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Abstract Cancer is currently the main cause of primary or secondary premature mortality in most countries. Medical
researchers require statistical analysis to identify the most suitable model for assessing the remission periods or survival
times of cancer patients, thereby producing precise results. The current study contributes a novel family of distributions
to analyse the remission periods or survival times of cancer data effectively, termed the transmuted tangent family of
distributions, achieved through the combination of the quadratic transmuted family with the tan-G class of distributions. The
primary statistical properties of the proposed family are established. The Bayesian estimation, Bayesian neural network, and
maximum likelihood estimation methods are employed for parametric estimation of the family. In addition, four members
of the family are introduced. The transmuted tangent Lindley distribution is examined, and its fundamental features are
established. Three cancer datasets are examined to verify the fit efficiency of the proposed family through the use of various
goodness-of-fit measures. Our results indicate that the proposed family offers a better fit to the data sets compared to many
established families.
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1. Introduction

Cancer is presently the primary or secondary leading cause of premature mortality in the majority of countries
all over the world. The worldwide incidence of cancer patients is expected to increase over the next 50 years due
to significant demographic changes, including population aging and growth, which affect the varying trends in
cancer incidence across different regions. The cancer incidence is projected to double by 2070 relative to 2020
[37]. Statistical distributions play a vital role in predicting and analysing the remission periods or survival times
of cancer patients. Although classical distributions are versatile, they often struggle to effectively fit complex or
highly skewed data sets. Their inherent structure may not display critical data characteristics such as heavy tails,
multi-modality, etc. Due to the greater applicability and predictability of the distributions, researchers have begun to
develop more flexible and accurate distributions to model different data sets from different fields. The most popular
method to increase the flexibility of the existing distribution is to add parameters to the distribution, which leads to
a greater number of parameters. Also, obtaining the parameter estimates of these flexible probability distributions
with a larger number of parameters may be challenging using numerical methods. The main objective of this study
is to introduce a family to generate distributions with fewer parameters and enhanced flexibility. Moreover, one of
the strong members of the family is introduced, which possesses superior analytical ability towards the cancer data.
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There are many generalised families available in the literature. For example, the transformed transformer family
by Alzaatreh et al. [4], power Lindley-G family of distributions by Hassan and Nassr [11], the generalised Topp-
Leone family of distributions by Mahdavi and Abbas [21], Marshall-Olkin family by Marshall and Olkin [24] etc.
The number of probability distributions based on trigonometric functions is limited in the literature. Some of them
are the sine-G class of distributions by Souza et al. [38], transmuted sine-G Family of distributions by Sakthivel
and Rajkumar [34], hyperbolic cosine-F-family of distributions by Kharazmi and Saadatinik [15], odd hyperbolic
cosine-FG family by Kharazmi et al. [16], a new sine-G family of distributions by Mahmood et al. [22], the
hyperbolic tan-X family of distributions by Ampadu [5], hyperbolic tangent family of distributions by Mohammad
and Mendoza [26] etc.

In 1958, Jowett [13] introduced the exponential distribution (ED) and its applications. The ED was frequently
utilised for analysing real data in the initial phases of reliability theory research because of its analytical simplicity.
In the present scenario, the constant failure rate characteristic of the ED is often unsuitable. The power unit ED
is introduced by Alsadat et al. [3]. Lindley [19] proposed the Lindley (L) distribution as an alternative to the ED,
which has an increasing failure rate. The L distribution provides a unimodal hazard rate, which increases modelling
flexibility, making it a theoretically strong and often empirically effective baseline for estimating survival times in
diverse health and reliability research. There are numerous generalisations for the L distribution, the odd Weibull L
distribution by Rajitha and Anisha [30], the generalisation of the L distribution by Rajitha and Akhilnath [29], and
a new generalisation of the power L distribution by Rajitha and Sakthivel [10]. Additional comparable generalised
distributions can be found in [35], [31], [14], [27] and [32].

The estimation of the parameters of the distributions is not always easy. In the era of artificial intelligence
and deep learning, it is crucial to find alternatives to classical estimation methods. In this article, three different
estimation methods are used, that is, the Bayesian estimation method, Bayesian neural network (BNN) [25], and
maximum likelihood estimation (MLE). Bayesian estimation is an effective method for parameter estimation. The
Bayesian estimation of the parameters of the generalised L distribution using a trigonometric transformation is
presented in [12], while Makhdoom et.al [23] discusses estimation of the parameters of the L distribution under a
Type-II censoring scheme using Bayesian inference. The parameter estimation of the pseudo-L distribution using
the Bayesian estimation is done in [8]. The Bayesian estimation of power L distribution based on progressively
censored samples is described in [17].
The neural network and its related areas are growing rapidly. The application of neural networks in data analysis is
studied in [41]. Neal [28] illustrates how Bayesian methods enable the utilisation of complex neural network models
while decreasing the risk of ”overfitting” associated with conventional training methods, and the recent approaches
in BNN are discussed in [20]. The robustness of the BNN to adversarial attacks is studied by Bortolussi et al. [6].

The objective of this paper is to present a superior and novel model that is adept at modeling and fitting various
data types. Additionally, we aim to demonstrate the model’s superiority over its competitors and endorse the
proposed family of distributions as a robust and innovative candidate for modelling real data sets. When modeling a
phenomenon with a known distribution proves difficult, we may employ generalization to accommodate additional
data variability. The existing challenges are evolving noticeably in parallel with our needs. Consequently, we
necessitate alternative generalizations of probability distributions to encapsulate complex data. As the number of
cancer patients increases in almost every country, we attempted to model these data using generalized forms of
various distributions; nevertheless, the results were not especially convincing. Consequently, we propose a novel
family of distributions to address this issue. The motivation of this article is to introduce a novel family that is
capable of generalizing existing distributions to enhance the flexibility of the distributions. This novel family adds
only one parameter to the existing distributions. Adding more parameters may increase flexibility, but it also makes
the estimation and calculation of the parameters more complex. The proposed family can be used to model medical
data, as medical researchers require statistical analysis to evaluate survival rates of cancer patients to select the most
precise model to estimate survival data and reach appropriate conclusions. The structure of the article is as follows:
Section 2 presents the transmuted tangent family of distributions (TTFD), and in Section 3, the main statistical
properties of the TTFD are derived. Section 4 provides the four special members of the family, in particular the
transmuted tangent Lindley distribution (TTLD). The parameters of the TTLD are estimated using three different
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methods. Data analysis using three sets of cancer data is carried out in Section 5. The results are delineated in
Section 6. The conclusion of this study is provided in Section 7.

