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Abstract In this study, we consider the problem of determining the effect of carbon tax and green technologies over infinite
planning horizon. We have developed two economic order quantity models considering constant demand and exponential
time dependent demand. Carbon emissions may also occur from storing undelivered or unsold products due to some
factors. Investment in green technology is also considered. In this article, we fuzzify the inventory parameters such as
demand, ordering cost, holding cost and the amount of carbon emitted when storing the products. To incorporate uncertainty,
pentagonal fuzzy numbers are utilized to fuzzify the parameters of the inventory system. The graded mean integration method
is used for defuzzification. The optimal values of the order quantity, cycle time and optimal inventory cost in both crisp and
fuzzy sense is determined for both the models. Numerical illustrations are given to demonstrate the solution procedure and
the sensitivity of various parameters are analysed. When the demand is constant, our results implies that 4.94% savings can
be obtained by investing in green technology and reducing carbon tax. A significant percentage (4.39%) of reduction in the
total cost can also be achieved by green investment, when the nature of the demand is exponentially time dependant.
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1. Introduction

Constant demand refers to steady, predictable demand, which simplifies inventory planning and minimizes costs.
It is suitable for stable products with regular consumption patterns, but may not account for market fluctuations.
Exponential time-sensitive demand involves rapid growth or decline, often driven by factors such as promotions
or seasonality. It requires flexible inventory management to capture sales opportunities during spikes and prevent
overstocking during declines. This is critical for perishable, seasonal, or trending products but involves more
complex forecasting. Effective inventory strategies often combine approaches for both types of demand, leveraging
technology and safety stock to balance cost efficiency and responsiveness. Sarkar [12] established an EOQ model
considering finite replenishment rates, where both demand and deterioration rates change over time. Shukla et al.
[15] developed an inventory model for deteriorating products with exponentially growing demand. This model
allows for partial backorders during stockouts. Tripathi and Mishra [17] developed a model for situations where
demand increases linearly with time, and holding costs change over time. Tripathi et al. [18] investigated an EOQ
model with demand increasing exponentially over time under variable deterioration. Tripathi and Mishra [19]
developed an inventory model with constant and exponential time-dependent demand.
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Carbon emissions from inventory storage have a significant impact on sustainable inventory management.
Various studies have explored strategies to minimize these emissions while maintaining profitability and efficiency
in inventory systems. Managing carbon emissions in inventory systems requires a comprehensive approach that
integrates cost considerations with environmental impacts. By adopting integrated models and investing in green
technologies, businesses can achieve more sustainable inventory practices while complying with regulatory
requirements. Hincent and Bironneau [4] explained an EOQ model that is carbon-constrained, which enables a
company to maximize its profit while considering and managing its carbon emissions. Huang et al. [6] examined
the effects of carbon regulations and green technology on a two-echelon supply chain, accounting for carbon
emissions generated during manufacturing, shipping, and storage processes. Priyan [9] investigated the effect of
green investment to reduce carbon emission in an imperfect production system. Toptal et al. [16] analyzed an
inventory model that integrates investment in carbon emission reduction. Wang and Song [21] focused on pricing
tactics for a dual-channel supply chain, emphasizing the role of green investment in the context of uncertain
demand.

To deal with uncertainties and imprecision in various inventory parameters such as costs, demand, etc., the
concept of fuzziness provides a robust framework in inventory management. This approach enhances decision-
making, optimizes costs, and improves profitability by allowing for more flexible and adaptable inventory models.
In the modeling of uncertain and imprecise parameters, fuzzy numbers are often employed to represent vagueness
in a structured manner. The most commonly used membership functions are triangular, trapezoidal, and pentagonal
fuzzy numbers. Triangular fuzzy numbers (TFN) are simple and computationally efficient, but they provide only
a single peak with linear rise and fall. This oversimplification may fail to capture the realistic uncertainty patterns
of many practical problems. Trapezoidal fuzzy numbers (TrFN) extend the triangular form by introducing a flat
plateau, thereby allowing a range of equally possible values. While this improves flexibility, the plateau assumes
uniform plausibility across the interval, which is not always accurate. Pentagonal fuzzy numbers (PFN) provide a
more refined representation of uncertainty by introducing five defining points. This structure enables the model to
represent both a specific most-likely value (the central point) and a tolerance range around it.

Hemalatha and Annadurai [1] developed an inventory model with advance payment under a fuzzy environment.
Hemalatha and Annadurai [2] framed a fuzzy mathematical model of an integrated production- distribution
inventory model for deteriorating items. Hemalatha and Annadurai [3] designed an inventory model in which the
carrying cost, ordering cost, and replenishing processing cost are assumed to be pentagonal fuzzy numbers. A
fuzzy production model for deteriorating items was developed by Indrajitsingha et al. [7], considering demand
to be constant. Kaur [8] discussed about pentagonal fuzzy numbers and their arithmetic operations. Priyan et al.
[10] examined an EOQ inventory system with advance payment considering fuzzy parameters. Roy and Maiti
[11] established the fuzzy EOQ model with demand-dependent unit cost and limited storage capacity. Sarkar
and Mahapatra [13] developed a fuzzy inventory model with variable lead time and fuzzy demand with periodic
reviews. Shaikh et al.[14] developed an inventory model for perishable goods with variable demand in a fuzzy
environment. The model incorporates permissible delay in payments, allowing for partial backlogging of shortages,
and operates under the Shortage Follows Policy. Valliathal and Uthayakumar [20] designed replenishment policies
for non-instantaneous deteriorating items under a fuzzy environment. Wang[22] expalined the concept of Fuzzy
points and local properties of fuzzy topology.

To the best of our knowledge, no prior research has focused on developing the EOQ model under fuzzy
environment considering carbon emission and green investment with time-dependent demand over an infinite
planning horizon. Hence, in this study, we develop two inventory models that consider carbon emission where the
inventory parameters such as demand, inventory costs, the amount of carbon emissions in storing a unit product
are treated to be fuzzy. In Model I, inventory models considering carbon emission and carbon tax is developed.
In model II, inventory models considering carbon emission with green investment to reduce carbon tax are
considered. In both models, demand is considered to be constant in the first case and exponential time-dependent
demand in the second case. The fuzzy nature of ordering cost, holding cost, demand and the amount of carbon
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emissions in storing a unit product is addressed. We set pentagonal fuzzy numbers to fuzzify the parameters,
and defuzzification is performed using the graded mean integration method. The influence of fuzziness on total
inventory cost, as well as its impact on decision variables such as cycle time and order quantity, is also analyzed.
The model determines the optimal total cost, aiming to fill a significant gap in the existing literature.

The subsequent sections of this article are designed as follows: In section 2, preliminaries are given. The
various assumptions made and the notation used in the article are given in section 3. In section 4, the mathematical
model formulation with carbon tax is given. In section 5, the mathematical model formulation with carbon tax
and green investment is given. In section 6, a numerical example and insights and discussion are provided. The
managerial implications obtained from our research are given in section 7. Finally, section 8 provides some
concluding remarks.

2. Preliminaries

Fuzzy Point

A fuzzy point p in X is a fuzzy set with membership function

µp(x) =

{
y, for x = x0

0, otherwise

where 0 < y < 1. p is said to have support x0 and value y.

Fuzzy Set

A Fuzzy set Ã in R is defined to be a set of ordered pairs Ã = {(x, µÃ(x))/x ∈ X,µÃ(x) ∈ [0, 1]} where
µÃ(x) is called the membership function for the fuzzy set.

