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Abstract This paper introduces the Contingency Uniformity Measure (CUM), a normalized entropy that scales Shannon
entropy to the range [0, 1], enabling fair comparisons across contingency tables of different dimensions. CUM retains key
properties such as non-negativity, reaches its maximum at the uniform distribution, and satisfies weighted additivity. We
formulate and solve three optimization problems, using CUM, under realistic constraints, fixed marginal distributions, a cost
matrix, and cost variance. This is demonstrated through a real dataset of cost matrix obtained using distance matrix. Our
results show that CUM is an effective, standardized measure for analyzing uncertainty and supporting decision-making in
diverse, constraint-driven systems.
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1. Introduction

Entropy is a central concept in both theoretical and applied sciences, serving as a measure of uncertainty, disorder,
or information content in a system. Originally introduced in the field of thermodynamics by Rudolf Clausius in the
19th century, the concept was later reinterpreted in a probabilistic context by Claude Shannon in his foundational
work on information theory [1]. Shannon entropy quantifies the average information produced by a random
variable. Entropy plays a key role in areas such as machine learning, communication, healthcare, economics and
finance, physics, network theory, cryptography, and statistical mechanics making informed decisions due to its
ability to quantify uncertainty and information content [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21].

A contingency table is a statistical tool that is used to display the frequency distribution of categorical variables
to analyze the relationship. It is utilized in various fields, such as medicine, social sciences, market behavior,
and machine learning, for studies like classification and association analysis [22]. The principle of maximum
entropy is a modeling framework to derive the least-biased null distribution under marginal constraints, enabling
the detection of higher-order interactions in multi-dimensional contingency tables [23]. The maximum entropy
principle is applied to derive a probability distribution for categorical data that adheres to specified confidence
interval bounds [24]. Also, the principle of maximum entropy, under some marginal constraints, provides estimates
of missing data in a contingency table [25]. Gzyl [26] provides a solution for deriving joint distributions from
known marginals ensuring the most unbiased estimation consistent with the given marginals. Furthermore, the
study [27] applies the maximum entropy principle to derive joint probability distributions from known marginals
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and expected values, accommodating constraints such as probability bounds, with applications in areas such as
transportation modeling. The maximum value of entropy depends on the number of possible outcomes of the
variable, which poses a challenge when comparing entropy values across different multidimensional contingency
tables. The COOLCAT algorithm clusters categorical data using entropy to reduce uncertainty, preserving the
structure of the data while minimizing its complexity [28]. Hong and Kim [29] examine how mutual information
and redundancy, based on entropy, can be used to analyze relationships in multi-dimensional tables without relying
on the assumption of a specific distribution. In their work [30], Patrick and Sarah employ maximum entropy and
minimum norm methods to estimate multivariate probabilities from limited categorical data using equality and
inequality constraints. An entropy-based normalized mutual information measure is presented in [31] to assess
dependency in a two-way contingency table.

The motivation of this study arises from the challenge of quantitatively assessing the degree of spread or
concentration in categorical data represented through contingency tables, where conventional entropy measures
such as Shannon entropy fail to provide meaningful comparisons across tables of different dimensions. To
address this limitation, the article introduces the Contingency Uniformity Measure (CUM), a normalized entropy-
based index bounded between 0 and 1, which quantifies how uniformly data are distributed across categories,
thereby allowing for consistent comparison among contingency tables of varying sizes. The proposed measure
achieves values close to 1 for highly uniform distributions and near 0 for highly concentrated ones. Building
on this formulation, the article develops optimization models to maximize or minimize CUM under various
constraints, namely fixed marginals, linear cost constraints, and quadratic cost variance constraints demonstrating
its applicability in domains such as logistics, healthcare and financial risk management. To contextualize CUM
within broader measures of diversity and uncertainty, a comparative analysis with the Gini–Simpson Index and
Theil’s Uncertainty Coefficient is presented, highlighting CUM’s superior interpretability and consistency with
information theoretic principles. Furthermore, the study illustrates computational practicality through a real-world
optimization example using a 10× 10 city distance matrix and empirically validates the approach using State/UT-
wise data on public and private hospitals enrolled under the Ayushman Bharat–Pradhan Mantri Jan Arogya Yojana
(AB-PMJAY) scheme from 2018− 19 to 2024− 25. A one-tailed two-sample t test at the 5% significance level
confirms that private hospitals exhibit significantly higher uniformity in distribution, reinforcing the analytical
utility and interpretive strength of the proposed CUM framework.

