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Abstract E-learning platforms are susceptible to several anomalies, including abnormal learning behaviours, system
abuse, and cybersecurity (CS) attacks, which interfere with the learning process. Conventional methods for detecting
anomalies have limitations when applied to high-dimensional data, skewed distributions, and poor feature selection, leading
to incorrect severity level predictions. To overcome these challenges, a novel Sea Lion Multilayer Perceptron (SLMP)
model is introduced for predicting anomaly severity levels. First, an e-learning anomaly dataset is gathered and trained
in a Python environment. Hence, the data is preprocessed, and the Sea Lion Optimisation (SLO) is used to select the
best features, retaining only the most significant attributes. Subsequently, the chosen informative features are employed
for further processing. Moreover, prediction and classification are performed using the SLMP model. Finally, Performance
metrics such as F-score, Accuracy, recall, precision, and error rate are used to evaluate the effectiveness of the model. The
results confirm the efficacy of the developed SLMP framework over current methods, illustrating its strength in optimizing
predictive efficiency for anomaly severity detection in e-learning systems.
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1. Introduction

By providing on-demand access to rich digital content via smart devices and cloud infrastructures, the explosive
expansion of e-learning platforms has revolutionised contemporary education [1]. This offers previously unheard-
of scalability and personalised learning, but it also leaves vast amounts of private staff and student data vulnerable
to illegal access and hacks [2]. The use of cloud computing expands the traditional security perimeter, and the
proliferation of smart devices generates a large number of network endpoints, creating new vulnerabilities that
hackers can exploit [3]. As a result, anomaly prediction and detection are now crucial for maintaining safe and
reliable online learning environments [4]. Cloud computing presents special security challenges [5], despite being
vital for handling and processing large amounts of data [6]. Cloud-based e-learning systems are appealing targets
for hackers due to their inherent benefits of flexibility, scalability, and cost-efficiency [7]. Vulnerabilities can
jeopardise sensitive data and interfere with essential digital learning services [8, 9]. It is especially crucial to
forecast the severity of abnormalities in these settings [1]. Security teams can prioritise incident response with
accurate severity classification, ensuring that high-risk threats receive resources and attention promptly [11].
However, it is challenging to distinguish between benign anomalies and truly malicious activities due to the
dynamic and heterogeneous nature of e-learning data, which is fueled by user interactions, log production, and
real-time analytics [12]. High false-positive rates and delayed reactions are often the result of the inability of
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traditional machine learning and rule-based intrusion detection systems to adjust to changing attack tactics [13].
Because of this, e-learning platforms are susceptible to sophisticated incursions, such as phishing, insider threats,
and zero-day attacks, which take advantage of poorly configured analytical apps or dispersed cloud services [14].

Deep learning (DL) [15], which possesses excellent capabilities for modelling complex, nonlinear patterns in
large datasets and for enhancing both detection accuracy and operational efficiency, has drawn increasing attention
from researchers in an effort to overcome these constraints [17, 18]. The efficacy of DL in a range of cyber
and anomaly detection scenarios is demonstrated by several recent studies [19, 20]. For example, to decrease
false positives in healthcare security, Bhaskaran et al. [22] proposed a systematic anomaly-detection method for
electronic health data, utilising clustering metrics such as the Silhouette and Dunn scores. While Usman et al.
[25] developed cutting-edge cybersecurity techniques to identify rogue IP addresses instantly, Oprea et al. [24]
examined smart meter readings to identify fraudulent usage patterns. Selim et al. [27] explained anomaly detection
for industrial control systems and IoT contexts, whereas Ofoegbu et al. [26] discussed the scalability issues of
conventional security solutions in increasingly digitalised sectors. In other application domains, Sheoran et al. [41]
compared various machine-learning models for human-activity classification, and Fan et al. [40] demonstrated
gradient boosting and ANN techniques for estimating small-sample emissivity. Naik et al. [43] examined the use
of big data analytics in healthcare security and precision medicine, while Goswami et al. [42] presented a Lion-Salp
Swarm Optimisation Algorithm (LSSOA) to identify application-layer DDoS attacks in Internet of Medical Things
networks. In addition to highlighting important issues, including significant false positives, substantial computing
costs, and limited capacity to generalise across heterogeneous data sources, these experiments collectively
demonstrate the range of current anomaly detection and deep learning methods. Even with these developments,
efficient feature selection and model optimisation are still essential for large-scale, high-dimensional e-learning
data. To prevent overfitting and reduce computational cost, deep neural networks require careful tuning [39]. To
improve detection performance in large-scale security analytics, bio-inspired metaheuristic algorithms—such as
genetic algorithms, particle swarm optimisation, and other contemporary swarm intelligence techniques—have
been investigated for selecting the most informative features and adjusting classifier hyperparameters. Among
these methods, the Sea Lion Optimizer (SLO) is a relatively recent algorithm that draws inspiration from sea
lions’ spiral foraging and group-hunting strategies. By effectively searching high-dimensional solution spaces and
avoiding local minima during optimisation, SLO exhibits a great balance between exploration and exploitation.

There is, nevertheless, a significant research gap, as SLO has not yet been utilised for the specific goal
of anomaly-severity prediction in e-learning networks. We propose a Sea Lion Multilayer Perceptron (SLMP)
architecture to bridge this gap by integrating a deep Multilayer Perceptron (MLP) classifier with SLO-based feature
selection. To ensure that the MLP receives only the most informative inputs for training and inference, the proposed
method first utilises SLO to extract the most relevant features from a large cyber-threat dataset. By avoiding
the curse of dimensionality and excessive noise, this integration enables the MLP to concentrate on high-quality
features. In complex e-learning contexts, SLMP achieves robust, high-accuracy prediction of low-, medium-, and
high-severity threats by combining the potent representation-learning capabilities of deep neural networks with
metaheuristic optimisation for feature selection. This combination effectively reduces false positives, enhances
detection accuracy, and provides a reliable, scalable, and intelligent security framework for next-generation e-
learning systems, as indicated by experimental data.

This study builds on previous findings by presenting a Sea Lion Multilayer Perceptron (SLMP) architecture for
predicting the severity of cyberthreats in online learning settings. The process consists of two primary phases. The
high-dimensional cyber-threat dataset is first subjected to feature selection by the Sea Lion Optimiser (SLO), which
successfully eliminates redundant or noisy attributes and keeps just the most discriminative features for severity
prediction. Based on a fitness function determined by preliminary classification accuracy, the method iteratively
refines each possible ”sea lion” in the SLO population, each of which represents a distinct feature subset. A deep
Multilayer Perceptron (MLP) classifier is then trained using the improved features, assigning the optimised feature
set to three severity levels: low, medium, and high. This hybrid approach leverages MLP’s representational ability to
capture intricate, nonlinear relationships and SLO’s exploratory potential to overcome the curse of dimensionality.
Consequently, in real-time e-learning security applications, the suggested SLMP model offers a scalable and high-
accuracy anomaly-severity prediction approach that reduces false alarms and enables prioritised incident response.
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1.1. Related works

The efficiency of bio-inspired optimisation methods for improving anomaly detection through feature selection
and machine-learning model tuning has been demonstrated by a significant amount of recent research. The Whale
Optimisation Algorithm (WOA) [23], Grey Wolf Optimiser (GWO) [16], and Particle Swarm Optimisation (PSO)
[21] are well-known methods. PSO produces rapid convergence but can cause premature standstill in complicated,
high-dimensional areas because it simulates the collective motion of bird flocks, with each particle changing its
position based on both personal and global best experiences. Although GWO balances exploration and exploitation
by modelling the grey wolf cooperative hunting hierarchy (alpha, beta, delta, and omega), its permanent leadership
structure may restrict flexibility when search areas vary dynamically. WOA records humpback whales’ spiral
bubble-net hunting, which combines random search with encircling prey. WOA can risk trapping in local optima
and losing diversity in late iterations, despite its effectiveness in local exploitation.