Fuzzy number

A fuzzy number is a fuzzy subset of the real line which is both normal and convex. For a fuzzy number Ã,
its membership function can be denoted by

µÃ(x) =


l(x), x < m

1, m ≤ x ≤ n

u(x), x > n

where l(x) is upper semi-continuous, strictly increasing for x < m and there exists m1 < m such that l(x) = 0 for
x ≤ m1. u(x) is continuous, strictly decreasing function for x > n and there exists n1 ≥ n such that u(x) = 0 for
x > n1. l(x) and u(x) are called the left and right reference functions, respectively.

Pentagonal Fuzzy Number

Pentagonal Fuzzy Numbers combine the advantages of triangular (clear peak) and trapezoidal (flat core)
fuzzy numbers while offering:

1. Greater flexibility in capturing expert opinions and realistic uncertainty.
2. Smooth transition of membership values, avoiding abrupt changes in plausibility.
3. Improved precision in decision-making, since they distinguish between close alternatives more effectively.
4. Balanced complexity and expressiveness, requiring only one additional parameter compared to trapezoidal

fuzzy numbers but significantly enhancing representation power.
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A fuzzy number Ã = (a, b, c, d, e) is called pentagonal fuzzy number if its membership function is represented as

µÃ(x) =



L1(x) =
x−a
b−a , a ≤ x ≤ b

L2(x) =
x−b
c−b , b ≤ x ≤ c

1, x = c

R1(x) =
d−x
d−c , c ≤ x ≤ d

R2(x) =
e−x
e−d , d ≤ x ≤ e

0, x < a, e ≤ x

Following Hemalatha and Annadurai [3], the α-cut of a pentagonal fuzzy number Ã = (a, b, c, d, e), 0 ≤ α ≤ 1 is
A(α) =

[
AL(α), AR(α)

]
where AL(α) = a+ (b− a)α and AR(α) = d− (d− c)α are the left and right end point

of Aα.

In this context we have, AL1
(α) = a+ (b− a)α = L−1

1 (α), AL2
(α) = b+ (c− b)α = L−1

2 (α) and

AR1(α) = d− (d− c)α = R−1
1 (α), AR2(α) = e− (e− d)α = R−1

2 (α)

So, L−1(α) =
L−1

1 (α)+L−1
2 (α)

2 = a+b+α(c−a)
2 and R−1(α) =

R−1
1 (α)+R−1

2 (α)

2 = d+e−α(e−c)
2

For example, consider the fuzzy demand represented by a pentagonal fuzzy number
(1200, 2700, 4500, 5200, 6740).
This set of five values represents different levels of possibility for the demand:

• 1200 (a): The lowest possible demand. Demand values below this are considered impossible.
• 2700 (b): The point where demand starts to be considered reasonably possible.
• 4500 (c): The most likely or expected demand value (the “core” or peak).
• 5200 (d): A higher but still plausible demand level.
• 6740 (e): The maximum possible demand. Values beyond this are impossible.

Hence, in the proposed inventory optimization model, pentagonal fuzzy numbers are adopted to represent uncertain
cost parameters more accurately and to enhance the reliability of the derived policies.

Graded Mean Integration Method

If Ã = (a, b, c, d, e) is a pentagonal fuzzy number then the graded mean integration representation of Ã is
defined as

G(Ã) =
1∫WA

0
αdα

∫ WA

0

α(L−1(α) +R−1(α))

2
dα,with 0 ≤ α ≤ WA, 0 < WA ≤ 1

=
1∫ 1

0
αdα

∫ 1

0

α(L−1(α) +R−1(α))

2
dα

=

∫ 1

0

α(L−1(α) +R−1(α)) dα

=

∫ 1

0

α

[(
a+ b+ α(c− a)

2

)
+

(
d+ e− α(e− c)

2

)]
dα

=
1

12
[a+ 3b+ 4c+ 3d+ e] (1)
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3. Assumptions and Notations

Assumptions

1. An infinite planning horizon is considered.
2. Shortages are not permitted.
3. Holding cost is time-dependent.
4. The demand rate is considered to be time-dependent.
5. Exponentially time dependent demand is considered to be D(t) = αeβt, α > 0, β > 0.
6. In the fuzzy model, the demand rate, ordering cost, holding cost, and the amount of carbon emissions are

represented using pentagonal fuzzy numbers.
7. The method of graded mean integration is utilized for defuzzification.
8. Emissions produced from holding inventory should be taken into account.
9. Green technology investment is taken into account.

10. Two models are examined. In the first model, only carbon tax is considered. In the second model, both carbon
tax and green technology were considered.

11. R(G) = ϕG− ωG2, where ϕ denotes the carbon reduction efficiency factor, and ω denotes the offsetting
carbon reduction factor.

Notations

I(t) Inventory level at instant t
α Demand rate
h(t) h+ γt = Holding cost per unit time, where h > 0, γ > 0
A Ordering cost per order
T1 Cycle time for Model I with constant demand
T2 Cycle time for Model I with exponentially time-dependent demand
T3 Cycle time for Model II with constant demand
T4 Cycle time for Model II with exponentially time-dependent demand
TC1 Total cost per cycle time for Model I with constant demand
TC2 Total cost per cycle time for Model I with exponentially time-dependent demand
TC3 Total cost per cycle time for Model II with constant demand
TC4 Total cost per cycle time for Model II with exponentially time-dependent demand
Q1 Order quantity for Model I with constant demand
Q2 Order quantity for Model I with exponentially time-dependent demand
Q3 Order quantity for Model II with constant demand
Q4 Order quantity for Model II with exponentially time-dependent demand
CE Carbon reduction effective cost
Eh The amount of carbon emissions in storing a unit product
c1 Carbon tax of unit carbon emission
G Green investment amount

4. Model I (Inventory models considering carbon tax)

On each ton of carbon emissions, the government imposes a tariff, which is usually converted into a tax on the use
of oil consumption, natural gas, and electricity. A carbon tax on holding inventory is a fee imposed on businesses
for the greenhouse gas emissions generated during the storage of goods. These emissions arise from energy used
for activities like lighting, cooling, and internal transport within warehouses. This tax incentivizes businesses to
reduce emissions by optimizing inventory levels, improving energy efficiency, and adopting sustainable practices,
ultimately aligning inventory management with environmental sustainability. Hence we consider carbon tax in this
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model.

Case (i)

Model with constant demand

Figure 1. A graphical representation of the inventory model

Constant demand in inventory refers to a steady and predictable need for a product over time. It simplifies inventory
management, reduces stockout risks, and lowers carrying costs. While beneficial for planning, real-world demand
often requires adjustments to handle occasional variations. The item’s demand rate is assumed to be constant in
this model. During the time interval [0, T ], the consumer’s demand causes the inventory of products to decline.
This situation can be represented by the following differential equation (Depicted in Figure 1)

dq(t)

dt
= −α, 0 < t < T. (2)

With the boundary conditions, q(0) = Q and q(T ) = 0. The solution of (2) is,

q(t) = α(T − t). (3)

The total inventory cost consists of the following components:
The ordering cost = OC = A

T .
The holding cost during the time interval [0, T ] is given by = HC = 1

T

∫ T

0
(h+ γt)q(t) dt = αT

6 (3h+ γT ).
Carbon emissions may also occur from storing undelivered or unsold products due to product characteristics or
other factors. The carbon tax for storing the inventory can be obtained as follows.
The carbon tax = CT = Ehc1

T

∫ T

0
q(t) dt = c1EhαT

2
Total inventory cost is obtained by summing up ordering cost (OC), holding cost (HC) and carbon tax (CT ).
Therefore,

Total cost = TC1 = OC +HC + CT =
A

T
+

αT

6
(3h+ γT ) +

c1EhαT

2
. (4)

The optimal value of T is obtained by solving
d(TC1)
dT = 0.

