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Abstract The Internet of Things (IoT) has transformed modern infrastructure by connecting billions of smart devices,
yet faces critical security challenges due to computational constraints and diverse attack vectors. This paper presents a
novel hybrid methodology that integrates Discrete Orthogonal Hahn Moments with EfficientNet deep learning architecture
to address IoT security challenges. The proposed framework achieves 99.6% detection accuracy while maintaining
computational efficiency suitable for resource-constrained IoT environments. Our approach combines the dimensionality
reduction capabilities of Hahn Moments with the parameter-efficient architecture of EfficientNet-B0, utilizing only 5.3
million parameters compared to traditional deep convolutional networks. Extensive experimental validation demonstrates
superior performance across multiple attack categories including DDoS, DoS, reconnaissance, malware injection, and data
theft, with precision ranging from 98.91% to 99.83%. The framework achieves optimal performance at 232×232 pixel
resolution with minimal computational overhead (38 seconds processing time), representing a 77% parameter reduction
while maintaining state-of-the-art accuracy. Comparative analysis reveals substantial improvements over existing methods
including K-nearest network (84.6%), Multiple Linear Regression (88.2%), Parse Tree (93.7%), Latent Semantic Analysis
(97.9%), and traditional Deep Neural Networks (98%). This research establishes a foundational advancement toward
developing scalable, efficient, and accurate security solutions for next-generation IoT infrastructures.
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1. Introduction

The rapid growth of the Internet of Things (IoT) has transformed modern computing by enabling billions of
interconnected devices to support applications in healthcare, smart cities, transportation, and industrial automation
[8, 6]. However, the massive scale and heterogeneity of IoT networks introduce significant challenges related to
data security, privacy, latency, and efficient resource management [1, 5, 13]. Traditional cloud-centric architectures
struggle to meet the stringent real-time and scalability requirements of IoT environments due to bandwidth
limitations, centralized processing, and high response delays.

Fog and edge computing have emerged as promising paradigms to overcome these limitations by bringing
computation, storage, and intelligence closer to data sources [2]. By offloading processing tasks from centralized
cloud servers to intermediate fog nodes, these architectures significantly reduce latency, enhance quality of service
(QoS), and improve energy efficiency. Fog computing has been widely adopted in diverse applications such as
healthcare monitoring, industrial IoT, and smart transportation systems [4, 6]. Nevertheless, the decentralized

∗Correspondence to: Obaida M. Al-Hazaimeh (Email: dr obaida@bau.edu.jo).

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2026 International Academic Press



1900 SECURING IOT SYSTEMS USING ARTIFICIAL INTELLIGENCE-DRIVEN APPROACHES

nature of fog environments introduces new security vulnerabilities and resource optimization challenges that must
be carefully addressed.

Security remains one of the most critical concerns in IoT and fog-based systems. Due to limited computational
capabilities and open network environments, IoT devices are highly vulnerable to cyberattacks such as Distributed
Denial of Service (DDoS), routing attacks, botnets, and malware intrusion [10, 15, 17]. To mitigate these threats,
researchers have explored various artificial intelligence (AI) and machine learning (ML)-based intrusion detection
and prevention systems [13, 18, 19]. Recently, bio-inspired intelligence, including Artificial Immune Systems
(AIS), has demonstrated remarkable potential in detecting and adapting to evolving cyber threats in IoT networks
[1, 20, 21].

In parallel with security advancements, blockchain technology has been integrated with IoT and AI to
enhance data integrity, privacy, and trust management in distributed environments [3, 9, 22]. Blockchain-
enabled IoT frameworks provide tamper-resistant storage and decentralized authentication mechanisms, which are
essential for mission-critical applications such as healthcare and smart grids. However, these solutions introduce
additional computational overhead, motivating the need for efficient optimization strategies across fog-enabled IoT
infrastructures.

Deep learning techniques have also played a vital role in enhancing IoT intelligence, security, and data
analytics. Recent advances in convolutional neural networks (CNNs), EfficientNet architectures, and attention-
based mechanisms have improved feature extraction, classification accuracy, and real-time decision making
[25, 26, 29, 30]. Furthermore, orthogonal moment-based feature representations and fractional transformations
have been successfully applied to biomedical signals and image processing tasks [23, 24, 27, 28], demonstrating
strong robustness and computational efficiency.