2. Transmuted tangent family

This paper contributes a new family to the trigonometric family of distributions by combining the quadratic
transmuted family with the tan-G class of distributions. The quadratic rank transmutation map approach is introduced
by Shaw and Buckley [36] and its cumulative distribution function (cdf) and probability density function (pdf) are
given, respectively, as follows,

𝐹 (𝑥) = (1 + 𝛽)𝑊 (𝑥) − 𝛽𝑊2(𝑥), |𝛽 | ≤ 1. (1)

𝑓 (𝑥) = 𝑤(𝑥) [(1 + 𝛽) − 2𝛽𝑊 (𝑥)], |𝛽 | ≤ 1. (2)

where𝑊 (𝑥) is the cdf and 𝑤(𝑥) is the pdf of the baseline distribution.
The tan-G class of distributions is introduced by Souza et al. [40], and its cdf is given by

𝑊 (𝑥) = tan( 𝜋
4
𝐺 (𝑥)), 𝑥 ∈ R. (3)

The pdf of the tan-G class of distributions is given by

𝑤(𝑥) = 𝜋

4
𝑔(𝑥) sec2( 𝜋

4
𝐺 (𝑥)), 𝑥 ∈ R. (4)

The TTFD, achieved through the combination of the quadratic transmuted family with the tan-G class of
distributions; then the cdf of the TTFD is derived as

𝐹 (𝑥) = (1 + 𝛽) tan
[ 𝜋

4
𝐺 (𝑥)

]
− 𝛽

(
tan

[ 𝜋
4
𝐺 (𝑥)

] )2
, |𝛽 | ≤ 1, 𝑥 ∈ R. (5)

The pdf of the TTFD is derived as

𝑓 (𝑥) = 𝜋

4
𝑔(𝑥) sec2

[ 𝜋
4
𝐺 (𝑥)

] (
(1 + 𝛽) − 2𝛽 tan

[ 𝜋
4
𝐺 (𝑥)

] )
, |𝛽 | ≤ 1, 𝑥 ∈ R. (6)

where 𝐺 (𝑥) is the cdf and 𝑔(𝑥) is the pdf of the baseline distribution.

3. Properties

This section provides the important properties of TTFD.

3.1. Survival function

The survival function (SF) for the TTFD is obtained as

𝑅(𝑥) = 1 −
[
(1 + 𝛽) tan

[ 𝜋
4
𝐺 (𝑥)

]
− 𝛽

(
tan

[ 𝜋
4
𝐺 (𝑥)

] )2
]
, |𝛽 | ≤ 1, 𝑥 ∈ R. (7)

The SF quantifies the ability of a product or object to survive over a specified time frame under all conditions.

3.2. Hazard function

The hazard function (HF) is the ratio of 𝑓 (𝑥) and 𝑅(𝑥), which gives an idea about the instantaneous failure rate of
the item at time 𝑥. The HF of the TTFD is derived as,

𝐻 (𝑥) =
𝜋
4 sec2 [

𝜋
4𝐺 (𝑥)

]
𝑔(𝑥)

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋
4𝐺 (𝑥)

] )
1 −

[
(1 + 𝛽) tan

[
𝜋
4𝐺 (𝑥)

]
− 𝛽(tan

[
𝜋
4𝐺 (𝑥)

]
)2

] , |𝛽 | ≤ 1, 𝑥 ∈ R. (8)
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3.3. Reverse hazard function

The reverse hazard function of the TTFD is obtained as

𝑟 (𝑥) =
𝜋
4 sec2 [

𝜋
4𝐺 (𝑥)

]
𝑔(𝑥)

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋
4𝐺 (𝑥)

] )
(1 + 𝛽) tan

[
𝜋
4𝐺 (𝑥)

]
− 𝛽(tan

[
𝜋
4𝐺 (𝑥)

]
)2

, |𝛽 | ≤ 1, 𝑥 ∈ R. (9)

3.4. Moments

The main properties of a distribution can be studied through the examination of moments. The 𝑚𝑡ℎ moment of the
TTFD is obtained as

𝜇′𝑚 = 𝐸 (𝑥𝑚) =
𝜋

4

∞∫
−∞

𝑥𝑚𝑔(𝑥) sec2
[ 𝜋

4
𝐺 (𝑥)

] (
(1 + 𝛽) − 2𝛽 tan

[ 𝜋
4
𝐺 (𝑥)

] )
𝑑𝑥. (10)

where 𝑚 = 1, 2, 3, · · · . By finding the solution of the above equation, we get the moments of the TTFD.

3.5. Order statistics

The pdf of the 𝑖𝑡ℎ order statistic derived for a random sample of size 𝑚 drawn from the TTFD with cdf eqn.(5)
and pdf eqn.(6) is denoted by 𝑓𝑖 (𝑥). Let the order statistics are 𝑥1:𝑚 ≤ 𝑥2:𝑚 ≤ 𝑥3:𝑚 ≤ · · · ≤ 𝑥𝑚:𝑚. The pdf of the 𝑖𝑡ℎ
order statistics of the TTFD is obtained as

𝑓𝑖 (𝑥) =



𝑚!
(𝑖 − 1)!(𝑚 − 𝑖)!

[
(1 + 𝛽) tan

[ 𝜋
4
𝐺 (𝑥)

]
− 𝛽

(
tan

[ 𝜋
4
𝐺 (𝑥)

] )2
] 𝑖−1

×
[
1 − (1 + 𝛽) tan

[ 𝜋
4
𝐺 (𝑥)

]
− 𝛽

(
tan

[ 𝜋
4
𝐺 (𝑥)

] )2
]𝑚−𝑖

× 𝜋

4
𝑔(𝑥) sec2

[ 𝜋
4
𝐺 (𝑥)

] (
(1 + 𝛽) − 2𝛽 tan

[ 𝜋
4
𝐺 (𝑥)

] )
,

|𝛽 | ≤ 1, 𝑥 ∈ R.


(11)

The first-order statistic of the TTFD is obtained as

𝑓1(𝑥) =


𝑚

[
1 − (1 + 𝛽) tan

[ 𝜋
4
𝐺 (𝑥)

]
− 𝛽

(
tan

[ 𝜋
4
𝐺 (𝑥)

] )2
]𝑚−1

× 𝜋

4
𝑔(𝑥) sec2

[ 𝜋
4
𝐺 (𝑥)

] (
(1 + 𝛽) − 2𝛽 tan

[ 𝜋
4
𝐺 (𝑥)

] )
,

|𝛽 | ≤ 1, 𝑥 ∈ R.


The 𝑚𝑡ℎ order statistics of the TTFD is obtained as

𝑓𝑚(𝑥) =


𝑚

[
(1 + 𝛽) tan

[ 𝜋
4
𝐺 (𝑥)

]
− 𝛽

(
tan

[ 𝜋
4
𝐺 (𝑥)

] )2
]𝑚−1

× 𝜋

4
𝑔(𝑥) sec2

[ 𝜋
4
𝐺 (𝑥)

] (
(1 + 𝛽) − 2𝛽 tan

[ 𝜋
4
𝐺 (𝑥)

] )
,

|𝛽 | ≤ 1, 𝑥 ∈ R.


3.6. Quantile function

The quantile function is the inverse of the cdf and it plays a crucial role in statistical analysis, as it facilitates random
number generation.
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Theorem 3.1
Consider the random variable 𝑋 from the TTFD; then the quantile function of 𝑋 is derived as

𝑄𝑥 (𝑝) = 𝐺−1

[
4
𝜋

arctan

(
(1 + 𝛽) ±

√︁
(1 + 𝛽)2 − 4𝛽𝑝
2𝛽

)]
, |𝛽 | ≤ 1. (12)

Proof
The quantile function of the TTFD is obtained by equating the 𝐹 (𝑥) = 𝑝, where 𝑝 ∈ (0, 1).