Differentiating (4) with respect to ‘T ’ and equating to zero. We have,

d(TC1)

dT
=

α

6
(3h+ 2γT ) +

c1Ehα

2
− A

T 2
= 0. (5)

Further,
d2(TC1)
dT 2 = 2A

T 3 +
αγ
6 > 0.
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Therefore, TC1 is convex with respect to T .

Fuzzification of the inventory parameters

In real-world inventory management, parameters like demand, ordering costs, holding costs, and carbon
emissions often exhibit significant uncertainty. For instance, the actual amount of carbon emissions can vary
unpredictably due to factors such as the condition of the company’s carbon filtering equipment, the quality of
raw materials used, and other unforeseen circumstances. Traditional inventory models often rely on precise and
deterministic data, which may not accurately represent the inherent uncertainties and vagueness present in real-
world situations. To address these challenges, fuzzy numbers provide a valuable framework for decision-making.
By incorporating fuzzy sets, inventory models can better account for the imprecise and ambiguous nature of these
parameters, leading to more robust and realistic solutions.

Here, three subcases are considered. In the first case, the demand is considered to be fuzzy in nature, whereas the
cost parameters and the amount of carbon emission from storing the product are crisp. In the second case, the cost
parameters are treated as fuzzy. In the third case, the amount of carbon emission from storing the product is fuzzy.
The graded mean integration method is further utilized for the defuzzification of the parameters.

(i) Fuzzification of demand parameter α

We express the demand parameter α by pentagonal fuzzy number, which is given as follows

α̃ = (α−∆1, α−∆2, α, α+∆3, α+∆4) = (α1, α2, α3, α4, α5) where α > ∆1 > ∆2 and ∆3 < ∆4.

Inventory total cost in the fuzzy sense is given by

˜TC1 =
A
T
+ α̃T

6
(3h+ γT ) + c1Ehα̃T

2
.

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the total cost is given
by

G1( ˜TC1) =
1

12
[TC11 + 3TC12 + 4TC13 + 3TC14 + TC15] where

TC11 =
A

T
+

α1T

6
(3h+ γT ) +

c1Ehα1T

2
,

TC12 =
A

T
+

α2T

6
(3h+ γT ) +

c1Ehα2T

2
,

TC13 =
A

T
+

α3T

6
(3h+ γT ) +

c1Ehα3T

2
,

TC14 =
A

T
+

α4T

6
(3h+ γT ) +

c1Ehα4T

2
,

TC15 =
A

T
+

α5T

6
(3h+ γT ) +

c1Ehα5T

2
.

=
A

T
+ [

(α1 + 3α2 + 4α3 + 3α4 + α5)

12
]
T (3h+ γT )

6

+ [
(α1 + 3α2 + 4α3 + 3α4 + α5)

12
]
Tc1Eh

2
.

=
A

T
+

L1T

6
(3h+ γT ) +

c1EhMT

2
.
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Here L1 = [α1+3α2+4α3+3α4+α5

12 ].

(ii) Fuzzification of inventory costs

We express the parameters A, h by pentagonal fuzzy numbers, which is given as follows

Ã = (A−∆5, A−∆6, A,A+∆7, A+∆8) = (A1, A2, A3, A4, A5) where A > ∆5 > ∆6 and ∆7 < ∆8

h̃ = (h−∆9, h−∆10, h, h+∆11, h+∆12) = (h1, h2, h3, h4, h5) where h > ∆9 > ∆10 and ∆11 < ∆12.

Inventory total cost in the fuzzy sense is given by

˜TC1 =A
T
+ α̃T

6
(3h+ γT ) + c1Ehα̃T

2
.

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the defuzzified total cost
is given by

G2( ˜TC1) =
1

12
[TC11 + 3TC12 + 4TC13 + 3TC14 + TC15] where

TC11 =
A1

T
+

αT

6
(3h1 + γT ) +

c1EhαT

2
,

TC12 =
A2

T
+

αT

6
(3h2 + γT ) +

c1EhαT

2
,

TC13 =
A3

T
+

αT

6
(3h3 + γT ) +

c1EhαT

2
,

TC14 =
A4

T
+

αT

6
(3h4 + γT ) +

c1EhαT

2
,

TC15 =
A5

T
+

αT

6
(3h5 + γT ) +

c1EhαT

2
.

=
1

T

[
(A1 + 3A2 + 4A3 + 3A4 +A5)

12

]
+

αT

6

[
3

(
(h1 + 3h2 + 4h3 + 3h4 + h5)

12

)
+ γT

]
+

c1αEhT

2
.

=
M1

T
+

αT

6
(3N1 + γT ) +

c1EhαT

2
.

Here M1 =[A1+3A2+4A3+3A4+A5

12 ] and N1 =[h1+3h2+4h3+3h4+h5

12 ].

(iii) Fuzzification of carbon emission parameter Eh

We express the parameter Eh by pentagonal fuzzy number, which is given below

Ẽh = (Eh −∆13, Eh −∆14, Eh, Eh +∆15, Eh +∆16)
= (Eh1, Eh2, Eh3, Eh4, Eh5) whereEh > ∆13 > ∆14 and ∆15 < ∆16.

Inventory total cost in the fuzzy sense is given by

˜TC1 =A
T
+ αT

6
(3h+ γT ) + c1ẼhαT

2
.

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the defuzzified total cost
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is given by

G3( ˜TC1) =
1

12
[TC11 + 3TC12 + 4TC13 + 3TC14 + TC15] where

TC11 =
A

T
+

αT

6
(3h+ γT ) +

c1Eh1αT

2
,

TC12 =
A

T
+

αT

6
(3h+ γT ) +

c1Eh2αT

2
,

TC13 =
A

T
+

αT

6
(3h+ γT ) +

c1Eh3αT

2
,

TC14 =
A

T
+

αT

6
(3h+ γT ) +

c1Eh4αT

2
,

TC15 =
A

T
+

αT

6
(3h+ γT ) +

c1Eh5αT

2
.

=
A

T
+

αT

6
(3h+ γT ) +

c1O1αT

2
.

Here O1 =[Eh1+3Eh2+4Eh3+3Eh4+Eh5

12 ].

Case (ii)

Model with exponential time dependent demand

Figure 2. A graphical representation of the inventory model

Exponential time-dependent demand is an effective approach for evaluating and controlling commodities with
rapidly shifting demand patterns. It is especially effective in sectors that rely on time-sensitive processes. When
a new flagship smartphone is released, initial demand is often low. However, as reviews, marketing campaigns,
and word-of-mouth spread, demand can increase exponentially. For example, companies like Apple and Samsung
can use exponential models to forecast initial demand, plan production accordingly, and avoid stockouts or
overstocking. In this model, it’s assumed that demand is time sensitive and it increases exponentially. Thus, the
differential equation governing the situation is given by (Depicted in Figure 2)

dq(t)

dt
= −αeβt, 0 < t < T (6)
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With the boundary conditions, q(0) = Q and q(T ) = 0. The solution of (6) is,

q(t) =
α

β

(
eβT − eβt

)
. (7)

The total inventory cost consists of the following components:

The ordering cost = OC = A
T

The holding cost from carrying the inventory during the time interval [0, T ] is given by
HC = 1

T

∫ T

0
(h+ γt)q(t) dt = αT

2

(
h(1 + βT ) + βγT 2

2

)
Carbon emissions may also occur from storing undelivered or unsold products due to product characteristics or
other factors. The carbon tax for storing the inventory can be obtained as follows

The carbon tax=CT = Ehc1
T

∫ T

0
q(t) dt = Ehc1α

(
βT 2

2 + T
2

)
Total inventory cost is obtained by summing up ordering cost (OC), holding cost (HC) and carbon tax
(CT ).