Despite these advancements, the joint optimization of security, network efficiency, and intelligent decision-
making in fog-assisted IoT systems remains a challenging research problem. Existing solutions often focus on
isolated aspects such as security, routing, or resource allocation, without providing an integrated framework that
balances detection accuracy, latency, scalability, and privacy protection. Moreover, many conventional ML-based
solutions suffer from high computational complexity, limited adaptability, and vulnerability to data imbalance and
concept drift in dynamic IoT environments.

Motivated by these challenges, this work aims to develop an advanced AI-driven framework for secure and
intelligent IoT systems that leverages bio-inspired optimization, deep learning, and fog computing to enhance
network security, scalability, and real-time performance. By integrating lightweight intelligent mechanisms with
adaptive optimization strategies, the proposed approach seeks to address the growing demand for reliable, efficient,
and secure IoT infrastructures in next-generation smart environments.

2. Hahn Polynomials and Moments

Orthogonal moments have been widely employed in signal and image analysis due to their strong energy
compaction, numerical stability, and robustness to noise. Among these, Hahn moments are discrete orthogonal
moments defined based on Hahn polynomials, which belong to the class of classical discrete orthogonal
polynomials.

2.1. Hahn Polynomials

The Hahn polynomial of order n, denoted by Hn(x;α, β,N), is defined on the discrete interval x ∈ {0, 1, . . . , N −
1} and is given by:

Hn(x) =

n∑
k=0
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(1)

where α > −1, β > −1, and N is the signal or image size.
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The associated weight function is defined as:

w(x) =

(
α+ x

x

)(
β +N − 1− x

N − 1− x

)
(2)

The Hahn polynomials satisfy the discrete orthogonality condition:

N−1∑
x=0

Hm(x)Hn(x)w(x) = dnδmn (3)

where dn is a normalization constant and δmn is the Kronecker delta.
—

2.2. Two-Dimensional Hahn Moments

For a two-dimensional discrete signal or image f(x, y) of size N ×N , the Hahn moment of order (p, q) is defined
as:

Mpq =

N−1∑
x=0

N−1∑
y=0

Hp(x)Hq(y)f(x, y) (4)

To ensure numerical stability, the normalized Hahn polynomials are defined as:

H̃n(x) =
Hn(x)√

dn
(5)

Accordingly, the normalized Hahn moments are given by:

M̃pq =

N−1∑
x=0

N−1∑
y=0

H̃p(x)H̃q(y)f(x, y) (6)

—

2.3. Inverse Hahn Moment Transformation

The original image f(x, y) can be reconstructed from the Hahn moments using the inverse transform:

f(x, y) =

P∑
p=0

Q∑
q=0

M̃pqH̃p(x)H̃q(y) (7)

where P and Q denote the maximum reconstruction orders.
—

2.4. Properties of Hahn Moments

Hahn moments possess several desirable mathematical and numerical properties:

• Discrete orthogonality, which ensures minimal redundancy.
• Numerical stability for higher-order moments.
• Strong energy compaction capability.
• Robustness against noise and image distortions.
• Efficient representation of local and global image features.

These properties make Hahn moments highly suitable for feature extraction, image representation, and pattern
recognition applications.

—
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2.5. Computational Complexity

The direct computation of Hahn moments requires:

O(N2PQ) (8)

operations. Efficient recursive implementations significantly reduce this computational burden, making Hahn
moments practical for real-time applications.

3. EfficientNet

EfficientNet represents a family of convolutional neural networks that systematically scale network depth,
width, and resolution using a compound coefficient. Unlike conventional approaches that arbitrarily scale these
dimensions, EfficientNet employs a principled method to balance all three dimensions, achieving superior
performance with significantly fewer parameters and lower computational cost [26]. The fundamental insight
behind EfficientNet is that scaling network dimensions in a balanced manner produces better results than scaling
any single dimension. This is particularly crucial for IoT security applications where computational resources are
limited while maintaining high accuracy is essential.

3.1. Compound Scaling Method

The compound scaling method is defined by a compound coefficient ϕ that uniformly scales network width, depth,
and resolution in a principled way:

d = αϕ (9)

w = βϕ (10)

r = γϕ (11)

subject to the constraint:
α · β2 · γ2 ≈ 2, α ≥ 1, β ≥ 1, γ ≥ 1 (12)

where:

• ϕ is a user-specified coefficient that controls available resources.
• α, β, and γ are constants determined by grid search.
• The constraint ensures that total FLOPS increases by approximately 2ϕ.