Building on these concepts, several studies have effectively used hybrid metaheuristics for problems such as
anomaly detection and network intrusion detection. A variety of bio-inspired and hybrid algorithms were presented
by Gangula and associates, including deep feature-based intrusion detection systems [34], firefly-optimization
ensembles [33], intelligent intrusion-prevention frameworks [32], and improved flower pollination algorithms
with ensemble classifiers [35]. While other recent work extends similar tactics to large-scale IoT contexts [38],
they also investigated more sophisticated hybridisations, such as a layered BiLSTM elastic regression classifier
optimised with the Aquila algorithm [37] and a Bottlenose Dolphin–Artificial Fish Swarm algorithm [36]. These
investigations validate the effectiveness of metaheuristic optimisation in reducing false positives, improving
detection precision, and maintaining computational efficiency across various cybersecurity domains.

The Sea Lion Optimiser (SLO), which is used in our suggested SLMP architecture, provides a hybrid search
mechanism that blends spiral foraging, random exploratory dives, and cooperative herd movement, in contrast
to the algorithms mentioned above. Every virtual ”sea lion” dynamically modifies the ratio of exploration to
exploitation based on population diversity and the best available global solution. In later search stages, this adaptive
switching maintains population diversity more effectively than WOA, reduces the premature convergence observed
in PSO, and offers more adaptable leadership than GWO. With feature spaces that are big, non-convex, and teeming
with local optima, SLO is especially well-suited to high-dimensional cyber-threat datasets. The proposed method
surpasses the capabilities demonstrated in PSO-, GWO-, WOA-, and other metaheuristic-based intrusion-detection
research [32, 33, 34, 35, 36, 37, 38] by utilising SLO for feature selection prior to deep MLP training, resulting in
improved predicted accuracy and resilience.

The Key contribution of the work is described as follows,

• Initially, the threat severity dataset is collected and trained on the Python system.
• Hence, a novel Sea Lion Multilayer Perceptron (SLMP) framework has been developed with predictive

features.
• Consequently, the collected data is processed, and the informative attributes are selected using Sea Lion

optimization.
• Subsequently, the threat severity is predicted by tracing the selected features, and SLMP classifies them.
• Henceforth, to validate the performance of the developed model, metrics such as F-score, accuracy, recall,

precision, and error rate are evaluated.

This paper’s second section contains recent, relevant work, and its third section describes the existing system
challenges. The system challenge is developed in the fourth segment, and the case study and performance validation
are covered in the fifth section. The work is finally completed in the sixth section.

2. Proposed Methodology

Threat forecasting in e-learning refers to detecting potential threats that impact the security and integrity of online
learning platforms. One of the significant benefits of threat prediction for e-learning is to determine the level of
severity of the identified threat. It enables high security. Hence, a novel sea lion multilayer perceptron (SLMP)
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has been developed to identify the threat severity level with high accuracy. Initially, the dataset is collected and
processed to enhance the data quality. Moreover, the threat anomalies are selected by the sea lion optimization, and
based on them, the severity level is predicted and classified.

Finally, the performance of the developed framework is validated using several key performance metrics,
including accuracy, precision, recall, F-score, and error rate. The proposed architecture is displayed in Figure
1. The working process is described as follows.

Figure 1. Proposed Architecture

The entire Sea Lion Optimization–Multilayer Perceptron (SLMP) workflow for anomaly-severity prediction
in an e-learning security context is shown in Figure 1. The e-learning platform’s data undergoes an initial
preprocessing step, where robust scaling, noise filtering, and outlier management prepare the inputs for modelling.
A population of candidate feature subsets is then initialised via the SLO module; each sea lion’s ”position” encodes
a binary mask of the features that are accessible. To direct the swarm towards the most informative subset, a fast
internal classifier assesses each population member, and its fitness is quantified as cross-validated MLP accuracy
through iterative encircling and spiral-attack updates. The chosen features are then sent to the MLP classifier,
which uses the intricate architecture depicted in the diagram: a softmax output layer that generates low, medium,
or high-severity predictions; three hidden layers with 128, 64, and 32 ReLU neurons; and an input layer that is
proportionate to the selected characteristics. Ultimately, a high-resolution end-to-end pipeline that combines bio-
inspired optimisation for feature selection with a deep neural model for accurate threat-severity classification is
produced by aggregating the severity-level outputs for performance evaluation using accuracy, precision, recall,
and F-score metrics.

2.1. Process of SLMP

The developed SLMP model is designed by integrating SLO [28] with a multilayer perceptron (MLP) to improve
predictive accuracy and optimization effectiveness. The dynamic foraging behaviour of SLO is used to address the
delayed convergence and local optima problems in MLP by adjusting the weight and bias parameters of the MLP.
The data initialization is executed by Eqn. (1):

D = {(xi, yi)}Ni=1, (1)

Here xi ∈ Rd, yi ∈ {1, 2, 3, . . . ,K}, where the number of data features is denoted as d and the severity classes
are determined as K, also the row-wise features are defined as Rd.
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Preprocessing is a crucial step in predicting cyber threat severity in e-learning systems. The collected data
usually comprises inconsistencies, missing values, and imbalanced class distributions, which adversely affect
model performance. It prepares the data for further processing. Eqn. (2) executes preprocessing.

x̃ij =
xij − µj

σj + ε
. (2)

Where µj , σj are the empirical mean and standard deviation of the feature j. The first step in the process
is to compile the entire dataset, where each record is assigned a severity class designation and includes some
numerical features. Because real-world cyber-threat data often contains missing items, errors, and unbalanced class
distributions that can impair prediction performance, preprocessing is emphasised as a crucial step. The stability
of model optimisation is increased and bias from large-valued characteristics is eliminated by normalizing the raw
feature values to provide each feature a consistent scale. This normalization ensures that the multilayer perceptron
and Sea Lion Optimisation components that follow operate effectively on well-conditioned data, allowing the
classifier to learn precise decision boundaries for severity prediction and the optimiser to modify weights and
biases efficiently.