Therefore, Total cost = TC2 = OC +HC + CT

=
A

T
+

αT

2

(
h(1 + βT ) +

βγT 2

2

)
+ Ehc1α

(
βT 2

2
+

T

2

)
(8)

The optimal value of T is obtained by solving d(TC2)
dT = 0.

Differentiating (8) with respect to ‘T ’ and equating to zero. We have

d(TC2)

dT
=

αh

2
+ αhβT +

3αβγT 2

4
+

Ehc1α

2
+ Ehc1αβT − A

T 2
= 0. (9)

Further, d2(TC1)
dT 2 = 2A

T 3 + αhβ + 3αβγT
2

+ c1Ehβ
2 > 0.

Therefore, TC2 is convex with respect to T .

Fuzzification of the inventory parameters

Real-world inventory management faces uncertainties in factors like demand and costs, including carbon
emissions. Traditional models struggle with these uncertainties. Fuzzy numbers offer a solution by allowing for
imprecise and ambiguous information. Here, three subcases are established. In the first case, demand is uncertain,
while inventory costs and the amount of carbon emissions are crisp. Inventory costs are fuzzy in the second case.
In the third case, the amount of carbon emissions is uncertain, while demand and costs are crisp. Here, we use the
pentagonal fuzzy number for fuzzification.

(i)Fuzzification of demand parameter α

We express the parameter α by pentagonal fuzzy numbers, which is given as follows

α̃ = (α−∆17, α−∆18, α, α+∆19, α+∆20)
= (α6, α7, α8, α9, α10) where α > ∆17 > ∆18 and ∆19 < ∆20.
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Inventory total cost in the fuzzy sense is given by

˜TC2 = A
T + α̃T

2

(
h(1 + βT ) + βγT 2

2

)
+ Ehc1α

(
βT 2

2 + T
2

)
.

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the total cost is given
by

G4( ˜TC2) =
A

T
+

L2T

2

(
h(1 + βT ) +

βγT 2

2

)
+ Ehc1α

(
βT 2

2
+

T

2

)
.

Here, L2 =
α6+3α7+4α8+3α9+α10

12 .

(ii) Fuzzification of inventory costs

We express the parameters A, h by pentagonal fuzzy numbers, which is given as follows

Ã = (A−∆21, A−∆22, A,A+∆23, A+∆24) = (A6, A7, A8, A9, A10) where A > ∆21 > ∆22 and ∆23 < ∆24

h̃ = (h−∆25, h−∆26, h, h+∆27, h+∆28) = (h6, h7, h8, h9, h10) where h > ∆25 > ∆26 and ∆27 < ∆28.

Inventory total cost in the fuzzy sense is given by

˜TC2 = Ã
T + αT

2

(
h̃(1 + βT ) + βγT 2

2

)
+ Ehc1α

(
βT 2

2 + T
2

)
.

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the defuzzified total cost
is given by

G5( ˜TC2) =
M2

T
+

αT

2

(
N2(1 + βT ) +

βγT 2

2

)
+ Ehc1α

(
βT 2

2
+

T

2

)
.

Here, M2 =
A6+3A7+4A8+3A9+A10

12 and N2 =
h6+3h7+4h8+3h9+h10

12 .

(iii) Fuzzification of carbon emission parameterEh

We express the parameter Eh by pentagonal fuzzy number, which is given below

Ẽh = (Eh −∆29, Eh −∆30, Eh, Eh +∆31, Eh +∆32)
= (Eh6, Eh7, Eh8, Eh9, Eh10) where Eh > ∆29 > ∆30 and ∆31 < ∆32.

Inventory total cost in the fuzzy sense is given by

˜TC2 = A
T + αT

2

(
h(1 + βT ) + βγT 2

2

)
+ Ẽhc1α

(
βT 2

2 + T
2

)
.

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the defuzzifed total Cost
is given by

G6

(
˜TC2

)
=

A

T
+

αT

2

(
h(1 + βT ) +

βγT 2

2

)
+O2c1α

(
βT 2

2
+

T

2

)
).

Here, O2 =
Eh6+3Eh7+4Eh8+3Eh9+Eh10

12 .
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5. Model II (Inventory models considering carbon tax and green technology)

When carbon emissions exceed regulatory thresholds, investment in green technology is considered a necessary
measure to mitigate the environmental impact. A green technology investment of amount G is assumed to result
in a reduction of carbon emissions by ϕG, where ϕ denotes the carbon reduction efficiency factor. Nevertheless,
the implementation of such technologies may lead to additional energy consumption, which in turn contributes to
further emissions, expressed as ωG2. The parameter ω accounts for the offsetting reduction factor that contributes
to additional emissions. The net carbon emission reduction from such technology is described by the function
R(G) = ϕG− ωG26 (Huang and Rust [5]).

Here, ϕ represents the carbon reduction efficiency parameter, which reflects the rate at which investment in
carbon reduction translates into actual emission savings, whereas ω denotes the carbon reduction cost intensity
parameter, capturing the marginal cost of achieving additional reductions.

To estimate these parameters in practice, managers can use historical operational and environmental data.
By recording previous levels of green investment (G) and the corresponding emission reductions (R(G)), the
parameters ϕ and ω can be obtained through the relationship R(G) = ϕG− ωG2. Alternatively, these values can
be benchmarked using industry data or obtained through expert consultation, where ϕ is guided by the efficiency
of adopted technologies (e.g., renewable energy systems, energy-efficient logistics) and ω is inferred from the
observed diminishing returns or additional energy costs at higher investment levels. Such estimation enables
managers to calibrate the model realistically and make data-driven decisions regarding optimal levels of green
investment.Hence both carbon tax and green technology were considered in model II.

Case(i)

Model with constant demand

Here the demand is considered to be constant. During the time interval [0, T ], consumer’s demand makes
the inventory of products to decline. Then the differential equation is given by

dq(t)

dt
= −α, 0 < t < T (10)

with the boundary conditions, q(0) = Q and q(T ) = 0. The solution of (10) is

q(t) = α(T − t). (11)

Similar to that of model I, we obtain ordering cost, holding cost and carbon tax.

We invest the green cost G, this investment yields a reduction in carbon emissions, represented by the value φG.
However, the utilization of these green technologies also necessitates energy consumption, consequently leading
to additional carbon emissions, represented by ωG2. Here, φ and ω can be obtained from the past data of carbon
emission reduction and the amount in green technology.

Carbon reduction effective cost = CE = R(G)c1

Green investment = G

Total inventory cost is obtained by summing up ordering cost (OC), holding cost (HC), carbon tax (CT ),
green investment amount (G) and then subtracting the carbon reduction effective cost. Therefore,

Total cost = TC3 = OC +HC + CT +G− CE =
A

T
+

αT

6
(3h+ γT ) +

c1EhαT

2
+G− (ϕG− ωG2)c1 (12)

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1948 EOQ MODEL WITH GREEN TECHNOLOGY IN FUZZY ENVIRONMENT

The optimal values of T and G is obtained by solving
d(TC3)
dT = 0 and

d(TC3)
dG = 0.