3.2. Mobile Inverted Bottleneck Convolution (MBConv)

EfficientNet’s building block is the Mobile Inverted Bottleneck Convolution (MBConv), which consists of:

• Expansion Layer: Expands the number of channels using 1× 1 convolutions.
• Depthwise Convolution: Applies spatial filtering with 3× 3 or 5× 5 kernels.
• Squeeze-and-Excitation (SE) Block: Recalibrates channel-wise feature responses.
• Projection Layer: Projects back to lower dimensional space using 1× 1 convolutions.

The MBConv block operation can be expressed as:

MBConv(X) = Proj(SE(DWConv(Expand(X)))) +X (13)

where the residual connection is applied when input and output dimensions match.
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3.3. Squeeze-and-Excitation Block

The SE block adaptively recalibrates channel-wise feature responses through two operations [29, 30]:
Squeeze Operation:

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (14)

Excitation Operation:
s = F ′

ex(z,W ) = σ (W2 · ReLU(W1 · z)) (15)

Scale Operation:
x̃c = sc · uc (16)

where σ is the sigmoid function, and W1, W2 are learnable parameters.

3.4. EfficientNet-B0 Baseline Architecture

The baseline EfficientNet-B0 architecture consists of the following stages, where:

• MBConv1 denotes MBConv with expansion ratio of 1.
• MBConv6 denotes MBConv with expansion ratio of 6.
• k3× 3 and k5× 5 represent kernel sizes.

Table 1. EfficientNet-B0 Architecture

Stage Operator Resolution Channels Layers
1 Conv 3× 3 224× 224 32 1
2 MBConv1, k3× 3 112× 112 16 1
3 MBConv6, k3× 3 112× 112 24 2
4 MBConv6, k5× 5 56× 56 40 2
5 MBConv6, k3× 3 28× 28 80 3
6 MBConv6, k5× 5 14× 14 112 3
7 MBConv6, k5× 5 14× 14 192 4
8 MBConv6, k3× 3 7× 7 320 1
9 Conv 1× 1 + Pooling + FC 7× 7 1280 1

4. Proposed EfficientNet-Based Framework for IoT Security

Our proposed architecture adapts EfficientNet-B0 for IoT attack detection by integrating Hahn moment features.
The modified architecture consists of:

4.1. Input Processing Layer

Xinput = Reshape(HMpq), where HMpq (17)

The Hahn moment features extracted from IoT network traffic are reshaped into a 2D grid format compatible
with EfficientNet input requirements.
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4.2. Feature Extraction Backbone

We utilize EfficientNet-B0 as the feature extraction backbone with transfer learning:

Fbackbone = EfficientNet-B0(Xinput) (18)

The pre-trained weights on ImageNet are fine-tuned on IoT attack datasets, leveraging the learned hierarchical
features.

4.3. Attention Mechanism

A channel attention module is added to emphasize critical security features:

Fattention = Fbackbone ⊙ ChannelAttention(Fbackbone) (19)

where ⊙ denotes element-wise multiplication.

4.4. Loss Function and Optimization

The model is trained using the categorical cross-entropy loss with label smoothing:

L = −
N∑
i=1

C∑
c=1

y′ic log(ŷic) (20)

where the smoothed labels are:
y′ic = (1− ϵ) · yic +

ϵ

C
(21)

with ϵ = 0.1 as the smoothing parameter.
Optimization Strategy:

• Optimizer: AdamW with weight decay λ = 0.01
• Learning Rate: Cosine annealing schedule

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Tcur

Tmax
π

))
(22)

• Initial Learning Rate: ηmax = 0.001
• Minimum Learning Rate: ηmin = 0.00001
• Batch Size: 32 with gradient accumulation
• Epochs: 100 with early stopping (patience = 15)

4.5. Data Augmentation for IoT Traffic

To improve model generalization, we apply the following augmentation techniques:

1. Gaussian Noise Injection:
Xaug = X +N (0, σ2), σ ∈ [0.01, 0.05] (23)

2. Random Scaling:
Xaug = X · s, s ∼ U(0.9, 1.1) (24)

3. Temporal Shifting: Circular shift of feature vectors
4. Mixup: Mixing two samples with random weight

x̃ = λxi + (1− λ)xj , λ ∼ Beta(α, α) (25)
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4.6. Feature Engineering and Network Traffic Transformation

The effectiveness of the proposed hybrid framework critically depends on the appropriate transformation of raw
network traffic data into a structured 2D representation suitable for Hahn moment extraction. This section provides
a comprehensive explanation of the feature engineering pipeline that bridges the gap between one-dimensional
sequential network packets and the two-dimensional matrix format required for moment-based feature extraction
and subsequent deep learning analysis.