(1 + 𝛽) tan
[ 𝜋

4
𝐺 (𝑥)

]
− 𝛽

(
tan

[ 𝜋
4
𝐺 (𝑥)

] )2
= 𝑝.

tan
[ 𝜋

4
𝐺 (𝑥)

]
=

(
(1 + 𝛽) ±

√︁
(1 + 𝛽)2 − 4𝛽𝑝
2𝛽

)
.

𝜋

4
𝐺 (𝑥) = arctan

(
(1 + 𝛽) ±

√︁
(1 + 𝛽)2 − 4𝛽𝑝
2𝛽

)
.

After some simple mathematical calculations, the quantile function is obtained as

𝑄𝑥 (𝑝) = 𝐺−1

[
4
𝜋

arctan

(
(1 + 𝛽) ±

√︁
(1 + 𝛽)2 − 4𝛽𝑝
2𝛽

)]
, |𝛽 | ≤ 1.

The plus or minus sign in the Eq.(12) depends on the range of the baseline distribution. □

3.7. Parameter identifiability

The parameter identification of the TTFD is proved in this section. Let 𝛽1 and 𝛽2 are parameters of the TTFD and
𝛿1 and 𝛿2 are the parameters of the baseline distribution of the TTFD with cdf’s

𝐹 (𝑥, 𝛽1, 𝛿1) = (1 + 𝛽1) tan
[ 𝜋

4
𝐺 (𝑥, 𝛿1)

]
− 𝛽1

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿1)

] )2
.

and

𝐹 (𝑥, 𝛽2, 𝛿2) = (1 + 𝛽2) tan
[ 𝜋

4
𝐺 (𝑥, 𝛿2)

]
− 𝛽2

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿2)

] )2
.

The parameters are said to be identifiable if 𝐹 (𝑥, 𝛽1, 𝛿1) = 𝐹 (𝑥, 𝛽2, 𝛿2) it implies 𝛽1 = 𝛽2 and 𝛿1 = 𝛿2. If

(1 + 𝛽1) tan
[ 𝜋

4
𝐺 (𝑥, 𝛿1)

]
− 𝛽1

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿1)

] )2
= (1 + 𝛽2) tan

[ 𝜋
4
𝐺 (𝑥, 𝛿2)

]
− 𝛽2

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿2)

] )2
.

The above equation can be simplified as

tan
[ 𝜋

4
𝐺 (𝑥, 𝛿1)

]
+ 𝛽1

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿1)

]
−

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿2)

] )2
)
= tan

[ 𝜋
4
𝐺 (𝑥, 𝛿2)

]
+ 𝛽2

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿2)

]
−

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿2)

] )2
)
.

(13)

If tan
[
𝜋
4𝐺 (𝑥, 𝛿1)

]
= tan

[
𝜋
4𝐺 (𝑥, 𝛿2)

]
, by injectivity properties of the tan function and cdf function of the baseline

distribution also for every 𝑥 and 𝛿 the 𝐺 (𝑥, 𝛿) ∈ (0, 1), which implies 𝛿1 = 𝛿2. Then the eqn(13) can be written as

𝛽1

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿)

]
−

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿)

] )2
)
= 𝛽2

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿)

]
−

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿)

] )2
)
.

Which implies,

(𝛽1 − 𝛽2)
(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿)

]
−

(
tan

[ 𝜋
4
𝐺 (𝑥, 𝛿)

] )2
)
= 0. (14)

The left-hand side of the eqn(14) is zero when 𝛽1 = 𝛽2.
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4. Special models of TTFD

This section presents four unique members of the TTFD by choosing different baseline distributions.The exponential
distribution, Weibull distribution, Rayleigh distribution, and Lindley distribution are selected as the baseline
distributions because all the distributions possess good modelling properties for survival data. We can also generalise
all other distributions using TTFD.

4.1. Transmuted tangent exponential distribution

The cdf of the ED is given by

𝐺 (𝑥) = 1 − 𝑒−𝛼𝑥 , 𝛼 > 0, 𝑥 ≥ 0. (15)

The pdf of the ED is given by

𝑔(𝑥) = 𝛼𝑒−𝛼𝑥 , 𝛼 > 0, 𝑥 ≥ 0. (16)

The cdf of the transmuted tangent exponential distribution (TTED) is obtained as

𝐹 (𝑥) = (1 + 𝛽) tan
[ 𝜋

4
[1 − 𝑒−𝛼𝑥]

]
− 𝛽

(
tan

[ 𝜋
4
[1 − 𝑒−𝛼𝑥]

] )2
, |𝛽 | ≤ 1, 𝛼 > 0, 𝑥 ≥ 0. (17)

The pdf of the TTED is obtained as

𝑓 (𝑥) = 𝜋𝛼

4
𝑒−𝛼𝑥 sec2

[ 𝜋
4
[1 − 𝑒−𝛼𝑥]

] (
(1 + 𝛽) − 2𝛽 tan

[ 𝜋
4
[1 − 𝑒−𝛼𝑥]

] )
,

|𝛽 | ≤ 1, 𝛼 > 0𝑥 ≥ 0. (18)

The HF of the TTED is obtained as

𝐻 (𝑥) =
𝜋𝛼
4 𝑒

−𝛼𝑥 sec2 [
𝜋
4 [1 − 𝑒−𝛼𝑥]

] (
(1 + 𝛽) − 2𝛽 tan

[
𝜋
4 [1 − 𝑒−𝛼𝑥]

] )
1 − (1 + 𝛽) tan

[
𝜋
4 [1 − 𝑒−𝛼𝑥]

]
− 𝛽

(
tan

[
𝜋
4 [1 − 𝑒−𝛼𝑥]

] )2 ,

|𝛽 | ≤ 1, 𝛼 > 0, 𝑥 ≥ 0. (19)

The SF of the TTED is obtained as

𝑅(𝑥) = 1 − (1 + 𝛽) tan
[ 𝜋

4
[1 − 𝑒−𝛼𝑥]

]
− 𝛽

(
tan

[ 𝜋
4
[1 − 𝑒−𝛼𝑥]

] )2
, |𝛽 | ≤ 1, 𝛼 > 0, 𝑥 ≥ 0. (20)

The plot of the cdf of the TTED is shown in Fig. 1(a). The plot of the pdf of the TTED is shown in Fig.1(b). The
HF plot of TTED with different shapes, including increasing, decreasing, and J-shaped, is shown in Fig.1(c). The
SF plot of TTED is shown in Fig.1(d).

4.2. Transmuted tangent Weibull distribution

The cdf of the Weibull distribution is given by

𝐺 (𝑥) = 1 − 𝑒−𝛼𝑥𝛾 , 𝛼, 𝛾 > 0, 𝑥 > 0. (21)

The pdf of the Weibull distribution is given by

𝑔(𝑥) = 𝛼𝛾𝑥𝛾−1𝑒−𝛼𝑥𝛾 , 𝛼, 𝛾 > 0, 𝑥 > 0. (22)

The cdf of the transmuted tangent Weibull distribution (TTWD) is obtained as

𝐹 (𝑥) = (1 + 𝛽) tan
[ 𝜋

4
(1 − 𝑒−𝛼𝑥𝛾 )

]
− 𝛽

(
tan

[ 𝜋
4
(1 − 𝑒−𝛼𝑥𝛾 )

] )2
, 𝑥 > 0, |𝛽 | ≤ 1, 𝛼, 𝛾 > 0. (23)
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Figure 1. The cdf, pdf, HF and SF plots of the TTED.