Differentiating (12) with respect to ‘T ’ and ‘G’ and equating to zero. We have

d(TC3)

dT
=

α

6
(3h+ 2γT ) +

c1Ehα

2
− A

T 2
= 0. (13)

and,
d(TC3)

dG
= 1− ϕc1 + 2ωGc1 = 0. (14)

Further, we estimate the hessian matrix

H =


∂2TC3

∂T 2

∂2TC3

∂T ∂G

∂2TC3

∂G∂T

∂2TC3

∂G2


We have,

∂2(TC3)

∂T 2
=

αγ

3
+

2

T 3
,

∂2(TC3)

∂G2
= 2ωc1,

∂2(TC3)

∂G∂T
=

∂2(TC3)

∂T ∂G
= 0

∴ H =

αγ

3
+

2

T 3
0

0 2ωc1

 , |H| =
(
αγ

3
+

2

T 3

)
(2ωc1) > 0

Therefore, TC3(T,G) is convex.

(i)Fuzzification of demand parameter α

We express the parameter α by pentagonal fuzzy number, which is given as follows

α̃ = (α−∆33, α−∆34, α, α+∆35, α+∆36)
= (α11, α12, α13, α14, α15) where α > ∆33 > ∆34 and ∆35 < ∆36.

Inventory total cost in the fuzzy sense is given by

T̃C3 = A
T + α̃T

6 (3h+ γT ) + c1Ehα̃T
2 +G− (ϕG− ωG2)c1.

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the defuzzified total cost
is given by

G7(T̃C3) =
A

T
+

L3T

6
(3h+ γT ) +

c1EhL3T

2
+G− (ϕG− ωG2)c1.

Here L3 =
(α11+3α12+4α13+3α14+α15)

12 .

(ii)Fuzzification of inventory costs

We express the parameters A, h by pentagonal fuzzy numbers, which is given as follows

Ã = (A−∆37, A−∆38, A,A+∆39, A+∆40)
= (A11, A12, A13, A14, A15) where A > ∆37 > ∆38 and ∆39 < ∆40
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h̃ = (h−∆41, h−∆42, h, h+∆43, h+∆44)
= (h11, h12, h13, h14, h15) where h > ∆41 > ∆42 and ∆43 < ∆44.

Inventory total cost in the fuzzy sense is given by

˜TC3 = Ã
T + αT

6 (3h̃+ γT ) + c1EhαT
2 +G−

(
ϕG− ωG2

)
c1.

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the total Cost is given
by

G8( ˜TC3) =
M3

T
+

αT

6
(3N3 + γT ) +

c1EhαT

2
+G− (ϕG− ωG2)c1.

Here, M3 =
A11+3A12+4A13+3A14+A15

12 and N3 =
h11+3h12+4h13+3h14+h15

12 .

(iii)Fuzzification of carbon emission parameter Eh

We express the parameter Eh by pentagonal fuzzy number, which is given below

Ẽh = (Eh −∆45, Eh −∆46, Eh, Eh +∆47, Eh +∆48)
= (Eh11, Eh12, Eh13, Eh14, Eh15) where Eh > ∆45 > ∆46 and ∆47 < ∆48.

Inventory total cost in the fuzzy sense is given by

˜TC3 = CO

T + αT
6 (3h+ γT ) + c1ẼhαT

2 +G− (ϕG− ωG2)c1.

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the defuzzified total cost
is given by

G9( ˜TC3) =
A

T
+

αT

6
(3h+ γT ) +

c1O3αT

2
+G− (ϕG− ωG2)c1.

Here, O3 =
Eh11+3Eh12+4Eh13+3Eh14+Eh15

12 .

case(ii)

Model with exponential time dependent demand

Here the demand is considered to be exponential time dependent demand. In this model, it’s assumed that
demand is time sensitive and it increases exponentially. Thus, the differential equation is given by

dq(t)

dt
= −αeβt, 0 < t < T (15)

with the boundary conditions, q(0) = Q and q(T ) = 0. The solution of (15) is

q(t) =
α

β

(
eβT − eβt

)
. (16)

Ordering cost, Holding cost and Carbon tax are obtained, which are similar to those of model I.
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Carbon reduction effective cost = CE = R(G)c1

Carbon emissions are a major contributor to climate change, and businesses have a responsibility to reduce
their environmental impact. By investing in green technologies and practices, businesses can reduce their carbon
footprint and contribute to a more sustainable future.

Green investment = G

Total cost of the inventory model is calculated by summing up the cost of ordering cost (OC), holding cost
(HC), carbon tax (CT ), green investment amount (G) and then subtracting the carbon reduction effective cost.

Total cost = TC4 = OC +HC + CT +G− CE

=
A

T
+

αT

2

(
h (1 + βT ) +

βγT 2

2

)
+ Ehc1α

(
βT 2

2
+

T

2

)
+G−

(
ϕG− ωG2

)
c1 (17)

The optimal values of T and G is obtained by solving d(TC4)
dT

= 0 and d(TC4)
dG

= 0.

Differentiating (17) with respect to ‘T ’and ‘G’ and equating to zero. We have

d(TC4)

dT
=

αh

2
+ αhβT +

3αβγT 2

4
+ Ehc1αβT +

Ehc1α

2
− A

T 2
= 0. (18)

and,
d(TC4)

dG
= 1− ϕc1 + 2ωGc1 = 0. (19)

Further, we estimate the hessian matrix

H =


∂2TC4

∂T 2

∂2TC4

∂T ∂G

∂2TC4

∂G∂T

∂2TC4

∂G2


We have,

∂2(TC4)

∂T 2
= αβh+

3αβγT

2
+ Ehc1αβ +

2

T 3
,

∂2(TC4)

∂G2
= 2ωc1,

∂2(TC4)

∂G∂T
=

∂2(TC4)

∂T ∂G
= 0

∴ H =

[
αβh+ 3αβγT

2 + Ehc1αβ + 2
T 3 0

0 2ωc1

]
,

|H| =
(
αβh+

3αβγT

2
+ Ehc1αβ +

2

T 3

)
(2ωc1) > 0

Therefore, TC4(T,G) is convex.

(i)Fuzzification of demand parameter α

We express the parameter α by pentagonal fuzzy number, which is given as follows

α̃ = (α−∆49, α−∆50, α, α+∆51, α+∆52)
= (α16, α17, α18, α19, α20) where α > ∆49 > ∆50 and ∆51 < ∆52.
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Inventory total cost in the fuzzy sense is given by

T̃C4 =
A

T
+

αT

2

(
h (1 + βT ) +

βγT 2

2

)
+ Ehc1α

(
βT 2

2
+

T

2

)
+G−

(
ϕG− ωG2

)
c1

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the defuzzified total cost is given
by

G10

(
T̃C4

)
=

A

T
+

L4T

2

(
h(1 + βT ) +

βγT 2

2

)
+ Ehc1α

(
βT 2

2
+

T

2

)
+G−

(
ϕG− ωG2

)
c1.

Here, L4 =
(α16+3α17+4α18+3α19+α20)

12 .

(ii)Fuzzification of inventory costs

We express the parameters A, h by pentagonal fuzzy numbers, which is given as follows

Ã = (A−∆53, A−∆54, A,A+∆55, A+∆56)
= (A16, A17, A18, A19, A20) where A > ∆53 > ∆54 and ∆55 < ∆56

h̃ = (h−∆57, h−∆58, h, h+∆59, h+∆60)
= (h16, h17, h18, h19, h20) where h > ∆57 > ∆58 and ∆59 < ∆60.