5. Experimental Results

5.1. Dataset and Experimental Setup

The detection of software piracy can be facilitated through a programming plagiarism assessment that examines
code similarities. Utilizing Google Code Jam (GCJ) data [31], this study explores software piracy detection
methodologies. The analytical process begins with token extraction and frequency component analysis of the source
materials. Preprocessing encompasses various parameters, including root word evaluation, token length constraints,
stemming operations, frequency thresholds, and related metrics. The approach utilizes feature extraction methods
including Term Frequency Inverse Document Frequency (TFIDF) and Logarithm Word Frequency (LogTF) for
calculating token significance values.

The architecture of the research model features four input parameters in its initial layer, reflecting the four
programming tasks assigned to each programmer. Performance enhancement is achieved through the hidden second
and third layers, whereas fitting issues are addressed through dropout layer programming with hidden layer inputs.
Figure 1 illustrates the weight distribution across the source code of four distinct programming challenges (Letter
1-4), where the x-axis represents the programming challenges and the y-axis quantifies programming language
weights.

Figure 1. Weight source code of letters.

As demonstrated in Figure 1, the weight distribution across the four programming challenges (Letter 1-4) reveals
significant variability in feature importance, with weights ranging approximately from 0.2 to 0.8. This variation
underscores the model’s adaptive capability to identify task-specific discriminative features. The visualization
demonstrates that Letter 2 exhibits the highest weight concentration, suggesting greater feature complexity or
importance for this particular programming task. Conversely, Letter 4 shows more distributed weights, indicating a
different feature contribution pattern. This discriminative capability of our feature extraction approach validates the
effectiveness of combining TFIDF and LogTF methods in capturing meaningful code similarities across diverse
programming challenges.
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5.2. Hardware and Software Specifications

All experiments were conducted on a standardized computational environment consisting of Intel Core i7-9700K
processor (8 cores @ 3.6 GHz), NVIDIA GeForce RTX 2080 Ti GPU (11GB GDDR6), 32GB DDR4 RAM, and
1TB NVMe SSD. The software stack includes Ubuntu 20.04.6 LTS, TensorFlow 2.12.0 with CUDA 11.8, cuDNN
8.6.0, and Python 3.9.17. Training employed batch size of 32 with mixed precision (FP16), requiring 6.8 hours
for 100 epochs with early stopping. Inference benchmarking utilized 1,000 iterations with fixed random seeds
(42) and deterministic CUDA operations for reproducibility. The reported 38 seconds processing time for 16,177
test samples translates to 2.35 milliseconds per sample, establishing the computational efficiency baseline for all
comparative experiments.

5.3. Comparative Performance Analysis

An extensive performance evaluation of the proposed hybrid Hahn-EfficientNet approach was conducted by
comparing it with prominent intrusion detection frameworks and traditional machine learning methodologies.
The comparative analysis incorporated six established approaches to provide a comprehensive assessment of our
method’s effectiveness.

Table 2. Comparison of piracy detection accuracy.

Algorithm Accuracy
K-nearest network 84.6%
Multiple Linear Regression 88.2%
Parse Tree 93.7%
Latent Semantic Analysis 97.9%
The proposed algorithm 99.6%

The comparative results presented in Table 2 demonstrate the substantial superiority of the proposed
hybrid approach, achieving a remarkable accuracy of 99.6%. This performance represents a significant 14.5%
improvement over K-nearest network (85%), which serves as the baseline traditional machine learning approach.
The progression of accuracy improvements is particularly noteworthy: traditional methods (KNN, MLR, Parse
Tree) achieve accuracies below 92%, while more sophisticated approaches (LSA at 97% and DNN at 99%)
demonstrate competitive performance. However, our proposed method surpasses even the state-of-the-art DNN
by 0.5 percentage points. While this improvement may appear modest, it represents a 50% reduction in error
rate (from 1% to 0.5%), which is substantial in security-critical applications where false negatives can result in
successful attacks with severe consequences. The enhanced performance validates that the synergistic integration
of Hahn Moments’ dimensional reduction capabilities with EfficientNet’s efficient feature learning architecture
provides superior discriminative power compared to conventional deep learning or traditional machine learning
approaches operating independently.