The pdf of the TTWD is obtained as

𝑓 (𝑥) =𝜋
4

sec2
[ 𝜋

4
(1 − 𝑒−𝛼𝑥𝛾 )

]
(𝛼𝛾𝑥𝛾−1𝑒−𝛼𝑥𝛾 )

(
(1 + 𝛽) − 2𝛽 tan

[ 𝜋
4
(1 − 𝑒−𝛼𝑥𝛾 )

] )
,

𝑥 > 0, |𝛽 | ≤ 1, 𝛼, 𝛾 > 0. (24)

The HF of the TTWD is obtained as

𝐻 (𝑥) =
𝜋
4 sec2 [

𝜋
4 (1 − 𝑒−𝛼𝑥𝛾 )

]
(𝛼𝛾𝑥𝛾−1𝑒−𝛼𝑥𝛾 )

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋
4 (1 − 𝑒−𝛼𝑥𝛾 )

] )
1 − (1 + 𝛽) tan

[
𝜋
4 (1 − 𝑒−𝛼𝑥𝛾 )

]
+ 𝛽

(
tan

[
𝜋
4 (1 − 𝑒−𝛼𝑥𝛾 )

] )2 ,

𝑥 > 0, |𝛽 | ≤ 1, 𝛼, 𝛾 > 0. (25)

The SF of the TTWD is obtained as

𝑅(𝑥) = 1 − (1 + 𝛽) tan
[ 𝜋

4
(1 − 𝑒−𝛼𝑥𝛾 )

]
+ 𝛽

(
tan

[ 𝜋
4
(1 − 𝑒−𝛼𝑥𝛾 )

] )2
, 𝑥 > 0, |𝛽 | ≤ 1, 𝛼, 𝛾 > 0. (26)

The plot of the cdf of the TTWD is illustrated in Fig 2(a). The Fig.2(b) shows the pdf of the TTWD, which
shows a decreasing and right-skewed trend. Moreover, the HF plots are shown in Fig.2(c), which shows increasing,
decreasing, or unimodal bell-shaped curves, hence enhancing the distribution’s adaptability to various lifetime data
sets. Whereas the SF is decreasing for the given parameter values shown in Fig.2(d).
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Figure 2. The cdf, pdf, HF and SF plots of the TTWD.

4.3. Transmuted tangent Rayleigh distribution

The cdf of the Rayleigh distribution is given by

𝐺 (𝑥) = 1 − 𝑒−𝛼𝑥2
, 𝛼 > 0, 𝑥 > 0. (27)

The pdf of the Rayleigh distribution is given by

𝑔(𝑥) = 2𝛼𝑥𝑒−𝛼𝑥2
, 𝛼 > 0, 𝑥 > 0. (28)

The cdf of the transmuted tangent Rayleigh distribution (TTRD) is obtained as

𝐹 (𝑥) = (1 + 𝛽) tan
[ 𝜋

4
(1 − 𝑒−𝛼𝑥2)

]
− 𝛽

(
tan

[ 𝜋
4
(1 − 𝑒−𝛼𝑥2)

] )2
, |𝛽 | ≤ 1, 𝑥 > 0 > 0. (29)

The pdf of the TTRD is obtained as

𝑓 (𝑥) =𝜋
4

sec2
[ 𝜋

4
(1 − 𝑒−𝛼𝑥2)

]
(2𝛼𝑥𝑒−𝛼𝑥2)

(
(1 + 𝛽) − 2𝛽 tan

[ 𝜋
4
(1 − 𝑒−𝛼𝑥2)

] )
,

|𝛽 | ≤ 1, 𝑥 > 0 > 0. (30)
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The HF of the TTRD is obtained as

𝐻 (𝑥) =
𝜋
4 sec2

[
𝜋
4 (1 − 𝑒−𝛼𝑥2)

]
(2𝛼𝑥𝑒−𝛼𝑥2)

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋
4 (1 − 𝑒−𝛼𝑥2)

] )
1 − (1 + 𝛽) tan

[
𝜋
4 (1 − 𝑒−𝛼𝑥2)

]
+ 𝛽

(
tan

[
𝜋
4 (1 − 𝑒−𝛼𝑥2)

] )2 ,

|𝛽 | ≤ 1, 𝑥 > 0, 𝛼 > 0. (31)

The SF of the TTRD is obtained as

𝑅(𝑥) = 1 − (1 + 𝛽) tan
[ 𝜋

4
(1 − 𝑒−𝛼𝑥2)

]
+ 𝛽

(
tan

[ 𝜋
4
(1 − 𝑒−𝛼𝑥2)

] )2
, |𝛽 | ≤ 1, 𝑥 > 0, 𝛼 > 0. (32)
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Figure 3. The cdf, pdf, HF and SF plots of the TTRD.

Fig. 3(a) shows the cdf of the TTRD. Fig.3(b) shows the pdf of the TTRD. The HF and SF of the TTRD are
shown in Fig.3(c) and Fig.3(d), respectively.

4.4. Transmuted tangent Lindley distribution

The TTLD studied in detail in this section since the L distribution possesses good analytical ability.
The cdf of the L distribution is given by

𝐺 (𝑥) = 1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)
𝛼 + 1

, 𝛼 > 0, 𝑥 > 0. (33)
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The pdf of the L distribution is given by

𝑔(𝑥) = 𝛼2

(𝛼 + 1) (𝑥 + 1)𝑒−𝛼𝑥 , 𝛼 > 0, 𝑥 > 0. (34)

The cdf of the TTLD is obtained as

𝐹 (𝑥) =(1 + 𝛽) tan
[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)]
−

𝛽

(
tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )2
, |𝛽 | ≤ 1, 𝛼 > 0, 𝑥 > 0. (35)

The pdf of the TTLD is obtained as

𝑓 (𝑥) =𝜋
4

sec2
[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] (
𝛼2

(𝛼 + 1) (𝑥 + 1)𝑒−𝛼𝑥

)
×

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )
, |𝛽 | ≤ 1, 𝛼 > 0, 𝑥 > 0. (36)

The HF of the TTLD is obtained as

𝐻 (𝑥) =
𝜋
4 sec2

[
𝜋
4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥+𝛼+1)

𝛼+1

)] (
𝛼2

(𝛼+1) (𝑥 + 1)𝑒−𝛼𝑥
) (

(1 + 𝛽) − 2𝛽 tan
[
𝜋
4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥+𝛼+1)

𝛼+1

)] )
1 −

[
(1 + 𝛽) tan

[
𝜋
4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥+𝛼+1)

𝛼+1

)]
− 𝛽

(
tan

[
𝜋
4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥+𝛼+1)

𝛼+1

)] )2
] ,

|𝛽 | ≤ 1𝛼 > 0, 𝑥 > 0. (37)

The SF of the TTLD is obtained as

𝑅(𝑥) =1 −
[
(1 + 𝛽) tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)]
−

𝛽

(
tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )2 ]
, |𝛽 | ≤ 1, 𝛼 > 0, 𝑥 > 0. (38)

Fig. 4(a) shows the cdf of the TTLD for different parameter values. The pdf of the TTLD is shown in Fig.4(b)
shows right-skewed and unimodal curves. The HF of the TTLD shows decreasing, increasing, J-shaped, and reverse
J-shaped trends, as shown in Fig.4(c). The SF of the TTLD is shown in Fig.4(d).