Inventory total cost in the fuzzy sense is given by

˜TC4 =
Ã

T
+

αT

2

(
h̃(1 + βT ) +

βγT 2

2

)
+ Ehc1α

(
βT 2

2
+

T

2

)
+G−

(
ϕG− ωG2

)
c1

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the defuzzified total cost is given
by

G11

(
T̃C4

)
=

M4

T
+

αT

2

[
N4(1 + βT ) +

βγT 2

2

]
+ Ehc1α

(
βT 2

2
+

T

2

)
+G− (ϕG− ωG2)c1.

Here, M4 =
A16+3A17+4A18+3A19+A20

12 and N4 =
h16+3h17+4h18+3h19+h20

12 .

(iii)Fuzzification of carbon emission parameter Eh

We express the parameter Eh by pentagonal fuzzy number, which is given below

Ẽh = (Eh −∆61, Eh −∆62, Eh, Eh +∆63, Eh +∆64)
= (Eh16, Eh17, Eh18, Eh19, Eh20) where Eh > ∆61 > ∆62 and ∆63 < ∆64

Inventory total cost in the fuzzy sense is given by

˜TC4 =
A

T
+

αT

2

(
h(1 + βT ) +

βγT 2

2

)
+ Ẽhc1α

(
βT 2

2
+

T

2

)
+G− (ϕG− ωG2)c1.

We defuzzify the fuzzy total cost by graded mean integration method. Using (1), the total cost is given by

G12( ˜TC4) =
A

T
+

αT

2

(
h(1 + βT ) +

βγT 2

2

)
+O4c1α

(
βT 2

2
+

T

2

)
+G− (ϕG− ωG2)c1.

Here O4 =
Eh16+3Eh17+4Eh18+3Eh19+Eh20

12 .
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6. Numerical Examples and Sensitive Analysis

6.1. Numerical Examples

Example 1

Let us consider the following parameters in appropriate units α = 4500 units, A = 150 units, h = 20, c1 = 0.5,
Eh = 3, and γ = 0.5 (Model I with constant demand). Solving the equation (5), we get the optimal cycle time
T ∗
1 = 0.0556605 yrs. Optimal order quantity and total cost are obtained from the equations (3) & (4), and we get

Q∗
1 = 250.4723 units and TC∗

1 = $5388.6.

A comprehensive numerical analysis has been conducted to investigate the impact of varying levels of
fuzziness in the input parameters on the decision variables. Inventory parameters such as α, h, A, and Eh are
fuzzified using pentagonal fuzzy numbers. Subsequently, for each of these parameters, the inherent variations in
the respective values are considered, and defuzzification is performed via the graded mean integration method.
The defuzzified value and the corresponding percentage difference under the fuzzy case from the crisp values are
obtained and given in Tables 1 & 2. Further, optimal values of T ∗

1 , TC∗
1 , and Q∗

1 are also obtained for varying
levels of fuzziness in the demand parameter α and are given in Table 5.

Example 2

In the following example, we consider the same data as in Example 1, together with β = 0.2 (Model I with
Exponential time-dependent demand). Solving the equation (9), we get the optimal cycle time T ∗

2 = 0.0550806
yrs. Optimal order quantity and total cost are obtained from the equations (7) & (8), and we get Q∗

2 = 249.2279
units and TC∗

2 = $5417.2.

Some pentagonal fuzzy numbers are set for the input parameters α, h, A, and Eh, and the corresponding
variations are given in Tables 3 & 4. Their defuzzified values are also given in these Tables. An analysis made
based on the fuzzy nature of the inventory parameters such as α, h, A, and Eh are given in Tables 8–10.

Example 3

In the following example, we consider the same data as in Example 1, together with ϕ = 10 and ω = 0.03
(Model II with constant demand). Solving the equation (13), we get the optimal cycle time T ∗

3 = 0.0556605 yrs.
Optimal order quantity, total cost, and green investment amount are obtained from the equations (11), (12), and
(14), respectively. We get Q∗

3 = 250.4723 units, TC∗
3 = $5122, and G = $133.3333.

Inventory parameters undergo fuzzification via pentagonal fuzzy numbers, followed by defuzzification using the
graded mean integration method. The resulting defuzzified values and their percentage differences from crisp
values are presented in Tables 1 & 2. When the fuzziness of the cost parameters is varied, the optimal values
are obtained and are given in Table 6. Table 7 provides the optimal values for varying levels of fuzziness in the
parameter Eh. Further, optimal values of T ∗

3 , TC∗
3 , and Q∗

3 are also obtained for varying levels of fuzziness in the
demand parameter α and are given in Table 5. From Table 11, an analysis carried out by varying the parameter Eh

under pentagonal fuzzy numbers is presented. Figure 5 illustrates the impact of carbon emissions on total cost.

Example 4

In the following example, we consider the same data as in Example 3, together with β = 0.2 (Model II with
exponential time-dependent demand). Solving the equation (18), we get the optimal cycle time T ∗

4 = 0.0550806
yrs. Optimal order quantity, total cost, and green investment amount are obtained from the equations (16), (17),
and (19), respectively. We get Q∗

4 = 249.2279 units, TC∗
4 = $4883.8, and G = $133.3333.
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Inventory parameters are fuzzified using pentagonal fuzzy numbers. The resulting defuzzified values, along
with the corresponding fuzzy percentages expressed with respect to the crisp values, are presented in Tables 3 & 4,
respectively. From Tables 8 & 9, optimal values for various levels of fuzziness in the cost components and demand
are obtained by fuzzifying the parameters using pentagonal fuzzy numbers. An analysis carried out by varying the
parameter Eh is given in Table 12. Using pentagonal fuzzy numbers, the effect of carbon emissions on the total
cost is shown in Figure 6.

A comparative study between Model I and Model II has been done to analyze the effect of green investment on the
total cost (Tables 5–10). From the Tables, we infer that the total cost in both models increases significantly with
respect to various levels of fuzziness in the parameters α, h, A, and Eh. Further, we also find that when comparing
the cost in Model I and Model II, the cost in Model II is comparatively lower. This is because of the investment
in green technology. When an investment is made in green technology, the total cost is significantly reduced. The
optimal values of cycle time, order quantity and total inventory cost are found by varying Eh and the fuzziness of
the cost parameters A and h, and are given in Tables 11 & 12.

Table 1. Fuzzy pentagonal values for the input parameters α and Eh with constant demand (Model I)

α̃ % variation α̃ G1(α̃) Ẽh % variation Ẽh G3(Ẽh)

(1200,2700,4500,5200,6740) -8% 4136.6 (1,2,3,3.64,4.64) -4% 2.88

(1264,2900,4500,5600,7100) -4% 4322 (1,2,3,3.82,4.82) -2% 2.94

(1500,3000,4500,6000,7500) 0% 4500 (1,2,3,4,5) 0% 3

(1800,3200,4500,6200,8291) 4% 4690.9 (1.09,2.09,3,4.09,5.09) 2% 3.06

(2000,3400,4500,6300,9410) 8% 4875.8 (1.2,2.2,3,4.16,5.16) 4% 3.12

Table 2. Fuzzy pentagonal values for the input parameters A ,h with constant demand (Model I)

Ã % variation Ã G2(Ã) h̃ % variation h̃ G2(h̃)