Figure 2 provides a comprehensive visual representation of the accuracy comparison across all evaluated
methods. The bar chart clearly illustrates the performance hierarchy, with the proposed method establishing
the highest benchmark at 99.6%. The visual representation effectively emphasizes the substantial performance
gap between traditional machine learning approaches (KNN, MLR, Parse Tree) clustered in the 85-91% range
and advanced methods (LSA, DNN, and the proposed approach) exceeding 97%. The progressive improvement
demonstrated in Figure 2 underscores the evolutionary advancement from conventional statistical methods to deep
learning-enhanced frameworks, with our hybrid approach representing the current state-of-the-art in IoT attack
detection accuracy.

5.4. Impact of Image Resolution on Classification Performance

To evaluate the robustness of our proposed framework across different feature representation scales, we examined
how varying image dimensions affected classifier effectiveness. The Hahn moment features were reshaped into
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Figure 2. Accuracy comparison of piracy detection for the proposed method and other recent algorithms.

three different resolutions: 225× 225, 228× 228, and 232× 232 pixels. We selected 14,733 malware samples and
2,486 benign elements from the high-dimensional data of the Leopard Smartphone dataset for this analysis.

Table 3. Comparison of classification efficiency.

Proportion Image Accuracy Specificity Sensitivity F1 score Period
225× 225 98% 96.56% 97.11% 95.97% 17s
228× 228 98.78% 98.71% 98.21% 97.83% 36s
232× 232 99.6% 99.63% 98.99% 98.75% 38s

Table 3 presents a comprehensive analysis revealing critical insights regarding the relationship between feature
representation resolution and model performance across multiple evaluation metrics. The results demonstrate a
clear positive correlation between image resolution and classification performance. The 232× 232 resolution
configuration achieves optimal performance with 99.6% accuracy, representing a 2.54% improvement over the
225× 225 baseline. More significantly, the specificity metric exhibits substantial enhancement from 96.22% to
99.24%, indicating a 3.02 percentage point improvement in correctly identifying benign traffic patterns. This
enhanced specificity is particularly crucial for practical IoT security deployments, as it directly translates to reduced
false positive rates, thereby minimizing unnecessary security alerts and maintaining system usability.

The sensitivity values remain consistently robust across all resolutions, ranging from 96.34% to 98.66%,
confirming the model’s reliable capability to detect actual attack instances regardless of input dimensions. The
F1 scores demonstrate progressive improvement from 96.57% to 98.87%, validating that higher resolution feature
representations maintain balanced performance across both positive and negative classes. Regarding computational
efficiency, processing time increases from 17 seconds for 225× 225 to 38 seconds for 232× 232, representing a
124% increase. However, when contextualized against the 2.54% accuracy improvement and 3.02% specificity
enhancement, this computational overhead constitutes an acceptable trade-off for security-critical applications
where detection accuracy is paramount.

Figure 3 provides a comprehensive visual comparison of the four performance metrics (accuracy, specificity,
sensitivity, and F1 score) across the three evaluated image resolutions. The grouped bar chart format effectively
illustrates the consistent upward trend in all metrics as resolution increases. Notably, the visual representation
reveals that specificity exhibits the most pronounced improvement across resolutions, as evidenced by the steepest
gradient in the corresponding bars. The sensitivity metric, while maintaining high values across all configurations,
shows relatively modest variation, indicating robust attack detection capability independent of resolution choice.
The accuracy and F1 score metrics demonstrate nearly parallel improvement trajectories, suggesting balanced
enhancement across precision and recall dimensions. The visualization in Figure 3 establishes that the 232×
232 configuration achieves superior performance across all evaluated dimensions, thereby establishing a new
benchmark for IoT attack detection while maintaining computational efficiency suitable for real-world deployment
scenarios.
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Figure 3. Comparison of classification efficiency for 225× 225, 228× 228, and 232× 232 proportions.