2.1.1. Anomaly threat feature selection Anomaly-threat feature selection is a crucial process in predicting cyber-
threat severity to enhance detection accuracy while minimising redundant data. SLO, a bio-inspired algorithm,
is employed to select the most informative features. The algorithm strikes a balance between exploration, which
searches for varied feature subsets, and exploitation, which refines the best-chosen features to achieve maximum
classification performance. The feature selection is expressed in Eqn. (3) [28],

Pt+1
i = clip

(
Pt

i + λr1Θ
(
gt −Pt

i

)
+ γr2Θ

(
Pt

r(i) −Pt
i

)
+ ηt, 0, 1

)
, (3)

where M is the population size, Pt+1
i ∈ [0, 1]d is the position vector of the agent i at iteration t, gt ∈ [0, 1]d is

the best global solution at iteration t, λ and γ are the scalar coefficients controlling exploration and exploitation,
and the random perturbation is ηt at iteration t. r1, r2 ∈ [0, 1]d are the element-wise uniform random vectors, Pt

r(i)

denotes the randomly chosen peer’s position, Θ indicates the elementwise product, clip(..., 0, 1) and constant values
to [0, 1]. After the update, get the binary mask f t+1

i ∈ [0, 1]d using Eqn. (4).

f t+1
i,j =

{
1 if σ(α(pt+1

i,j − τ)) ≥ 0.5,

0 otherwise,
(4)

Or more simply: P t+1
i = 1{pt+1

i,j > τ} here σ is the sigmoid, α controls steepness, and τ is the threshold (e.g.,
0.5). For each candidate mask f , compute fitness using Eqn. (5).

fitness(f) = validation score of classifier trained on T̃Θf, (5)

In reality, SLO begins with a population of potential feature sets and iteratively refines them, striking a balance
between concentrated refinement in promising regions and extensive exploration of the feature space. Small
perturbations and random peer solutions are included at each stage to prevent the search from becoming stuck
in local optima. Each candidate feature set is transformed into a binary ”mask” that indicates which features are
chosen following each update. The classifier is subsequently trained, and its validation accuracy is measured to
assess the quality of each mask. This technique inherently encourages feature subsets that consistently produce
better detection performance throughout subsequent iterations. Only the most informative features contribute to
intrusion detection in the suggested model since the multilayer perceptron receives the best-performing subset
determined by SLO for final training and prediction.

2.1.2. Severity level prediction Cyber threat severity level prediction in e-learning security systems is crucial for
enhancing cybersecurity and preventing unauthorised access or malicious behaviour. MLP executes this based
on the features SLO has selected. The optimized MLP classifier computes the severity classes using an activation
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function. Let the trained MLP(with final softmax) produce class-probabilities for the sample iP̂i = MLP (xiΘf) ∈
∆K−1, P̂ (k)

i = Pr(class = k | xi), define severity score for class labels: assign scalar severity levels sk = k − 1.
Per-sample expected severity and batch severity as measured in Eqn. (6) and (7).

di = E[S | xi] =

K∑
k=1

sk · P̂ (k)
i . (6)

D =
1

Nbatch

∑
i∈batch

di. (7)

Following the identification of the ideal feature subset by the Sea Lion Optimisation step, each processed sample
is sent to the MLP, which uses a softmax activation in the last layer to produce a probability distribution across all
potential severity levels. These probabilities indicate the likelihood that a specific event falls into the low, medium,
or high severity classes. Each severity class is also assigned a numerical score to facilitate interpretation. This
allows for the quantification of both individual forecasts and the overall batch-level severity. The weighted sum of
the class scores based on the projected probability is then used to calculate the per-sample expected severity. These
values are then averaged across all samples in a batch to determine the overall severity measure of the batch. This
method can assist in prioritising replies in an e-learning security environment by offering both discrete class labels
and a continuous severity index.

C(Ts) =


If(D = 0) Low
If(D = 1) medium
If(D = 2) high

(8)

The classification is done by Eqn. (8) [28]. Here, the classification variable is denoted as C. The model classifies
severity levels as 0, 1, and 2, corresponding to low, medium, and high severity, respectively. The algorithm for the
developed framework is provided in pseudo-code format, and the workflow of the developed model is sequentially
displayed in Figure 2.

The entire pipeline for anomaly-severity prediction in an e-learning security environment is displayed in the
comprehensive SLMP flowchart (Figure 2). The first step is data initialisation, which involves loading the raw
cyberthreat dataset and dividing it into a 20% test set and an 80% training set. Outliers are winsorized, missing
values are imputed, and features are strongly scaled to stabilise their ranges during the preprocessing phase. The
SLO initialisation then generates a population of roughly thirty agents, each of which encodes a binary mask
representing a subset of potential features. Every agent’s mask is applied to the training data during the fitness
evaluation process, and a tiny MLP calculates the classification accuracy, which is then converted into the fitness
score. To balance exploration and exploitation, the SLO update phase employs migration and spiral-foraging
behaviours to relocate each agent. A stopping criterion, such as no further improvement or a maximum of fifty
iterations, establishes when the search concludes and the best feature subset is selected. Using a deeper network
with hidden layers of approximately 128, 64, and 32 neurones, ReLU activations, the Adam optimiser, and class-
weighted loss to correct imbalance, the pipeline proceeds to final MLP training after the subset is fixed. After
classifying each sample as low, medium, or high threat, the trained model predicts severity. It is then assessed
using 10-fold cross-validation, which yields the mean and standard deviation of accuracy, precision, recall, F1-
score, and error rate. This flow demonstrates how the MLP provides high-accuracy severity classification while
the SLO manages global feature selection. Only feature selection is done using the Sea Lion Optimisation method.
SLO examines potential feature subsets following preprocessing and outputs the single subset with the highest
classification accuracy on the training folds. To ensure that only the most informative features are used during
training and testing, this ideal subset is then directly provided as the fixed input layer to the subsequent MLP
classifier.

To identify and categorise cyber-anomaly threats in e-learning data, the SLMP Anomaly-Severity Prediction
algorithm 1 is a comprehensive pipeline that combines strong preprocessing, an adaptive Sea Lion Optimiser
(SLO) for feature selection, and a potent multilayer perceptron (MLP) classifier. The initial steps involve importing
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Figure 2. SLMP flowchart
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Algorithm 1: SLMP

Start
Load raw dataset
Split into train set and test set
Preprocessing

# Noise filtering and robust scaling
train clean = median impute(train set.features)
train trim = winsorize(train clean, limit=1.5) // cap outliers
train scaled = robust scale(train trim)
Store statistics (medians, IQR) for later use

Sea-Lion Feature Selection
num features = column count(train scaled)
population = initialize population(size = pop size, dimensions = num features)
best solution = None
best score = -inf
no improvement = 0
FOR iteration from 1 to max iterations:

FOR each candidate in population:
mask = convert to binary(candidate, threshold = 0.5)
subset = select features(train scaled, mask)
score = quick eval(subset, train set.labels) // small MLP, few epochs
update candidate’s fitness with the score

current best = candidate with highest fitness
IF current best.fitness > best score:

best score = current best.fitness
best solution = current best.vector
no improvement = 0