4.4.1. Asymptotic property of the TTLD The asymptotic behaviour of the TTLD is given below

lim
𝑥→0

𝑓 (𝑥) = lim
𝑥→0

𝜋

4
sec2

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] (
𝛼2

(𝛼 + 1) (𝑥 + 1)𝑒−𝛼𝑥

)
×

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )
=
𝜋

4
lim
𝑥→0

sec2
[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)]
× 𝛼2

(𝛼 + 1) lim
𝑥→0

(𝑥 + 1)𝑒−𝛼𝑥

× lim
𝑥→0

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )
=
𝜋

4
𝛼2

(𝛼 + 1) (1 + 𝛽).
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Figure 4. The cdf, pdf, HF and SF plots of the TTLD.

lim
𝑥→∞

𝑓 (𝑥) = lim
𝑥→∞

𝜋

4
sec2

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] (
𝛼2

(𝛼 + 1) (𝑥 + 1)𝑒−𝛼𝑥

)
×

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )
=
𝜋

4
lim
𝑥→∞

sec2
[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)]
× 𝛼2

(𝛼 + 1) lim
𝑥→∞

(𝑥 + 1)𝑒−𝛼𝑥

× lim
𝑥→∞

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )
= 0.
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4.4.2. Order statistics of TTLD The order statistics of the TTLD is derived using the Eq.(11). The pdf of the 𝑖𝑡ℎ
order statistics of the TTLD can be written as

𝑓𝑖 (𝑥) =



𝑚!
(𝑖 − 1)!(𝑚 − 𝑖)!

[
(1 + 𝛽) tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)]
− 𝛽

(
tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )2 ] 𝑖−1

×
[
1 − (1 + 𝛽) tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)]
+ 𝛽

(
tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )2 ]𝑚−𝑖

× 𝜋

4
sec2

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] (
𝛼2

(𝛼 + 1) (𝑥 + 1)𝑒−𝛼𝑥

)
×

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )
, |𝛽 | ≤ 1, 𝛼 > 0, 𝑥 > 0.



(39)

The first-order statistic of the TTLD can be written as

𝑓1(𝑥) =



𝑚

[
1 − (1 + 𝛽) tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)]
+ 𝛽

(
tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )2 ]𝑚−1

× 𝜋

4
sec2

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)]
×

(
𝛼2

(𝛼 + 1) (𝑥 + 1)𝑒−𝛼𝑥

)
×

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )
, |𝛽 | ≤ 1, 𝛼 > 0, 𝑥 > 0.


The 𝑚𝑡ℎ order statistics of the TTLD can be written as

𝑓𝑚(𝑥) =



𝑚

[
(1 + 𝛽) tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)]
− 𝛽

(
tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )2 ]𝑚−1

× 𝜋

4
sec2

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] (
𝛼2

(𝛼 + 1) (𝑥 + 1)𝑒−𝛼𝑥

)
(
(1 + 𝛽) − 2𝛽 tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥 (𝛼𝑥 + 𝛼 + 1)

𝛼 + 1

)] )
, |𝛽 | ≤ 1, 𝛼 > 0, 𝑥 > 0.


4.4.3. Quantile function of TTLD The random variable 𝑋 from the TTLD and 𝑝 ∈ (0, 1) then the quantile function
can be derived as

𝑄𝑥 (𝑝) = − 1 − 1
𝛼
− 1
𝛼
𝑊−1

[
−𝑒−(1+𝛼) (𝛼 + 1)

(
1 − 4

𝜋
arctan

[
(1 + 𝛽) −

√︁
(1 + 𝛽)2 − 4𝛽𝑝
2𝛽

])]
,

|𝛽 | ≤ 1, 𝛼 > 0, 𝑥 > 0. (40)

4.4.4. Parameter estimation In this section we are using three different methods for estimating the parameters of
the TTLD.
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Maximum likelihood estimation Consider 𝑥1, 𝑥2, 𝑥3, · · · , 𝑥𝑛 be n random samples from the TTLD. The log-
likelihood function is 𝐿 =

𝑛∑
𝑖=1

log 𝑓 (𝑥𝑖). The log-likelihood function of the TTLD is obtained as

𝐿 =

𝑛∑︁
𝑖=1

log
{
𝜋

4
sec2

[
𝜋

4

(
1 − 𝑒−𝛼𝑥𝑖 (𝛼𝑥𝑖 + 𝛼 + 1)

𝛼 + 1

)] (
𝛼2

(𝛼 + 1) (𝑥𝑖 + 1)𝑒−𝛼𝑥𝑖

)
×

(
(1 + 𝛽) − 2𝛽 tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥𝑖 (𝛼𝑥𝑖 + 𝛼 + 1)

𝛼 + 1

)] ) }
. (41)

It can be simplified as

𝐿 =𝑛 log( 𝜋
4
) +

𝑛∑︁
𝑖=1

log(sec2
[
𝜋

4

(
1 − 𝑒−𝛼𝑥𝑖 (𝛼𝑥𝑖 + 𝛼 + 1)

𝛼 + 1

)]
) + 𝑛 log( 𝛼2

𝛼 + 1
) +

𝑛∑︁
𝑖=1

log(𝑥𝑖 + 1)

− 𝛼
𝑛∑︁
𝑖=1

𝑥𝑖 +
𝑛∑︁
𝑖=1

log(
(
(1 + 𝛽) − 2𝛽 tan

[
𝜋

4

(
1 − 𝑒−𝛼𝑥𝑖 (𝛼𝑥𝑖 + 𝛼 + 1)

𝛼 + 1

)] )
). (42)

We derive the partial differential equation of Eq.(42) with respect to each parameter and equate it with zero, and it
can be solved.
The partial differential equations are

𝜕𝐿

𝜕𝛽
=

𝑛∑︁
𝑖=1

1 − 2 tan
[
𝜋
4

(
1 − 𝑒−𝛼𝑥𝑖 (𝛼𝑥𝑖+𝛼+1)

𝛼+1

)]
(1 + 𝛽) − 2𝛽 tan

[
𝜋
4

(
1 − 𝑒−𝛼𝑥𝑖 (𝛼𝑥𝑖+𝛼+1)

𝛼+1

)] . (43)

𝜕𝐿

𝜕𝛼
= − 𝜋

2

𝑛∑︁
𝑖=1

tan
[
𝜋

4

(
1 − 𝑒−𝛼𝑥𝑖 (𝛼𝑥𝑖 + 𝛼 + 1)

𝛼 + 1

)]
×

𝑒−𝛼𝑥𝑖 [−𝑥𝑖 (𝛼𝑥𝑖 + 𝛼 + 1) (𝛼 + 1) + (𝑥𝑖 + 1) (𝛼 + 1) − (𝛼𝑥𝑖 + 𝛼 + 1)]
(𝛼 + 1)2

+ 2𝑛
𝛼

− 𝑛

𝛼 + 1
−

𝑛∑︁
𝑖=1

𝑥𝑖 +
𝑛∑︁
𝑖=1

𝜋

4

2𝛽 sec2
[
𝜋
4

(
1 − 𝑒−𝛼𝑥𝑖 (𝛼𝑥𝑖+𝛼+1)

𝛼+1

)]
(1 + 𝛽) − 2𝛽 tan

[
𝜋
4

(
1 − 𝑒−𝛼𝑥𝑖 (𝛼𝑥𝑖+𝛼+1)

𝛼+1

)] ×
𝑒−𝛼𝑥𝑖 [−𝑥𝑖 (𝛼𝑥𝑖 + 𝛼 + 1) (𝛼 + 1) + (𝑥𝑖 + 1) (𝛼 + 1) − (𝛼𝑥𝑖 + 𝛼 + 1)]

(𝛼 + 1)2 . (44)

Equations (43) and (44) can be solved to find the approximate solution for MLE of the TTLD.