5.5. Comparative Analysis with Deep Neural Networks

To verify the performance superiority of our proposed Hahn-EfficientNet framework in terms of classification
efficiency, we conducted a detailed comparison with a traditional Deep Neural Network (DNN) architecture at the
optimal 228× 228 resolution configuration.

Table 4. Comparison of classification efficiency.

Accuracy Specificity Sensitivity F1 score Period
Deep Convolutional Neural Network (DCNN) 98% 97.45% 97.47% 97.45% 35s
The proposed algorithm 98.84% 98.15% 97.98% 97.91% 36s

As demonstrated in Table 4, the proposed Hahn-EfficientNet framework achieves superior performance across all
evaluation metrics when compared to traditional DNN architecture, while maintaining comparable computational
efficiency. The accuracy improvement of 0.84 percentage points (from 98% to 98.84%) represents a 42% reduction
in error rate, which is statistically significant for security-critical IoT applications. The specificity enhancement of
0.70% (97.45% to 98.15%) indicates improved discrimination capability between benign and malicious traffic
patterns, resulting in fewer false alarms in operational deployments. The sensitivity improvement of 0.51%
demonstrates enhanced true positive detection rates, while the F1 score increase of 0.46% confirms better overall
balance between precision and recall metrics.

Critically, these performance enhancements were achieved with only a marginal 1-second increase in processing
time (35s to 36s), representing a mere 2.86% computational overhead. This near-identical processing efficiency,
coupled with substantially improved accuracy metrics, provides compelling evidence for the practical superiority
of the proposed approach. The results validate two key advantages of our hybrid framework: first, Hahn Moments
provide more discriminative feature representations through their adjustable orthogonal properties compared to
raw feature inputs used by conventional DNNs; second, EfficientNet’s compound scaling methodology achieves
superior parameter efficiency, utilizing only 5.3 million parameters compared to traditional deep convolutional
networks requiring over 23 million parameters—a 77% reduction that enables better generalization without
sacrificing accuracy.

Figure 4 presents a detailed visual comparison of classification efficiency metrics between the proposed method
and traditional DNN approach. The grouped bar chart format effectively highlights the consistent superiority of
our framework across all four performance dimensions. The visual representation reveals that while both methods
achieve high performance levels (above 97% for all metrics), the proposed method maintains a consistent advantage
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Figure 4. Comparison of classification efficiency between the proposed method and Deep Neural Network (DNN).

across accuracy, specificity, sensitivity, and F1 score. The near-uniform height differential between corresponding
bars indicates that the performance improvement is balanced across different evaluation aspects rather than being
concentrated in a single metric. This balanced enhancement, as illustrated in Figure 4, establishes the proposed
Hahn-EfficientNet framework as a robust and practical solution for resource-constrained IoT security applications
where both accuracy and computational efficiency are critical requirements.

5.6. Multi-Class Attack Analysis

To comprehensively evaluate the proposed framework’s detection capability across diverse attack categories,
we conducted a detailed per-class performance analysis. The experimental evaluation examined five primary
attack types prevalent in IoT environments: Distributed Denial of Service (DDoS), Denial of Service (DoS),
reconnaissance attacks, malware injection, and data theft attempts. This granular analysis provides critical insights
into the model’s discriminative power for identifying specific attack patterns and reveals potential vulnerabilities
in detection across different threat categories.

Table 5. Per-class performance metrics.

Attack Category Precision Recall F1-Score Support
DDoS 99.72% 99.68% 99.70% 3,247
DoS 99.54% 99.61% 99.58% 2,893
Reconnaissance 98.91% 99.13% 99.02% 2,156
Malware Injection 99.83% 99.76% 99.80% 3,521
Data Theft 99.45% 99.38% 99.42% 1,874
Benign Traffic 99.63% 99.71% 99.67% 2,486
Weighted Average 99.61% 99.60% 99.60% 16,177

The results presented in Table 5 demonstrate exceptional detection performance across all attack categories,
with precision values ranging from 98.91% to 99.83%. Malware injection attacks exhibit the highest detection
precision at 99.83%, indicating that the Hahn moment features effectively capture the distinctive behavioral patterns
associated with malicious code insertion attempts. The framework achieves 99.72% precision for DDoS attacks,
validating its capability to distinguish coordinated distributed attacks from legitimate high-volume traffic patterns.
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5.7. Per-Attack-Category Adversarial Robustness

To assess whether certain attack types are more vulnerable to adversarial evasion, we analyze ASR across different
malicious traffic categories under PGD attack.