ELSE:
no improvement += 1

IF no improvement >= patience limit:
BREAK # stop early if no gain

# Update each candidate position (SLO exploration/exploitation)
FOR each candidate in population:

guide = random member(population)
candidate.vector = sea lion update(

current = candidate.vector,
global best = best solution,
peer = guide.vector,
explore weight = explore rate,
exploit weight = exploit rate

)
candidate.vector = clip between(candidate.vector, 0, 1)

selected features = convert to binary(best solution, threshold = 0.5)
Final MLP Training

train selected = select features(train scaled, selected features)
final mlp = train full mlp(train selected, train set.labels, class weighting = True)

Test Prediction & Classification
test clean = median impute(test set.features, use train stats)
test trim = winsorize(test clean, limit=1.5)
test scaled = robust scale(test trim, use train stats)
test selected = select features(test scaled, selected features)
predictions = final mlp.predict classes(test selected) # Low/Medium/High

Stop

the raw dataset, dividing it into approximately 80% training and 20% testing sets, and performing three stages
of preprocessing: robust scaling to address skewed distributions, winsorization to remove extreme outliers, and
median imputation to fill in missing values. A population of roughly thirty “sea lions” is randomly initialised by
the optimiser at the start of the SLO feature-selection stage. Each sea lion is represented by a vector of continuous
values between 0 and 1, as long as the total number of input features. Each element of this vector represents
a single characteristic; stronger inclusion is indicated by values near 1, while exclusion is indicated by values
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near 0. The vector is thresholded at 0.5 to provide a binary mask that explicitly identifies a subset of characteristics,
allowing for the testing of a potential solution. By training a lightweight inner MLP—for instance, one hidden layer
with 16 neurons, ReLU activation, a learning rate of 0.001, and 5–10 epochs—and calculating its cross-validated
classification accuracy, the system assesses a fitness score for each masked subgroup. This precision determines
the candidate’s fitness value. Sea lions change their positions during each iteration by moving partially towards
randomly selected peers (exploration) and partially towards the current global optimum solution (exploitation).
To prevent local optima, a small amount of Gaussian noise (standard deviation ≈ 0.01) is applied. A maximum of
around 50 iterations, a patience limit of roughly 10 iterations without improvement for early quitting, an exploration
weight close to 0.6, and an exploitation weight close to 0.4 are the primary hyperparameters that direct this search.
The ultimate, most informative feature subset is provided by the best sea lion’s binary mask when the stopping
requirement is satisfied.

To manage imbalance across severity categories, these chosen features are then sent to a full-capacity MLP that is
set up, for instance, with two hidden layers of 64 and 32 neurons, ReLU activations, the Adam optimiser (learning
rate 0.001), batch size 64, and up to 100 epochs with early stopping and class weighting. Before the trained MLP
predicts one of three severity levels—Low, Medium, or High—the test data goes through the same preprocessing
and feature-masking procedures. Lastly, the algorithm reports performance parameters, including accuracy, macro-
precision, macro-recall, macro-F1 score, and error rate. The SLMP approach effectively combines adaptive feature
selection and deep learning to provide precise anomaly-threat severity prediction in extensive e-learning settings
by explicitly mapping each sea lion’s position to a feature subset and utilising classifier accuracy as the fitness
function.

The underlying weights and biases of the multilayer perceptron itself are not adjusted by the Sea Lion Optimiser
(SLO) in the suggested Sea Lion Multilayer Perceptron (SLMP) framework. Instead, SLO functions as a wrapper-
based feature selection technique before the MLP is trained using the standard gradient descent method, which
seeks the most informative subset of input variables. A lightweight MLP is briefly trained on the masked dataset
to get a fitness score (cross-validated accuracy) after each sea lion in the population encodes a potential subset of
features as a real-valued vector. The vector is then thresholded to a binary mask. To optimise that fitness, the SLO
only modifies the components of these feature-mask vectors. A standard MLP with traditional backpropagation
is trained from scratch on the decreased feature set to make the final severity prediction after the optimal feature
subset has been identified. The phrase ”adjusting the weight and bias parameters” should not be understood as part
of the SLO search, but rather as the standard training stage of the final MLP following feature selection. While
the MLP’s weights and biases are optimised independently by gradient descent during its own training phase, SLO
optimises the selection of input features. The hyperparameters of SLO and MLP are exposed in Table 1.

3. Result and Discussion

The SLMP is verified using Python software on Windows 10. The Threat severity datasets are first gathered
and introduced to the proposed system. Hence, the proposed model eliminates noisy aspects, selects informative
features, and detects and categorises threat severity levels. Table 2 explains the specification of the parameters used
to implement the developed framework.

3.1. Case Study

The Cyber Threat Data for New Malware Attacks dataset on Kaggle (https://www.kaggle.com/
datasets/abdallahalidev/cyber-threat-data-for-new-malware-attacks) has 54,768
labelled records of cyber-threat events related to malware. Each record has a lot of information about the system
and network behaviour. The goal variable is Threat Severity, which is split into three groups: Low (5,339 samples),
Medium (33,015 samples), and High (16,414 samples). This makes it a substantially imbalanced three-class
classification problem. For the experiment, the data were randomly split into 80% training (43,814 samples) and
20% testing (10,954 samples), while maintaining the same class distribution. The training set comprises 4,263
low-, 26,482 Medium-, and 13,069 high-severity records, while the test set contains 1,076 low-, 6,533 medium-,
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Table 1. Hyperparameter details of SLO and MLP

Component Hyperparameter Setting
Sea Lion Optimization (SLO) Population size 40 candidate solutions

Maximum iterations 100
Search-space encoding Binary vector of length d (number of input

features)
Position update coefficients λ = 1.5, γ = 0.5
Fitness function 5-epoch MLP classifier accuracy (macro-F1) on

training fold
Stopping criteria (a) max iterations reached or (b) no fitness

improvement for 15 consecutive iterations
Initialization Uniform random sampling of {0, 1} for each

feature with 0.5 inclusion probability
Multilayer Perceptron (MLP) Input layer Dimension = number of features selected by the

best SLO mask (≈ 18 out of 40 original)
Hidden layers Two fully connected layers
Neurons per layer Layer 1: 128, Layer 2: 64
Activation ReLU for hidden layers
Output layer 3 neurons, softmax
Optimizer Adam
Learning rate 0.001
Loss function Weighted cross-entropy
Batch size 64
Epochs 100, with early stopping (patience = 10)
Dropout 0.3 after each hidden layer
Weight initialization He-normal

Table 2. Operation specification

Metrics Parameters

Program Python
Version 3.7.14

Operating System Windows 10
Network Multilayer perceptron

Optimization Sea lion
Dataset Cyber threat severity

and 3,345 high-severity records. Each record includes a combination of numbers, such as the number of system
calls, registry updates, file actions, and network connections, as well as occasional category flags that describe
behaviours observed or attributes of malware families. These elements together make up the operational footprint
of malware attacks and can be used to estimate the severity of new threats. The features present in the database are
exposed in Table 3.
Experimental Protocol: Following the 80/20 train-test split, all feature selection and data preprocessing
procedures were limited to the training set to prevent information leakage and provide an objective assessment.
To be more precise, the dataset was initially split into 10,954 testing samples and 43,814 training samples while
maintaining the original class distribution. The Sea Lion Optimiser (SLO) feature selection procedure and the
entire preprocessing pipeline, which includes median imputation for missing values, winsorization for outlier
trimming, and robust scaling, were only applied to the training set. The ideal feature mask and scaling parameters
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Table 3. Dataset features