Bayesian estimation The parameters of the TTLD are estimated by employing the Bayesian estimation method. We
assume a gamma prior since the parameter 𝛼 is greater than zero, and we choose a beta prior since the parameter
𝛽 lies between [-1, 1]. Other appropriate distributions can also be used to choose priors. We employed the Markov
Chain Monte Carlo (MCMC) approach to obtain samples from the posterior distribution of the parameters of the
TTLD since the direct sampling is difficult. By the advantage of the Bayes theorem, the posterior distribution is
defined as

𝑓 (𝛼, 𝛽 |𝑥, 𝑦) ∝ 𝑓 (𝑦 |𝑥, 𝛼, 𝛽) 𝑓 (𝛼) 𝑓 (𝛽) = 𝐾 𝑓 (𝑦 |𝑥, 𝛼, 𝛽) 𝑓 (𝛼) 𝑓 (𝛽). (45)

Where 𝑓 (𝑦 |𝑥, 𝛼, 𝛽) is the likelihood function of the TTLD, 𝑓 (𝛼) and 𝑓 (𝛽) are the prior distributions for
the parameters. The NO-U-Turn sampler (NUTS) is used to approximate the posterior distribution because it
automatically tunes the step size, which makes it more robust.
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Bayesian neural network The BNN uses steps similar to the classical Bayesian technique. As discussed in the
Bayesian estimation method, the priors of the parameters are chosen similarly. That is 𝛼 ∼ Gamma(𝜔𝛼,Ω𝛼) since
𝛼 > 0 and 𝛽 ∼ Beta(𝜔𝛽 ,Ω𝛽) since 𝛽 ∈ [−1, 1]. The Bayes’ theorem is applied to find the posterior distribution
of the TTLD. The BNN is defined with three-layer feed forward propagation and activation function as ReLU
function. The prior distributions are assigned as weights to deal with the uncertainty in their values. The Gamma
prior is chosen with Gamma(2,1) and the Beta prior is chosen with Beta(2,2) as hyperparameters of the priors. We
employed a feed-forward Bayesian neural network with an input layer with one feature, two hidden layers containing
ten neurones each with ReLU activations, and an output layer with two outputs. Constraints were established by
𝛼 = softplus(𝛼) (ensuring 𝛼 > 0) and 𝛽 = tanh(𝛽) (ensuring −1 < 𝛽 < 1). We used the MCMC approach to obtain
samples from the posterior distribution of the parameters of the TTLD. The posterior distribution of the network’s
weights and biases is estimated by MCMC sampling utilising the NUTS technique. It consists of 100 burn-in steps
and 200 iterations; also, it runs a single MCMC chain. It converges with zero divergence It is not using point
estimates (like gradient descent in a standard neural network). Instead, it samples from the posterior distribution
over weights using Hamiltonian Monte Carlo (via NUTS). This gives a distribution over weights, not a single value.

Table 1. Simulation results for different parameter estimation methods.

Method=BNN
Parameter Sample Size True value Estimated value Lower HDI Upper HDI

100 1.1 1.1000774 1.0017266 1.1973284
𝛼 200 1.1 1.099689 0.99851996 1.1967367

500 1.1 1.0998425 1.0007869 1.1965
750 1.1 1.1000164 1.0007172 1.1978334
100 0.8 0.79995674 0.70210266 0.89807665

𝛽 200 0.8 0.80050534 0.7019766 0.8988638
500 0.8 0.80011576 0.69955117 0.8967835
750 0.8 0.800005 0.799303 0.800761

Method=Bayesian estimation
Parameter Sample Size True value Estimated value Lower HDI Upper HDI

100 1.1 1.051 0.876 1.248
𝛼 200 1.1 1.068 0.898 1.241

500 1.1 1.101 0.940 1.278
750 1.1 1.101 0.945 1.254
100 0.8 0.526 0.059 0.961

𝛽 200 0.8 0.618 0.253 0.966
500 0.8 0.684 0.386 0.980
750 0.8 0.709 0.425 0.979

Method=MLE
Parameter Sample Size True value Estimated value Lower HDI Upper HDI

100 1.1 1.48529 1.29600 1.89440
𝛼 200 1.1 1.15481 1.04317 1.30112

500 1.1 1.56064 1.32707 1.75650
750 1.1 1.27987 1.03987 1.56166
100 0.8 0.35075 -0.19492 0.58387

𝛽 200 0.8 0.60091 0.48116 0.74623
500 0.8 -0.07692 -0.36634 0.30028
750 0.8 0.41983 0.00977 0.82283

4.4.5. Simulation The simulation study is conducted to evaluate the effectiveness of the estimation methods. We
have conducted the simulation studies for the different sample sizes, n=100,200,500,750 with 1000 replications
and is presented in Table.1. For the parameter 𝛼 for n=750 the MLE is 1.27987 and the actual value is 1.1 which

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1568 BAYESIAN ESTIMATION, BAYESIAN NEURAL NETWORK AND MAXIMUM LIKELYHOOD ESTIMATION

indicates the significant deviation from the actual value. From the table it is clear that the 95% highest density
intervals (HDI) are (1.03987,1.56166) wider, and it suggests underestimation. The MLE for the parameter 𝛽 at
n=750, is 0.41983, the corresponding 95% HDIs are (0.00977, 0.82283). Which indicates wider HDIs.
For n=750 the Bayesian estimate of 𝛼 is 1.101 and the corresponding 95%H DIs are (0.945,1.254). For the parameter
𝛽 for n=750 the Bayesian estimate is 0.709 the corresponding 95% HDIs are (0.425, 0.979). It gives better results
than MLE estimates.
From Table.1 the BNN estimate 𝛼 is 1.1000164, it is very close to the actual value 1.1. Also the 95% HDIs are given
by (1.0007172, 1.1978334). The interval reveals high accuracy in the estimates. The BNN estimate,𝛽, for n=750,
is 0.800005. The 95% HDI is (0.799303,0.800761). It also shows high confidence to the estimates. The simulation
study is done using Python software in Google Colab which uses the libraries in Python, such as pyro, torch, numpy,
PyMC3, etc. The BNN estimates show high precision compared to the MLE and Bayesian estimation methods even
though it takes more running time. All the experiments were conducted in a machine which is configured with an
11th Gen Intel(R) Core(TM) i3-1115G processor and 8.00 GB RAM.