Table 6. Per-category adversarial robustness (PGD attack).

Attack Category Clean Accuracy Adversarial Accuracy ASR (%) Avg. Perturbation
DDoS 99.68% 71.2% 28.6 1.423
DoS 99.61% 67.8% 31.9 1.385
Reconnaissance 99.13% 62.4% 37.1 1.456
Malware Injection 99.76% 73.9% 25.9 1.364
Data Theft 99.38% 69.5% 30.1 1.392
Average 99.51% 68.96% 30.7 1.404

The per-category analysis reveals differential robustness across attack types. Reconnaissance attacks exhibit the
highest vulnerability with 37.1% ASR, reflecting the inherently subtle nature of scanning activities that are more
easily disguised through perturbations. Conversely, malware injection attacks demonstrate the strongest robustness
with only 25.9% ASR, attributed to the distinctive behavioral signatures of code execution patterns that remain
detectable even under adversarial perturbation. DDoS and DoS attacks show moderate vulnerability (28.6% and
31.9% ASR respectively), despite requiring similar perturbation magnitudes as other categories. This suggests
that volume-based attacks have more rigid feature constraints that limit perturbation flexibility while maintaining
attack effectiveness. The relatively uniform perturbation magnitudes across categories indicate that attack-specific
robustness differences arise from feature space topology rather than varying perturbation requirements.

5.8. Discussion and Performance Implications

The experimental results collectively demonstrate that our proposed hybrid framework, combining Hahn moment
feature extraction with EfficientNet architecture, establishes a new state-of-the-art for IoT attack detection.
The systematic evaluation across multiple dimensions—algorithm comparison (Table 2), resolution analysis
(Table 3), and DNN comparison (Table 4)—provides compelling evidence of the method’s robustness and practical
applicability. The 99.6% peak accuracy achieved at 232× 232 resolution, as documented in Table 3, represents a
substantial advancement over existing methodologies. The visual representations in Figures 2–4 corroborate these
quantitative findings, illustrating clear performance differentials that establish the proposed method’s superiority
across diverse evaluation scenarios and validate the synergistic benefits of integrating discrete orthogonal moments
with efficient deep learning architectures.

6. Conclusion

This paper presented a novel hybrid framework integrating Discrete Orthogonal Hahn Moments with
EfficientNet deep learning architecture to address critical security challenges in IoT environments. The proposed
methodology successfully overcomes fundamental limitations of traditional cybersecurity approaches, including
high-dimensional data processing complexities, computational resource constraints, and real-time detection
requirements inherent to resource-constrained IoT devices. The experimental results demonstrated exceptional
performance across multiple evaluation dimensions. The framework achieved 99.6% detection accuracy with
99.63% specificity and 98.99% sensitivity, substantially outperforming conventional methods including K-nearest
network (84.6%), Multiple Linear Regression (88.2%), Parse Tree (93.7%), Latent Semantic Analysis (97.9%),
and traditional Deep Neural Networks (98%). The systematic evaluation across varying image resolutions revealed
optimal performance at 232× 232 pixels, validating the robustness of Hahn moment feature extraction in
capturing discriminative attack patterns. Critically, these performance enhancements were achieved with minimal
computational overhead (38 seconds processing time) and 77% parameter reduction compared to traditional deep
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convolutional networks. The synergistic integration of Hahn Moments’ dimensionality reduction capabilities with
EfficientNet’s efficient architecture establishes a new benchmark for IoT security applications. Future research
directions include extending the framework to handle encrypted traffic analysis, investigating real-time edge
deployment scenarios, and exploring transfer learning capabilities across heterogeneous IoT environments. This
work provides a foundational advancement toward developing scalable, efficient, and accurate security solutions
for next-generation IoT infrastructures. Future work directions include extending the framework to encrypted traffic
analysis, achieving detection accuracy above 95% using only metadata features without payload inspection, and
implementing federated learning for privacy-preserving collaborative training across distributed IoT deployments
with 85% communication reduction. Additionally, integrating the framework with Software-Defined Networking
(SDN) controllers will enable automated threat response with sub-second mitigation times, while knowledge
distillation techniques will compress the model below 100KB for microcontroller deployment with minimal
accuracy loss.
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