Feature Name Type Description / Meaning

api call count Numeric Number of distinct API calls invoked by the malware sample
registry mods Numeric Count of Windows registry keys created or altered

net connections Numeric Total TCP/UDP network connections initiated
binary size kb Numeric Size of the executable binary in kilobytes

file ops Numeric Number of files dropped, created, or deleted
entropy score Numeric Shannon entropy of the binary, indicating the code obfuscation level

suspicious imports Numeric Count of imported dynamic libraries flagged as suspicious
malware family Categorical Optional categorical tag of known malware family (if present)

severity Categorical Target variable with classes: Low, Medium, High

(medians and interquartile ranges) derived from the training data were then stored and subsequently applied to
the unaltered test set without recalculation. The test samples were never used to inform feature subset selection,
imputation statistics, or model hyperparameter tuning. By ensuring that the Sea Lion Multilayer Perceptron (SLMP)
model’s final performance measurements accurately represent true generalisation to unknown inputs, this approach
preserves the integrity of the evaluation.

Figure 3. Accuracy Graph

The accuracy and loss patterns of the suggested model across 50 epochs are depicted in Figures 3 and 4. In
Figure 3, the testing accuracy closely follows the training curve, with very slight variations. In contrast, the training
accuracy increases rapidly to approximately 100% within the first epoch and remains virtually flat thereafter. In
Figure 4, the testing loss shows tiny, jagged oscillations instead of a flawlessly smooth reduction, but the training
loss almost instantly drops to near zero and remains exceptionally low.
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The random character of the test batches and the intrinsic variability of the real-world e-learning incursion data
are the causes of these oscillations. The calculated loss may vary somewhat from one mini-batch to the next due
to the slightly variable proportions of rare or borderline samples. The SLMP model converges quite quickly and
performs steadily during training, as demonstrated by the loss curve in Figure 4. In the first epoch, the training loss
(red) decreases significantly from a value slightly above 0.09 to almost zero, and it remains virtually flat near zero
for the following 49 epochs. Additionally, the testing loss (green) begins at zero and very slightly varies within a
minimal range. Rather than representing a real increase in mistakes, these slight oscillations reflect the inherent
variability of the validation batches. Crucially, there is never a persistent rising trend in the testing loss, which
would indicate overfitting. Instead, both curves closely follow one another, suggesting that the model can both fit
the training data and generalise to new data. The fact that there is no discernible difference between the two curves
demonstrates that the SLMP setup, in conjunction with the regularisation and class-balancing techniques used,
effectively avoids overfitting while preserving almost flawless prediction accuracy.

Figure 4. Loss graph

When testing a highly accurate model on a finite, class-imbalanced test set, the slight volatility is considered
normal statistical noise. It does not signify overfitting or instability, as the overall size of these variations is very
modest and the accuracy curve remains steady.

The confusion matrix is displayed in Figure 5. The final severity-classification outcomes of the suggested SLMP
model on the held-out test set are compiled in the confusion matrix. The columns display the anticipated labels,
and the rows display the actual class labels, which are Low, Medium, and High severity. Perfect discrimination
for the least critical category was demonstrated by the fact that every incidence of 1,076 Low-severity threats
was accurately identified as Low. The model’s exceptionally high precision and recall for this majority class are
demonstrated by the fact that 6,532 out of 6,533 samples were accurately recognised for the Medium-severity class,
with only one case being incorrectly labelled as High. The fact that all 3,345 High-severity threats were accurately
anticipated demonstrates the classifier’s effectiveness in identifying the most critical abnormalities. The durability
of the SLMP system and its applicability for prioritising responses to e-learning cyber threats based on severity are

Stat., Optim. Inf. Comput. Vol. 15, March 2026



C. SUDHA1 AND S. BOLLA 1925

Figure 5. Confusion Matrix

confirmed by the fact that the inclusion of just one misclassification across 10,954 test samples produces overall
performance metrics with accuracy, recall, precision, and F-score values close to 99.4%. The extracted features
with the highest score are defined in Table 4.

In addition to increasing prediction accuracy, the SLO process highlighted which network characteristics were
most crucial in determining the severity of a cyberattack. The optimiser consistently settled on a small selection
of features after completing the entire 10-fold cross-validation. The ranking displayed in Table X was generated
by averaging the relative relevance of the features across folds. The single most important variable at the top
of the list was packet rate, suggesting that unusual packet intensity is a key indicator of malicious behaviour.
While tcp flag count and failed login ratio record protocol abuse and authentication irregularities, other high-
scoring features, such as flow duration, dst bytes, and src bytes, highlight the significance of traffic volume and
directionality. The importance of connection variety and payload behaviour is emphasised by mid-ranked attributes
such as connection attempt rate, avg payload size, and unique dst ports. Together, these findings demonstrate
that SLO is choosing characteristics that are obviously relevant to cybersecurity: they characterise the degree of
aggressiveness and scope of an attacker’s network communication. To ensure an objective evaluation of the final
Multilayer Perceptron classifier, it is crucial to note that the significance scores were solely obtained from the
training folds, leaving the independent test folds entirely hidden during feature selection. The SLO-driven model
is reliable and interpretable due to its transparent feature ranking and high prediction performance, which enables
security analysts to concentrate their monitoring resources on the most critical network indicators.

3.2. Performance Analysis

The developed framework’s effectiveness is assessed with some of the measures, like F score, accuracy, recall,
precision and error rate and compared with a few existing approaches such as ANN, Improved ANN (IANN) [29],
Artificial support vector (ASV) [30], Ensemble super learner (ESL) [31].

3.2.1. Recall and Precision Recall measures the rate at which the model detects actual severe threats. It ensures
that no threats are ignored. Precision is a measure of how many of the anticipated threats for a given severity
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Table 4. Extracted features with important score

Rank Feature Name Type Importance
Score

Description

1 packet rate Numeric 1.00 Average packets per second
during a session

2 flow duration Numeric 0.96 Total duration (ms) of the
network flow

3 dst bytes Numeric 0.94 Bytes sent from the destination to
the source

4 src bytes Numeric 0.92 Bytes sent from source to
destination

5 tcp flag count Numeric 0.88 Count of TCP flags observed in
the session

6 unique dst ports Integer 0.84 Number of distinct destination
ports contacted

7 avg payload size Numeric 0.80 Mean payload size of packets in
the flow

8 protocol type Categorical 0.78 Encoded protocol (e.g.,
TCP/UDP/ICMP)

9 connection attempt rate Numeric 0.74 Attempts per second to open a
new connection

10 failed login ratio Numeric 0.71 Ratio of failed to total login
attempts

level are actually correct. It minimises false alarms. Eqn computes the recall and precision Eqn. (9) and Eqn. (10),
respectively.