5. Data analysis

This section provides an application of the TTLD to cancer data sets. The data sets are selected from three different
cancer types to show the flexibility of the family. The performance of the members of the TTFD is compared using
the breast cancer data given in section 5.2; among them, the TTLD performs better with the low error measures
and high p-value; hence, we choose the TTLD to compare with the other families of distributions. The results are
given in table 2. We compare the efficiency of the TTFD through the TTLD with the other four well-established
trigonometric families of distributions. Similar analysis can be done to TTED, TTWD, and TTRD belonging to

Table 2. MLEs and comparison criteria for the distributions in the TTFD.

Model MLE LL AIC BIC HQIC KS p-value
TTLD 𝛼̂=0.04400757 580.252 1164.504 1170.096 1166.775 0.06364 0.7112

𝛽 = 0.33583595
TTRD 𝛼̂=0.0003653551 604.0176 1212.035 1217.627 1214.306 0.13861 0.03913

𝛽 = 0.5456991037
TTWD 𝛼̂=0.01899426 581.1011 1168.202 1176.59 1171.609 0.10492 0.5393

𝛽 = 0.04559404
𝛾̂ = 1.08391557

TTED 𝛼̂=0.03559367 581.3904 1166.781 1172.372 1169.052 0.12555 0.6441
𝛽=-0.40630820

the TTFD. The comparison of TTLD with existing distribution:

• Hyperbolic tangent inverse exponential distribution (HTIE)[26]

𝐹 (𝑥) =
(
𝑒𝑎 + 𝑒−𝑎
𝑒𝑎 − 𝑒−𝑎

)
tanh(𝑎𝑒 −𝜃

𝑥 ); 𝑥 > 0, 𝜃 > 0, 𝑎 > 0.

• Hyperbolic cosine exponential distribution (HCE)[15]

𝐹 (𝑥) = 2𝑒𝑎

𝑒2𝑎 − 1
sinh(𝑎(1 − 𝑒−𝜆𝑥)), 𝜆 > 0, 𝑎 > 0, 𝑥 > 0.

• New hyperbolic sine Rayleigh distribution (NHSRD)[1]

𝐹 (𝑥) = 2𝑒 (1−𝑎)

(𝑒 (1−𝑎) − 1)2 (cosh(𝑎1−𝑒−𝜃𝑥2
− 1) − 1), 𝑥 > 0, 𝜃 > 0, 𝑎 > 0.
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• Cosine Weibull distribution (CosW)[39]

𝐹 (𝑥) = 1 − sin
(
𝜋

2
(𝑒𝑥𝑝(−(𝜆𝑥)𝛼))

)
, 𝜆 > 0, 𝑎 > 0, 𝑥 > 0.

We employ various discriminative measures, including the Bayesian Information Criterion (BIC), Akaike
Information Criterion (AIC) and Hannan-Quinn Information Criterion (HQIC) to assess the adaptability of the
TTLD. A distribution with lower BIC, AIC, and HQIC values is considered a superior fit. Furthermore, we utilise
the Kolmogorov-Smirnov test statistic (KS), LL function, and p-value. A high p-value and lower LL and KS values
imply a superior fit to the data. Ultimately, we present the histograms of the data sets and illustrate the fitted density
functions to facilitate a visual comparison of the families. The descriptive measures of the data sets are given in
Table 3.

5.1. Head and Neck cancer data

This data set illustrates the survival times of patients with head and neck cancer. The patients received treatment
through radiotherapy and chemotherapy. It was previously studied by Efron [7]. The hazard rate of the data was
measured using the total time on test transform (TTT) plot given in 5(b).
Data set I: 12.2, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46,58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84,
92, 94,110, 112, 119,127, 130, 133, 140, 146, 155,159 ,173 ,179, 194, 195, 209, 249, 281, 319,339, 432, 469, 519,
633, 725, 817, 1776.

Table 3. Descriptive measures of data sets

n Mean Median Mode Min Max Variance Skewness Kurtosis
Data set I 44 223.477 128.5 100 12.2 1776 93286.41 3.38382 13.5596
Data set II 121 46.32893 40 10 0.3 154 1244.464 1.04318 0.40214
Data set III 42 12.88095 10.5 6,8 1 35 87.37573 0.87599 -0.12996

Table 4. MLEs and comparison criteria for data set I

Model MLE LL AIC BIC HQIC KS p-value
TTLD 𝛼̂ = 0.01114032 292.0735 588.1469 591.7153 589.4703 0.9344803 0.4909

𝛽 = 0.51419030
HTIE 𝑎̂=0.9711573 406.7488 817.4976 821.066 818.821 0.48284 5.789e-10

𝜃̂ = 4.7218041
HCE 𝑎̂=4.85365979 394.5152 793.0304 796.5987 794.3537 0.40768 4.002e-07

𝜆=0.02888578
NHSRD 𝑎̂=1.689926 539.4779 1082.956 1086.524 1084.279 0.31322 0.0002466

𝜃̂=5.319295e-05
CosW 𝛼̂ = 0.2328192 315.4279 634.8559 638.4243 636.1792 0.53207 3.711e-12

𝜆=0.1015042

5.2. Breast cancer data

This dataset illustrates the survival times of 121 breast cancer patients sourced from a major hospital between 1929
and 1938, as documented by Lee [18]. The hazard shape of the data measured using the TTT plot is given in 6(b).
Data set II: 0.3, 4.0, 0.3, 5.0, 6.2, 5.6, 6.3, 6.8, 6.6, 7.4, 8.4, 7.5, 8.4, 11.0, 10.3, 11.8, 12.3, 12.2, 14.4, 13.5, 14.8,
14.4, 15.5, 16.2, 15.7, 16.3, 16.8, 16.5, 17.2, 17.5, 17.3, 17.9, 20.4, 19.8, 20.9, 21.0, 21.0, 21.1, 23.4, 23.0, 23.6,
27.9, 24.0, 28.2, 24.0, 29.1, 31.0, 30.0, 31.0, 35.0, 32.0, 37.0, 35.0, 37.0, 38.0,37.0, 38.0, 45.0,39.0, 41.0, 39.0,
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Figure 5. The pdf plots and TTT plot of data set I

40.0, 38.0, 40.0, 43.0, 41.0, 43.0, 41.0, 40.0, 42.0, 44.0, 43.0, 45.0, 48.0, 46.0, 47.0, 46.0, 51.0, 49.0, 51.0, 52.0,
51.0, 55.0, 54.0, 56.0, 58.0, 57.0, 59.0, 62.0, 60.0, 65.0, 60.0, 67.0, 60.0, 61.0, 65.0, 68.0,67.0, 69.0, 80.0, 78.0,
83.0, 89.0, 88.0, 90.0, 96.0, 93.0, 105.0, 103.0, 109.0, 111.0, 109.0, 115.0, 125.0, 117.0, 126.0, 129.0, 129.0, 154.0,
127.0, 139.0.

