∂w
ε (R ◦ l + h)(v̄)

∗
− ∂sg(v̄).

The vector mappings h+R ◦ l and g satisfy together the conditions of Theorem 4.1 and hence we get

0 ∈ ∂w
ε (h+R ◦ l − g)(v̄)

that is ∄u ∈ X1, such that

h (u) + (R ◦ l) (u)− g (u)− h (v̄)− (R ◦ l) (v̄) + g (v̄) + φv̄(u)ε ∈ −int(C2).

Since (R ◦ l) (v̄) = 0, then we have

∄u ∈ X1, h (u) + (R ◦ l) (u)− g (u)− h (v̄) + g (v̄) + φv̄(u)ε ∈ −int(C2). (25)

Now, we only need to prove that 0 ∈ ∂w
ε (h+ δvC − g) (v̄) where C := {u ∈ X1 : l (u) ∈ −C3} , which means

according to Proposition 5.2 that v̄ is an ε-quasi Pareto solution of problem (P ′). If we proceed by contradiction,
i.e there exists some u0 such that −l (u0) ∈ C3 and

h (u0) + δvC (u0)− g (u0)− h (v̄)− δvC (v̄) + g (v̄) + φv̄(u0)ε ∈ −int(C2). (26)
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As v̄, u0 ∈ C, we have
h (u0)− g (u0)− h (v̄) + g (v̄) + φv̄(u0)ε ∈ −int(C2). (27)

Since −l (u0) ∈ C3 and R ∈ L+ (X3, X2) , then

(R ◦ l )(u0) ∈ −C2. (28)

Adding (27) and (28), and taking into account that −C2−int(C2) ⊆ −int(C2), we obtain

h (u0) + (R ◦ l) (u0)− g (u0)− h (v̄) + g (v̄) + φv̄(u0)ε ∈ −int(C2),

This contradicts (25), and therefore we obtain

0 ∈ ∂w
ε (h+ δvC − g) (v̄) .

6. Conclusion and Perspectives

In this paper, we introduced and studied a new notion of subdifferential for vector-valued mappings, namely
the generalized weak ε-subdifferential. We established several fundamental properties of this concept, including
existence results, stability, and closedness. We also derived calculus rules for the sum and difference of
vector-valued mappings under suitable regularity and pseudo-dissipativity assumptions. These results extend
and complement existing subdifferential concepts in vector optimization, particularly the generalized strong ε-
subdifferential and the weak Pareto subdifferential.

As an application, we obtained necessary and sufficient optimality conditions for ε-quasi Pareto solutions
of constrained vector optimization problems involving the difference of two vector-valued mappings. These
conditions are expressed in terms of generalized weak ε-subdifferentials and vector normal cones, providing a
unified and flexible framework for studying approximate solutions in multiobjective optimization.

Future research directions include extending these results by replacing the pseudo-dissipativity condition with
the weaker approximate pseudo-dissipativity property, and investigating more general settings, namely extending
the definitions and results to Banach or Hilbert spaces. Another promising direction is the development of numerical
methods and scalarization-based algorithms for computing or approximating generalized weak ε-subgradients in
practical optimization problems.
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