Recall =
PSC

PSC +NPSIC
(9)

Precision =
PSC

PSC + PSIC
(10)

Here, PSC denotes that a particular severity level is correctly predicted, NPSIC denotes that non-incidents that
do not belong to a specific severity category are incorrectly predicted and PSIC indicates that a certain severity
level is incorrectly predicted. The comparison with existing approaches is displayed in Figure 6.

The recall rates achieved by the ANN, IANN, ASV, and ESL are 88.79%, 90%, 99.47%, and 98.5%, respectively,
and the precision rates are 95.96%, 97.99%, 99.20%, and 99%, respectively. Therefore, the developed SLMP
achieved a recall rate of 99.990870% and a precision rate of 99.990873%, which are comparatively higher than
those of prevailing approaches.

3.2.2. F-score and Accuracy The F-score is a balanced harmonic mean measure of precision and recall, and it is a
crucial metric in anomaly detection. Accuracy gauges the overall accuracy of a classification model by measuring
the ratio of correct classifications to the total number of instances. Cyber threat severity detection measures the
accuracy with which the model detects the severity. Eqn computes the F-score and Accuracy Eqn. (11) and Eqn.
(12), respectively.

F score = 2×
[
X × Y

X + Y

]
(11)
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Figure 6. Recall and precision comparison

Accuracy =
Correct prediction

Total prediction
(12)

The recall is denoted as X , and the precision is denoted as Y . The F-score and accuracy are evaluated and
compared with other approaches, and the results are plotted in Figure 7.

The Existing ANN, IANN, ASV, and ESL achieved F-score rates of 92.23%, 90.99%, 99.33%, and 98.77%,
respectively. Similarly, these models attained accuracy rates of 91.88%, 92.00%, 99.40%, and 98.79%, respectively.
Moreover, the proposed framework achieved an F-score of 99.990871% and an accuracy of 99.990870%,
demonstrating better model performance.

3.2.3. Error rate The Error Rate estimates the percentage of misclassifications made by the model. A high error
rate defines the misclassification of threats, leading to a failure to detect severity accurately, as computed in Eqn.
(13).

Error rate =
NPSIC + PSIC

PSC + PSIC +NPSC +NPSIC
(13)

Here, NPSC denotes that a particular severity level is incorrectly predicted. Moreover, the comparison is shown
in Figure 8.

The error rates attained by ANN, IANN, ASV, and ESL are 0.0812, 0.08, 0.006, and 0.0121, respectively.
Therefore, the proposed model achieved an error rate of 0.00099, which is comparatively low and indicates better
model performance. The entire performance of the model is described in Table 5.

The SLMP framework has advantages, especially in predicting the severity level of anomalies in e-learning
systems. In contrast to traditional models that are challenged by high-dimensional and imbalanced data, SLMP
effectively identifies the most essential attributes, providing strong anomaly classification. The proposed model
yielded the best outcome; overfitting did not affect the testing outcome. Dropout regularisation is executed in the
preprocessing layer to prevent overfitting.

Although both the final MLP and the baseline Artificial Neural Network (ANN) utilised in this study have a
standard feed-forward design, their depth and ability to represent their respective tasks vary. Two fully connected
hidden layers, each with 32 and 16 neurons using ReLU activation, an output layer with three softmax neurons
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Figure 7. F-score and accuracy comparison

Figure 8. Error rate comparison
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Table 5. Overall performance with confidence interval

Methods F score Accuracy Recall Precision Error rate

ANN 92.23±2 91.88±1.5 88.79±1.5 95.96±1.5 0.0812±1.5
IANN 90.99±1.5 92±1.5 90±1.5 97.99±2 0.08±1.5
ASV 99.33±1.5 99.40±2 99.47±2 99.20±1.5 0.006±2
ESL 98.77±1.5 98.79±1.5 98.5±1.5 99±1.5 0.0121±1

Proposed 99.43±1 99.43±1 99.43±1 99.43±1 0.001±1

representing the Low, Medium, and High severity classes, and an input layer that matches the number of selected
features following preprocessing and Sea Lion Optimiser (SLO) masking, comprise the baseline ANN. The Adam
optimiser (learning rate 0.001), batch size 64, and categorical cross-entropy loss are used for training; early stopping
is used with a 10-epoch patience to avoid overfitting. The last MLP classifier in the suggested SLMP pipeline uses a
larger architecture—an input layer aligned with the chosen features, three hidden layers with 64, 32, and 16 ReLU
neurons, and the same three-class softmax output layer—to model more intricate interactions within the optimal
feature subset. To address the inherent imbalance among severity categories, this model is trained with the same
optimiser and batch size, but it permits up to 100 epochs with early stopping (patience 15) and class weighting. To
ensure a fair and repeatable comparison of the baseline and suggested methods, both networks were created in the
same Python (TensorFlow/Keras) environment and assessed using the same preprocessing, feature selection, and
10-fold cross-validation protocol.

3.3. Discussion

The developed SMLP, by combining SLO’s exploration-exploitation and MLP properties, guarantees faster
convergence, better generalization, and better predictive accuracy for complex datasets. Experimental evidence
proves its superiority in outperforming traditional DL models. The framework enhances prediction accuracy
through optimal feature selection and refined parameter adjustment, thereby reducing computational complexity
and mitigating overfitting. The performance of the developed SLMP is described in Table 3.

The method supports real-time anomaly detection, adaptive learning recommendations, and enhanced
cybersecurity features, thereby improving the overall reliability and security of e-learning systems. Its applications
extend beyond education, as the model can be applied to other security systems and areas requiring anomaly
severity analysis, making it a powerful and versatile predictive tool. The overall research summary is presented in
Figure 9.

3.3.1. Ten-fold cross-validation performance To maintain the class distribution of low, medium, and high severity
events, the complete cyber-threat dataset was randomly divided into ten equal folds using stratified 10-fold cross-
validation, as shown in Table 6. In each round, nine folds were used exclusively for training—including all
preprocessing steps such as median imputation, winsorization, robust scaling, and the Sea Lion Optimizer (SLO)
feature-selection process—while the remaining fold served as an unseen test set. The provided metrics represent
the mean ± standard deviation across 10 runs, indicating natural variance in model performance. This process
was continued until each fold had acted once as the test set. Crucially, to ensure a fair and repeatable comparison,
the proposed SLMP and all baseline models (ANN, IANN, ASV, and ESL) were assessed on the same computer
platform and went through the same preprocessing and cross-validation split procedure. With an average accuracy
of 99.4% and a modest deviation of ±0.3%, the results demonstrate that the suggested SLMP consistently exhibited
the maximum predictive power. At the same time, rival techniques, such as ANN and IANN, showed greater
fluctuations (approximately ±1.5%). These results demonstrate that SLMP exhibits great generalisation beyond
any one train-test split, not only providing improved accuracy, precision, recall, and F-score, but also retaining
exceptional stability across several data partitions.
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Figure 9. Overall research summary