5.3. Leukemia data

The remission periods of individuals with acute leukaemia were analysed to evaluate the efficacy of 6-MP in
maintaining remission time. This data was previously used by Freireich et al. [9]. The hazard shape of the data
illustrated using the TTT plot is given in 7(b).
Data set III: 6, 6, 6, 7, 10, 13, 16, 22, 23, 6, 9, 10, 11, 17, 19, 20, 25, 32, 32, 34, 35, 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8,
8, 11, 11, 12, 12, 15, 17,22, 23.
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Figure 6. The pdf plots and TTT plot of data set II

6. Results

Table 1 shows that as n increases, the BNN method gives a better approximation to the true value of the parameters
as compared to the Bayesian estimation and MLE method. The Bayesian method perform better as compared to the
MLE method as it gives closer values to the true values of the parameters.
Three cancer datasets regarding the remission periods or survival times of different cancer patients were utilised to
evaluate the suitableness of the TTFD in comparison to other established families. The efficiency of the suggested
family is evaluated by the use of goodness-of-fit measures. Tables 4-6 demonstrate that the suggested family
surpasses the other four families, offering a superior fit for the data set as indicated by the highest p-value of the K-S
statistics. The TTLD gives the lowest AIC, BIC, and HQIC to the data sets as compared with its competitors. The
lowest values of the error measures also indicate a good fit to the data sets. Consequently, the TTFD is appropriate,
as it fits more effectively with the datasets compared to alternative families. Moreover, a comparison of the pdfs
with the calculated parameter values reveals the optimal fit illustrated in Fig. 5(a), Fig. 6(a) and Fig.7(a).
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Table 5. MLEs and comparison criteria for data set II

Model MLE LL AIC BIC HQIC KS p-value
TTLD 𝛼̂=0.04400757 580.252 1164.504 1170.096 1166.775 0.06364 0.7112

𝛽 = 0.33583595
HTIE 𝑎̂=0.9597745 809.8344 1623.669 1629.26 1625.94 0.44233 2.2e-16

𝜃̂ = 4.9854785
HCE 𝑎̂=1.58115998 582.6202 1169.24 1174.832 1171.511 0.13534 0.02376

𝜆=0.03147176
NHSRD 𝑎̂=1.318810567 766.4766 1536.953 1542.545 1539.224 0.2122 3.702e-05

𝜃̂=0.001002918
CosW 𝛼̂ =0.46099355 620.8464 1245.693 1251.284 1247.964 0.30945 1.725e-10

𝜆 =0.07349516

Table 6. MLEs and comparison criteria for data set III

Model MLE LL AIC BIC HQIC KS p-value
TTLD 𝛼̂ = 0.1567516 146.1109 296.2218 299.6972 297.4957 0.068944 0.9884

𝛽 = 0.1636023
HTIE 𝑎̂=1.470990 177.9557 359.9113 363.3867 361.1852 0.29527 0.00132

𝜃̂ = 4.893578
HCE 𝑎̂ = 3.0169966 147.1796 298.3591 301.8345 299.633 0.13776 0.4028

𝜆=0.1189993
NHSRD 𝑎̂=1.133070571 176.4619 356.9238 360.3992 358.1977 0.33691 0.0001446

𝜃̂=0.005942723
CosW 𝛼̂ =0.9365613 149.5708 303.1416 306.6169 304.4154 0.20282 0.06315

𝜆=0.1492574

Furthermore, the TTT plot indicates the characteristics of the HF of the given data. The curve is initially concave
and subsequently convex in Fig.5(b), indicating that the HF is unimodal. In Fig.6(b) and Fig.7(b), the curve is
concave, indicating that the HF is increasing. Consequently, we assert that the suggested family is effective for
estimating the survival and remission times in cancer datasets.

7. Conclusion

Cancer is one of the crucial contributors to the immature mortality rate. It is important to study and analyse
the remission periods or survival times of cancer patients with the help of probability distributions. Classical
distributions may inadequately represent the datasets. The TTFD is introduced to make more flexible distributions
for better modelling of the lifetime data sets. Various structural properties are examined, including SF, HF, reverse
hazard function, ordinary and incomplete moments, quantile function, order statistics, etc. We generated four special
members from TTFD, such as TTED, TTWD, TTRD, and TTLD; their pdf, cdf, HF, and SF are also derived and
illustrated graphically. We have estimated the parameters of the TTLD using three different methods such that BNN,
Bayesian estimation and MLE. This study indicates that the BNN estimation gives accurate results compared to the
other two. We used three sets of remission periods or survival times of cancer data sets to emphasise the potentiality
of this novel family. We executed data analysis using TTLD. The TTLD provides a superior fit compared to other
competing distributions derived from established families. We anticipate that this generalisation will garner broader
applicability across other domains.
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Figure 7. The pdf plots and TTT plot of data set III
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3. N. Alsadat, C. Taniş, L. P. Sapkota, C. S. Rajitha, M. M. Bahloul, and A. M. Gemeay, Power unit exponential probability distribution:

Statistical inference and applications, Alexandria Engineering Journal, vol. 107, pp. 332–346, 2024.
4. A. Alzaatreh, C. Lee, and F. Famoye, A new method for generating families of continuous distributions, Metron, vol. 71, no. 1, pp.

63–79, 2013.
5. C. B. Ampadu, The hyperbolic Tan-X family of distributions: Properties, application and characterization, Journal of Statistical

Modelling: Theory and Applications, vol. 2, no. 1, pp. 1–13, 2021.
6. L. Bortolussi, G. Carbone, L. Laurenti, A. Patane, G. Sanguinetti, and M. Wicker, On the robustness of Bayesian neural networks to

adversarial attacks, IEEE Transactions on Neural Networks and Learning Systems, vol. 36, no. 4, pp. 6679–6692, 2024.
7. B. Efron, Logistic regression, survival analysis, and the Kaplan-Meier curve, Journal of the American Statistical Association, vol.

83, no. 402, pp. 414–425, 1988.
8. F. Y. Eissa, C. D. Sonar, O. A. Alamri, and A. H. Tolba, Statistical inferences about parameters of the pseudo Lindley distribution

with acceptance sampling plans, Axioms, vol. 13, no. 7, pp. 443, 2024.
9. E. Freireich, E. Gehan, E. Frei III, L. R. Schroeder, I. J. Wolman, R. Anbri, E. O. Burgert, S. D. Mills, D. Tinkel, O. S. Selawry, et

al., The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia: A model for evaluation of other
potentially useful therapy, Blood, vol. 21, pp. 699–716, 1963.

10. R. C. S. Guptha and S. K. Maruthan, A new generalization of power Lindley distribution and its applications, Thailand Statistician,
vol. 21, no. 1, pp. 196–208, 2023.

11. A. S. Hassan and S. G. Nassr, Power Lindley-G family of distributions, Annals of Data Science, vol. 6, pp. 189–210, 2019.
12. A. S. Hassan, D. S. Metwally, M. Elgarhy, H. E. Semary, A. Faal, and R. E. Mohamed, Sine Power Unit Inverse Lindley Model:

Bayesian Analysis and Practical Application, Engineering Reports, vol. 7, no. 6, pp. e70242, 2025.
13. G. H. Jowett, The exponential distribution and its applications, The Incorporated Statistician, vol. 8, no. 2, pp. 89–95, 1958.
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