The article is organized as follows. In Section 2, we present some definitions required in subsequent sections.
In Section 3, we define the contingency uniformity measure and discuss its properties, along with a comparison to
other related measures. We present the optimization problem for the contingency uniformity measure in Section 4.
Some real life applications are discussed in Section 5. The article is concluded with some discussions in Section 6.

2. Preliminaries

Let Ω be a sample space, and A ⊆ Ω be an event with its probability P (A). The information associated with event
A is defined mathematically based on its probability, rather than the content of the event itself. Intuitively, the
less likely an event is, the more informative or surprising it is considered to be. For events, where P (A) ̸= 0, the
information content of A is given by

I(A) = ln

(
1

P (A)

)
= − lnP (A).

Definition 1. Let Ω = {ω1, ω2, . . . , ωn} be a discrete sample space, and P (ωi) be the probability of the event
ωi. The uncertainty associated with the sample space is quantified by the average information content, where the
information of each event is defined as I(ωi) = − lnP (ωi). This average gives a measure of the overall uncertainty
or entropy of the system (Shannon entropy).

H(X) =

n∑
i=1

P (ωi)I(ωi) = −
n∑

i=1

P (ωi) lnP (ωi), (1)
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for more details, see [32, 33].
One important application of entropy is the principle of maximum entropy, useful in obtaining the probability

distribution under certain constraint, formulated as the following optimization problem:

Maximize: H(X) = −
n∑

i=1

P (wi) logP (wi)

Subject to
n∑

i=1

P (wi) = 1 (normalization),

n∑
i=1

P (wi)F (wi) = µ (moment constraint).

It estimates the probability distribution for a system under moment constraints and remains valid in highly uncertain
scenarios. For more details, see [34].
In the following section, we define the contingency uniformity measure (CUM) and discuss its properties.

3. Contingency Uniformity Measure(CUM)

A contingency table with a large number of cells can have higher entropy than a table with fewer cells, even if both
exhibit similar patterns of uncertainty. The proposed normalized entropy, CUM, allows meaningful comparison
by removing this dependence. It is a measure of uncertainty that scales Shannon entropy relative to its maximum
possible values, ensuring a consistent and interpretable measure of randomness across various multidimensional
contingency tables.

Definition 2 (Contingency Uniformity Measure). Let X = {x1, x2, . . . , xn} be a discrete random variable and
P = {p1, p2, . . . , pn} be the corresponding probability distribution. Let Hmax(X) = maxP H(X). A contingency
uniformity measure is defined as

HCUM =
H(X)

Hmax(X)
. (2)

Note that, for a discrete random variable, with n elements in support, Hmax = lnn. Therefore,

HCUM =
H(X)

lnn
.

We now state some properties of HCUM .

Theorem 1. For a discrete random variable with support {x1, x2, . . . , xn},

(i) HCUM is nonnegative.

(ii) HCUM is non-expansible.

(iii) 0 ≤ HCUM ≤ 1.

(iv) HCUM attains its maximum value at the uniform distribution.

(v) HCUM is non-decreasing function of uncertainty.

(vi) HCUM does not satisfy additivity property, that is, for any two independent random variables X and Y ,
HCUM (X,Y ) ̸= HCUM (X) +HCUM (Y ).
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(vii) HCUM is invariant under probability rescaling.

(viii) HCUM is independent of category count.

(ix) HCUM is a concave function of X.

Proof
(i) H(X) is non-negative and ln (n) > 0 implies

HCUM =
H(X)

lnn
≥ 0.

(ii) For any distribution {p1, p2, . . . pn}, we know that H(p1, p2, . . . pn, 0) = H(p1, p2, . . . pn).
Thus,

H(p1, p2, . . . pn, 0)

ln (n+ 1)
=

H(p1, p2, . . . pn)

ln (n+ 1)
=

H(X)

lnn

lnn

ln (n+ 1)
=

lnn

ln (n+ 1)
HCUM .

(iii) Since 0 ≤ H(X) ≤ Hmax(X), we have

0 ≤ HCUM ≤ 1.

(iv) As the Shannon entropy is maximum at uniform distribution, we have H(X) = Hmax(X) = lnn.
Therefore,

HCUM =
H(X)

lnn
= 1.