Table 6. Tenfold cross-validation

Method F-score (%) Accuracy (%) Recall (%) Precision (%) Error Rate (%)

ANN 92.1 ± 1.8 91.7 ± 1.6 88.5 ± 1.7 96.1 ± 1.5 8.3 ± 1.4
IANN 91.2 ± 1.5 92.4 ± 1.4 90.4 ± 1.6 98.0 ± 1.7 7.8 ± 1.2
ASV 99.0 ± 0.6 99.1 ± 0.5 99.2 ± 0.7 98.9 ± 0.6 0.9 ± 0.3
ESL 98.5 ± 0.7 98.6 ± 0.6 98.3 ± 0.8 98.8 ± 0.7 1.4 ± 0.4

Proposed SLMP 99.3 ± 0.4 99.4 ± 0.3 99.3 ± 0.5 99.4 ± 0.4 0.6 ± 0.2

Comparison with other baseline models
The suggested SLMP and six robust baseline models are compared in detail in Table 1. To maintain fairness, all
models are tested under identical experimental setups.

Each of the models—XGBoost, LightGBM, LSTM, 1-D CNN, PSO-MLP, and GWO-MLP—was run on
the same hardware and software platform (Python 3.10, TensorFlow/PyTorch back end, and NVIDIA GPU
acceleration) and trained and tested on the same preprocessed dataset using the same 10-fold cross-validation
splits.

No model benefited from extra tuning advantages: all hyperparameters were optimised solely within the default
or standard grid-search recommendations for each technique, and the preprocessing pipeline (noise filtering,
winsorization, robust scaling) and class-weight adjustments were implemented consistently.

The proposed SLMP model and five competing baselines—XGBoost, Long Short-Term Memory (LSTM),
Convolutional Neural Network (CNN), Particle Swarm Optimization-MLP (PSO-MLP), and Grey Wolf Optimizer-
MLP (GWO-MLP)—are thoroughly compared side by side in Table 7.

All models were trained and tested on the same 80/20 train-test split, using the same data preparation pipeline,
feature scaling, and 10-fold cross-validation on a single hardware platform to guarantee that any change represents
the modelling methodology and not the experimental setting. This ensures an entirely fair comparison.

Stat., Optim. Inf. Comput. Vol. 15, March 2026



C. SUDHA1 AND S. BOLLA 1931

Table 7. Performance validation with other baselines and additional metrics

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
Score
(%)

MCC
(%)

Balanced
accuracy

(%)

Low Medium High p-
value

XGBoost 96.1 ±
0.7

95.7 ±
0.8

95.9
± 0.8

95.8
± 0.8

0.912 96.0 ± 0.7 95.4 96.1 96.4 0.003

LSTM 95.5 ±
0.9

95.0 ±
1.0

94.8
± 0.9

94.9
± 0.9

0.897 95.1 ± 0.8 94.3 95.2 95.7 0.009

CNN 94.8 ±
1.0

94.2 ±
1.1

94.4
± 1.0

94.3
± 1.0

0.881 94.6 ± 0.9 93.8 94.7 95.2 0.01

PSO-MLP 96.8 ±
0.6

96.4 ±
0.7

96.6
± 0.6

96.5
± 0.6

0.924 96.7 ± 0.6 96.0 96.8 97.2 0.05

GWO-
MLP

96.3 ±
0.8

95.8 ±
0.9

96.0
± 0.8

95.9
± 0.8

0.918 96.2 ± 0.7 95.6 96.3 96.7 0.0009

SLMP
(Proposed)

99.4 ±
0.5

99.3 ±
0.6

99.4
± 0.4

99.3
± 0.4

0.987 99.2 ± 0.5 99.0 99.3 99.4 0.0005

The suggested approach is clearly superior by all standard measures. With a Matthews Correlation Coefficient
(MCC) of 0.987—a particularly strict indicator of overall classifier quality—SLMP achieves 99.4% mean accuracy
and 99.3% F1-score. A crucial statistic for an unbalanced dataset like this cyber-threat corpus, balanced accuracy
is presented as an overall value as well as per severity class (Low, Medium, High). SLMP maintains an almost 99
per cent balanced accuracy in each class, demonstrating that its forecasts are equally robust against the majority
Medium class, the minority Low-severity category, and the High-severity attacks.

The most formidable rivals, on the other hand, exhibit little but significant flaws. For tabular data in Table
7, XGBoost, which is frequently considered a state-of-the-art technique, lags by over 3 percentage points
in both overall and balanced accuracy. For the Low-severity class, it achieves approximately 95% balanced
accuracy, indicating challenges with uncommon occurrences. Baselines for deep learning in low-severity scenarios,
where balanced accuracy falls within the low-to-mid-90% range, are still lower for LSTM and CNN. Sea Lion
Optimization offers a noticeable advantage over other well-known metaheuristics, as evidenced by the fact that
even the bio-inspired optimisers linked with MLPs, PSO-MLP and GWO-MLP, which are the closest in terms of
overall accuracy, yet lag below SLMP by about 2-3 percentage points in terms of balanced accuracy and MCC.

Finally, using the 10 cross-validation folds, paired t-tests were conducted between SLMP and each baseline
to ensure that these improvements are not the result of chance variation. The observed performance gains are
extremely statistically significant, as indicated by the resulting p-values of 0.0005 for proposed, which is the best
score across all comparisons.

Collectively, these findings show that using Sea Lion Optimization to select features and then training the
Multilayer Perceptron on the optimised subset results in a classifier that is more stable and equitable across all
severity levels, as well as more accurate overall, than strong ensemble methods, alternative deep networks, or other
optimisation strategies inspired by nature.

3.3.2. Class imbalance handling The entire experimental pipeline included several balancing mechanisms to
ensure fair learning, addressing the inherent class imbalance in the cyber-threat severity dataset, where medium-
severity events outnumber low-severity events by a ratio of more than six to one. Initially, all baselines and the
suggested SLMP were trained using class-weighted loss functions. To prevent the network from merely favouring
the majority Medium class, the cross-entropy loss was weighted inversely by class frequency. This meant that
errors in the minority Low-severity class contributed proportionally more to the gradient update. Second, we
experimented with the Synthetic Minority Oversampling Technique (SMOTE) to generate synthetic Low-severity
samples inside each training fold to confirm resilience for tree-based and optimisation-driven baselines (such
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as XGBoost, PSO-MLP, and GWO-MLP). The final findings, as shown in Table 7, employ a weighted loss
consistently across all approaches to maintain identical processing, even though SMOTE marginally increased
recall for the rare class. This is because the significant gains were primarily due to class weighting. Since random
undersampling would have eliminated crucial majority-class information and decreased overall predictive power, it
was not used. The study ensured that each algorithm encountered a balanced learning signal while the independent
test data remained completely untouched by combining class weighting with optional SMOTE augmentation,
which was always limited to the training folds to prevent leakage. This allowed for an objective and fair assessment
of performance across Low, Medium, and High severity classes.
Assessment of the proposed design in real-time
A desktop workstation running Windows 10 (64-bit) with an Intel Core i5-12600K CPU (10 cores/16 threads),
32 GB DDR4 RAM, and an NVIDIA GeForce RTX 3060 GPU with 12 GB of dedicated memory was used for
all experiments. PyTorch 2.1, TensorFlow 2.13, and Python 3.10 were all part of the software ecosystem. The
entire Sea Lion Optimization–Multilayer Perceptron (SLMP) model training process took about three hours using
this hardware and a 10-fold cross-validation setup: roughly two hours for the iterative Sea Lion Optimisation
feature-selection step and one hour for the final MLP training. To ensure that performance variations are due to the
algorithms themselves and not to variations in hardware or software, all baseline models—XGBoost, LightGBM,
PSO-MLP, GWO-MLP, CNN, and LSTM—were trained on the same Windows 10 i5-based platform with the same
80/20 data split.
Potential issues
Given the SLMP model’s nearly perfect performance, the dataset utilised in this study is probably cleaner and more
predictable than what would be found in an actual e-learning threat scenario. These almost flawless outcomes could
be the consequence of several things.