(24,38,150,170,200) -20% 120.6667 (5,10,20,23,27) -12% 17.6

(26,40,150,208,251) -10% 135.8833 (7,13,20,24,28) -6% 18.8

(50,87,150,217,238) 0% 150 (8,14,20,26,32) 0% 20

(60,100,150,230,327) 10% 164.7500 (12,16,20,27,33) 6% 21.2

(70,140,150,240,357) 20% 180.5833 (13,18,20,29,35) 12% 22.4

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1954 EOQ MODEL WITH GREEN TECHNOLOGY IN FUZZY ENVIRONMENT

Table 3. Fuzzy pentagonal values for the input parameters α and Eh with exponentially time dependent demand (Model I)

α̃ % variation α̃ G4(α̃) Ẽh % variation Ẽh G6(Ẽh)

(1700,3100,4500,5200,6198) -6% 4233.1 (0.8,1.27,3,3.15,3.46) -18% 2.46

(1900,3300,4500,5300,6600) -3% 4358.3 (1,1.6,3,3.5,4.5) -9% 2.73

(2000,3600,4500,5500,6700) 0% 4500 (1.2,2.4,3,3.6,4.8) 0% 3

(2400,3800,4500,5700,6816) 3% 4643 (1.78,2.78,3,3.78,5.78) 9% 3.27

(2490,4000,4500,5900,6892) 6% 4756.8 (2.25,2.94,3,4.53,5.82) 18% 3.54

Table 4. Fuzzy pentagonal values for the input parameters A,h with exponentially time dependent demand (Model I)

Ã % variation Ã G5(Ã) h̃ % variation h̃ G5(h̃)

(60,100,150,160,187) -10% 135.5833 (2,5,20,21,22) -24% 15.2

(70,110,150,170,206) -5% 143 (5,12,20,22,25) -12% 17.6

(80,120,150,180,220) 0% 150 (10,15,20,25,30) 0% 20

(90,130,150,190,237) 5% 157.2500 (12,18,20,29,36) 12% 22.4

(100,140,150,200,264) 10% 165.3333 (14,19,20,34,44) 24% 24.8

Table 5. Comparison between model I and II with fuzzy demand (constant demand)

% variation α̃ T ∗
1 TC∗

1 Q∗
1 T ∗

3 TC∗
3 Q∗

3

-8% 0.0580529 5166.5 240.1416 0.0580529 4899.9 240.1416

-4% 0.0567947 5281 245.4667 0.0567947 5014.4 245.4667

0% 0.0556605 5388.6 250.4723 0.0556605 5122 250.4723

4% 0.0545167 5501.7 255.7324 0.0545167 5235.1 255.7324

8% 0.0534735 5609.1 260.7261 0.0534735 5342.4 260.7261

Table 6. Comparison between model I and II with fuzzy costs (constant demand)

% variation Ã % variation h̃ T ∗
1 TC∗

1 Q∗
1 T ∗

3 TC∗
3 Q∗

3

-20% -12% 0.0529645 4555.5 238.3402 0.0529645 4288.8 238.3402

-10% -6% 0.0545191 4983.7 245.3359 0.0545191 4717 245.3359

0% 0% 0.0556605 5388.6 250.4723 0.0556605 5122 250.4723

10% 6% 0.0567711 5802.8 255.4699 0.0567711 5536.1 255.4699

20% 12% 0.0579259 6233.7 260.6666 0.0579259 5967 260.6666
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Table 7. Comparison between model I and II with fuzzy carbon emission (constant demand)

% variation Ẽh T ∗
1 TC∗

1 Q∗
1 T ∗

3 TC∗
3 Q∗

3

-4% 0.0557382 5381.1 250.8219 0.0557382 5114.5 250.8219

-2% 0.0556994 5384.9 250.6473 0.0556994 5118.2 250.6473

0% 0.0556605 5388.6 250.4723 0.0556605 5122 250.4723

2% 0.0556219 5392.4 250.2986 0.0556219 5125.7 250.2986

4% 0.0555832 5396.2 250.1244 0.0555832 5129.5 250.1244

Table 8. Comparison between model I and II with fuzzy demand (exponential time dependent demand)

% variation α̃ T ∗
2 TC∗

2 Q∗
2 T ∗

4 TC∗
4 Q∗

4

-6% 0.0567716 5255 241.6842 0.0567716 4721.6 241.6842

-3% 0.0559592 5331.7 245.2518 0.0559592 4798.5 243.6508

0% 0.0550806 5417.2 249.2279 0.0550806 4883.8 249.2279

3% 0.0542341 5502.1 253.1746 0.0542341 4968.8 253.1746

6% 0.0535882 5568.8 256.2744 0.0535882 5035.4 256.2744

Table 9. Comparison between model I and II with fuzzy costs (exponential time dependent demand)

% variation Ã % variation h̃ T ∗
2 TC∗

2 Q∗
2 T ∗

4 TC∗
4 Q∗

4

-10% -24% 0.0593677 4541 268.7407 0.0593677 4007.7 268.7407

-5% -12% 0.0570369 4986.3 258.1300 0.0570369 4453 258.1300

0% 0% 0.0550806 5417.2 249.2279 0.0550806 4883.8 249.2279

5% 12% 0.0535065 5847 242.0676 0.0535065 5313.7 242.0676

10% 24% 0.0523134 6288.5 236.6418 0.0523134 5755.2 236.6418

Table 10. Comparison between model I and II with fuzzy carbon emission (exponential time dependent demand)

% variation Ẽh T ∗
2 TC∗

2 Q∗
2 T ∗

4 TC∗
4 Q∗

4

-18% 0.0554259 5383.2 250.7990 0.0554259 4849.9 250.7990

-9% 0.0552524 5400 250.0096 0.0552524 4866.9 250.0096

0% 0.0550806 5417.2 249.2279 0.0550806 4883.8 249.2279

9% 0.0549103 5434.1 248.4532 0.0549103 4900.7 248.4532

18% 0.0547416 5450.9 247.6857 0.0547416 4917.6 247.6857
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Table 11. Effect of carbon emission on the optimal values with fuzzy costs (Model II with constant demand)

Eh % Variation Ã % Variation h̃ T ∗ Q∗ TC∗

2.4

-20% -12% 0.0533848 240.2316 4252.9

-10% -6% 0.0549260 247.1670 4680.1

0 0 0.0560525 252.2362 5084.3

10% 6% 0.0571495 257.1728 5497.7

20% 12% 0.0582925 262.3162 5927.8

2.6

-20% -12% 0.0532436 239.5962 4264.9

-10% -6% 0.0547893 246.5519 4692.4

0 0 0.0559209 251.6441 5096.9

10% 6% 0.0570226 256.6017 5510.5

20% 12% 0.0581695 261.7627 5940.9

2.8

-20% -12% 0.0531035 238.9657 4276.9

-10% -6% 0.0546538 245.9421 4704.7

0 0 0.0557903 251.0564 5109.4

10% 6% 0.0568964 256.0338 5523.3

20% 12% 0.0580474 261.2133 5954

3

-20% -12% 0.0529645 238.3402 4288.8

-10% -6% 0.0545191 245.3359 4717

0 0 0.0556605 250.4723 5122

10% 6% 0.0567711 255.4699 5536.1

20% 12% 0.0579259 260.6666 5967
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Table 12. Effect of carbon emission on the optimal values with fuzzy costs (Model II with exponential time dependent
demand)

Eh % Variation Ã % Variation h̃ T ∗ Q∗ TC∗

2.4

-10% -24% 0.0599019 271.1733 3967

-5% -12% 0.0574851 260.1700 4413.9

0% 0% 0.0554647 250.9755 4846.1

5% 12% 0.0538415 243.5913 5277.1

10% 24% 0.0526109 237.9946 5719.4

2.6

-10% -24% 0.0597223 270.3554 3980.6

-5% -12% 0.0573345 259.4845 4426.9

0% 0% 0.0553357 250.3886 4858.7

5% 12% 0.0537289 243.0791 5289.3

10% 24% 0.0525111 237.5408 5731.3

2.8

-10% -24% 0.0595442 269.5444 3994.2

-5% -12% 0.0571851 258.8045 4440

0% 0% 0.0552077 249.8062 4871.3

5% 12% 0.0536172 242.5711 5301.5

10% 24% 0.0524118 237.0892 5743.3

3

-10% -24% 0.0593677 268.7407 4007.7

-5% -12% 0.0570369 258.1300 4453

0% 0% 0.0550806 249.2279 4883.8

5% 12% 0.0535060 242.0676 5313.7

10% 24% 0.0523131 236.6418 5755.3
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Table 13. Impact of carbon tax on the optimal values (Model II with constant demand)

c1 G T ∗
3 TC∗

3 Q∗
3

0.45 129.6296 0.0558555 5143 251.3498

0.475 131.5789 0.0557578 5132.5 250.9101

0.5 133.3333 0.0556605 5122 250.4723

0.525 134.9206 0.0555638 5111.3 250.0375

0.55 136.3636 0.0554676 5100 249.6042

Table 14. Impact of carbon tax on the optimal values (Model II with exponential time dependent demand)

c1 G T ∗
4 TC∗

4 Q∗
4

0.46 130.4327 0.0552332 4932.6 249.9222

0.48 131.9444 0.0551567 4908.3 249.5742

0.5 133.3333 0.0550806 4883.8 249.2279

0.52 134.6158 0.0550046 4859.3 248.8822

0.54 135.8042 0.0549291 4834.7 248.5387

Figure 3. The effect of demand on Total Cost
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Figure 4. The effect of carbon emission on Total Cost

Figure 5. Eh vs total cost (Model II with constant demand)
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Figure 6. Eh vs total cost (Model II with exponential time dependent demand)

Figure 7. Carbon tax vs Green investment
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6.2. Insights and Discussion

The analysis reveals that fuzziness in demand has a more substantial impact on the total cost than on the cycle
time, as evidenced in Table 5, Table 8 and Figure 3. Hence the effect of uncertainty in demand on the cycle time
remains comparatively moderate. Tables 6 and 9 shows that ambiguity in ordering and holding costs exerts a
stronger influence on total cost than on cycle time. The results suggest that fluctuations in these cost parameters
considerably affect the total cost, while their influence on cycle time remains comparatively less significant in both
models.

Uncertainty in the carbon emission parameter Eh also produces a notable effect on the total cost of the
inventory system, as seen in Table 7, Table 10 and Figure 4. However, the fuzzy nature of Eh has a greater
influence on the total cost than on the cycle time, while its effect on the order quantity is negligible. This finding
highlights that emission-related uncertainty predominantly affects the economic performance of the system rather
than its operational decisions.

Further sensitivity assessment of Eh(Tables 11 and 12) reveals a positive correlation between carbon emissions
and total cost. As emission levels rise, the total cost of the system increases proportionally, emphasizing the
financial importance of emission control measures. This relationship reinforces the necessity of adopting green
technologies and emission-reducing strategies to achieve cost efficiency under uncertain conditions.

Tables 5–10 reveals that green investments effectively reduce total inventory costs. Furthermore, as observed in
Table 13, Table 14 and illustrated in Figure 7, as the carbon tax increases, the green investment also increases
than on other decision variables such as order quantity and cycle time. This suggests that the system prioritizes
adjustments in green investment in response to rising carbon taxes, while the other parameters exhibit lower
sensitivity. Overall, these findings underscore the strategic importance of green investments as a key mechanism
for managing both environmental and economic objectives in uncertain, carbon-regulated environments.

7. Managerial implications

Key Managerial Implications from model I

The analysis presented in Table 5 demonstrates that a 4% uncertainty in the demand parameter results in a
2.09% variation in the total cost in model I. This finding emphasizes the critical importance for retailers to
consider the inherent uncertainty and imprecise nature of demand while formulating their inventory policies. By
integrating this uncertainty into the design and implementation of inventory models, retailers can achieve more
robust, resilient, and cost-efficient decision-making frameworks that better reflect real-world market conditions.

Furthermore, a significant positive correlation is observed between total cost and carbon emissions, suggesting
that an increase in emission levels contributes directly to higher operational costs. As shown in Table 10, a
9% uncertainty in the carbon emission parameter (Eh) leads to a 0.31% fluctuation in total cost. This result
underscores the importance of effective carbon management strategies, as reducing emissions can substantially
mitigate overall costs. Hence, adopting sustainable practices and investing in emission-reducing technologies are
essential for achieving both environmental and economic efficiency in inventory management.

Key Managerial Implications from model II

Table 7 indicates that even a 2% uncertainty in the carbon emission parameter (Eh) can cause a 0.069%
change in both the optimal order quantity and cycle time. This results indicates that order quantity and cycle
time are less sensitive to the ambiguity in the parameter (Eh). Such a strategy not only reduces exposure to
emission-related cost fluctuations but also enhances inventory flexibility and responsiveness to environmental
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regulations.

Moreover, the results in Tables 13 and 14 reveal that an increase in the carbon tax (c1) leads to a higher
optimal green investment (G), while simultaneously reducing the optimal order quantity. This indicates that under
stringent carbon taxation policies, the optimal strategy involves frequent, smaller replenishments coupled with
greater investment in green technologies. The imposition of a progressive carbon tax thus acts as a strong incentive
for industries to intensify their investments in cleaner and more energy-efficient technologies. Consequently,
managers must carefully evaluate and select the most suitable green technologies for adoption to ensure compliance
with regulatory requirements while maintaining operational profitability.

Our results demonstrates that the total costs are significantly lower with the adoption of green technology,
regardless whether the demand is steady or growing exponentially with respect to time. This reduction
demonstrates that the integration of environmentally sustainable practices, such as green technology, effectively
minimizes the financial burden caused by carbon taxes and conventional inventory operations. Overall, these
findings reveals that the critical role of green technology in enhancing both environmental and economic
performance. The incorporation of such technologies not only reduces carbon emissions but also contributes
to long-term cost savings by optimizing resource utilization and reducing operational inefficiencies. From a
managerial perspective, this evidence suggests that investing in green technology should be considered a strategic
priority rather than a discretionary expense. Managers and decision-makers are encouraged to integrate green
initiatives into their inventory and supply chain planning, as these investments lead to sustainable competitive
advantages achieving lower total costs, improving corporate image, and aligning business operations with
environmental regulations and sustainability goals.

8. Conclusion

In this study, we develop an inventory model for time-dependent demand integrating with carbon tax and green
investment. Models I and model II are formulated in a fuzzy environment where the parameters such as demand,
ordering cost, holding cost and the amount of carbon emission are fuzzified using pentagonal fuzzy numbers.
In both the models, the total inventory cost is very much sensitive to the fuzziness of the various factors such
as demand, ordering cost and the amount of carbon emission. Consequently, inventory managers are advised to
consider the inherent flexibility of these parameters when formulating optimal inventory policies. Climate change
poses a significant threat to global markets and economic growth. In this context, businesses must prioritize both
sustainability and financial stability. Investing in green technologies can contribute to ecological conservation and
promote global sustainability. Our research indicates that companies can combat climate change by implementing
green technologies that minimize CO2 emissions during storage. Hence, it helps to reduce the carbon tax and
total inventory cost. This work can be extended to address the problems considering deteriorating items and partial
backlogging of shortages.
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