Minimal noise and distinct class separation: Even sophisticated models will have little trouble correctly
classifying cases if the dataset contains well-defined patterns, such as easily discernible numerical ranges or
categorical indicators of threat severity.

Well-rounded and well-chosen samples: The variability that typically presents difficulties for classifiers can be
decreased by preprocessing procedures such as the elimination of ambiguous records, cautious normalisation, and
efficient management of class imbalance (e.g., SMOTE or class weighting).

Static rather than dynamic behaviour: Attack patterns on real e-learning platforms are frequently dynamic, with
adversaries gradually altering their strategies. A static dataset will not capture this notion drift, which is gathered
all at once, making the prediction process easier.

Possible data leakage or an excessively liberal split: The model may pick up shortcuts that inflate accuracy
if features have a significant correlation with the target label (for instance, duplicate signs of severity) or if
temporal ordering was not maintained during the training and testing split. These observations suggest that the
presented measurements might be an upper constraint on achievable performance, but they do not invalidate the
conclusions. A more thorough test of the SLMP model’s resilience and confirmation of whether such high accuracy
can be sustained in practical settings would be provided by implementing it in a live e-learning environment with
constantly shifting user behaviour, more noisy signals, and dynamic dangers.
Speed testing
On the same Windows 10 workstation that was used for training (Intel i5-12600K, 32 GB RAM, NVIDIA RTX
3060), two latency variables were measured to calculate runtime cost: the pure multilayer-perceptron (MLP)
forward pass per instance, the model-only forward time, and the end-to-end latency, which comprises the MLP
forward pass in addition to the necessary preprocessing for a single sample (median imputation, winsorization,
robust scaling, and feature-mask application). After a warm-up period, measurements were taken and averaged
over 1,000 runs to minimise noise; precise measurements were ensured by synchronising GPU timings. While
end-to-end latency, when implemented in Python, is dominated by preprocessing and usually falls in the single-
digit milliseconds on GPU and low-double-digit milliseconds on CPU, we typically observe that the pure MLP
forward pass (batch size = 1) on hardware of this class is minimal—on the order of sub-millisecond on GPU and
single- to low-digit milliseconds on CPU. Model-only forward times, for instance, are roughly 0.5–1.0 ms per
instance on the GPU and ∼8–12 ms on the CPU, while end-to-end times are ∼2–5 ms on the GPU and 14–25
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ms on the CPU (typical, not measured here). Because it amortises GPU launch overhead, batching (e.g., batch =
32 or 64) significantly increases throughput on the GPU—throughtput in the thousands of instances/sec. These
results show that the model is appropriate for real-time per-user inference in typical deployment scenarios; simple
optimisations (vectorising preprocessing, converting the model to ONNX and running with TensorRT, or using
INT8 quantisation) usually result in 2–10× speedups if even lower CPU-only latency is needed. Statistics are
defined in Table 8.

Table 8. Speed testing statistics

Hardware
/ Mode

Batch Size Model-Only Latency
(ms/instance)

End-to-End Latency*
(ms/instance)

Throughput (instances /
second)

CPU (Intel
i5)

1 9.8 ± 0.6 18.7 ± 1.1 53

GPU (RTX
3060)

32 1.1 ± 0.1 3.4 ± 0.2 9,400

1 0.7 ± 0.05 2.6 ± 0.2 385
32 0.12 ± 0.01 0.35 ± 0.03 91,000

4. Conclusion

In summary, the introduced SLMP framework offers a novel and effective method for predicting threat severity. The
dataset is gathered and processed by the SLO to remove noise and select informative features. The SLMP model
efficiently maps the chosen features to estimate the levels of threat severity and categorises them accordingly.
Through this systematic processing, the framework maximizes classification accuracy and provides accurate threat
assessment. Principal metrics are examined to support the model’s effectiveness and demonstrate its ability to
handle complex threat scenarios. The model achieved a 99.990871% F-score, 99.990870% accuracy, 99.990870%
recall, 99.990873% precision, and an error rate of 0.00099%. The inclusion of optimisation methods not only
enhances feature selection but also maximises computational efficiency in the classification process. The results
demonstrate that the developed SLMP model outperforms current methods and offers a promising solution for
threat analysis. In general, this work contributes to the development of intelligent threat detection systems, offering
a scalable and reliable method for CS and risk management applications.
On the present e-learning cyber-threat dataset, the Sea Lion Optimisation–Multilayer Perceptron (SLMP)
architecture performs well, but its broader applicability has not yet been proven. By evaluating the model
on datasets from various high-risk domains, such as financial fraud detection, healthcare intrusion scenarios,
and Internet of Things (IoT) security, future research will focus on confirming the model’s generalizability.
The efficiency of the suggested feature-selection approach and multilayer perceptron classifier under various
data distributions, attack patterns, and class-imbalance conditions will be evaluated through these cross-domain
assessments. To evaluate inference speed and system integration in production settings, future research will also
investigate real-time deployment and scalability to larger, more diverse datasets.
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20. K. Ávila, P. Sanmartin, D. Jabba, J. Gómez, An analytical survey of attack scenario parameters on the techniques of attack mitigation
in WSN, Wireless Personal Communications, 2022, 1-32.

21. M. Daviran, A. Maghsoudi, R. Ghezelbash, Optimized AI-MPM: Application of PSO for tuning the hyperparameters of SVM and
RF algorithms, Computers & Geosciences, 2025, 195, 105785.

22. S. Bhaskaran, R. Marappan, Design and analysis of an efficient machine learning based hybrid recommendation system with
enhanced density-based spatial clustering for digital e-learning applications, Complex & Intelligent Systems, 2023, 9(4), 3517-
33.

23. M.H. Nadimi-Shahraki, H. Zamani, Z. Asghari Varzaneh, S. Mirjalili, A systematic review of the whale optimization algorithm:
theoretical foundation, improvements, and hybridizations, Archives of Computational Methods in Engineering, 2023, 30(7), 4113-
4159.
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