(v) If the probability distribution becomes more concentrated, the entropy decreases and so does HCUM (X).
If the probability distribution becomes more uniform, entropy increases, and so does HCUM (X). Thus, for any
two distributions P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn}, if P is more uniform than Q, then HCUM (P ) ≥
HCUM (Q). That is, HCUM (X) increases monotonically with increasing uniformity of the probability distribution.
(vi) For any two independent random variables X and Y , we have

H(X,Y ) = H(X) +H(Y ). (3)

Now
Hmax(X,Y ) = ln(nXnY ) = ln(nX) + ln(nY ). (4)

Therefore,

HCUM (X,Y ) =
H(X,Y )

Hmax(X,Y )
,

=
H(X) +H(Y )

ln(nX) + ln(nY )
,

= HCUM (X)
ln(nX)

ln(nX) + ln(nY )
+HCUM (Y )

ln(nY )

ln(nX) + ln(nY )
.

This implies that HCUM (X) satisfies a weighted additivity property, where the weights depend on the logarithm
of the number of states of each independent variable.

(vii) A function is invariant under rescaling if multiplying the probability by a constant factor does not change its
value. If we rescale the probabilities by a factor c > 0, p′i = cpi, we check wether HCUM (X) remains unchanged.
The total probability must sum to 1 ∑

p′i = 1 =⇒ c
∑

pi = 1

which means c = 1, meaning valid probability distribution does not allow arbitrary rescaling. Thus, Shannon
Entropy is not affected by simple rescaling unless we allow normalization of the probability afterward. Hence,
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HCUM is invariant under probability rescaling.

(viii) The entropy H(X) depends on the number of counts of the categories as log|X| increases with increasing
number of categories. However, by normalizing, we scale the entropy to always fall between 0 and 1, making it
independent of the categories counts.

(ix) For two distributions, p = (p1, . . . , pn) and q = (q1, . . . , qn) we have

H(λp+ (1− λ)q) ≥ λH(p) + (1− λ)H(q), 0 ≤ λ ≤ 1.

Divide both side by lnn > 0, we get HCUM (X) to be a concave function.

Example 1. Consider following 2× 2 contingency tables with different probability distributions:
100 0
0 0

Table 1. HCUM = 0

67 33
0 0

Table 2. HCUM = 0.4591

50 50
0 0

Table 3. HCUM = 0.4999

33 33
0 34

Table 4. HCUM = 0.7924

15 25
25 35

Table 5. HCUM = 0.9703

25 25
25 25

Table 6. HCUM = 1
As the probability distribution becomes more dispersed across the table, the value of HCUM increases. When
the probability mass is concentrated in a single cell, HCUM = 0, indicating complete predictability. As the
distribution becomes more randomized, HCUM increases, reflecting greater uncertainty. The maximum value of
HCUM is attained when the distribution is uniform, representing the highest level of unpredictability.

Table 1 Table 2 Table 3 Table 4 Table 5 Table 6
0.0

0.2

0.4

0.6

0.8

1.0

H
CU
M

0.0000

0.4591
0.4999

0.7924

0.9703
1.0000

Figure 1. Plot of CUM values for contingency Table 1− 6

Figure (1) clearly shows that HCUM is sensitive to the shape of the distribution.
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Table H HCUM GS U
Table 7 0 0 0 -
Table 8 0.9 0.6493 0.5313 0.1031
Table 9 1.0735 0.7744 0.5625 0.0909

Table 10 1.2555 0.9056 0.6875 0.0002
Table 11 1.3208 0.9528 0.7187 0.0448
Table 12 1.3863 1 0.75 0

Table 13. Comparison between H, HCUM , GS and U

3.1. Comparison between Entropy, Contingency Uniformity Measure, Gini-Simpson Index and Theil’s
Uncertainty coefficient

Gini-Simpson Index(GS): The Gini–Simpson Index is a statistical measure used to represent inequality or
diversity within a distribution. It quantifies the probability that two elements randomly selected from a dataset
belong to different categories, or equivalently, the likelihood that a randomly chosen element would be incorrectly
classified if assigned according to the class proportions. It is mathematically defined as

G = 1−
n∑

i=1

p2i

The Gini-Simpson Index ranges between 0 and 1, where values close to 0 indicate low diversity or high
concentration, whereas values near 1 indicate high diversity or uniformity across categories. for more details,
see [35].

Theil’s uncertainty coefficient(U): The Theil’s uncertainty coefficient is a statistical measure used to quantify the
degree of association or predictive power between two variables. In the context of information theory and machine
learning, it measures how much uncertainty in one variable Y can be explained or reduced by knowing another
variable X . Mathematically, it is expressed as

U(Y |X) =
H(Y )−H(Y |X)

H(Y )

Theil’s Uncertainty Coefficient ranges between 0 and 1, where values close to 0 indicate no association or complete
uncertainty, while values approaching 1 represent perfect association or complete certainty. for more details, see
[32]

Example 2. Consider following 2× 2 contingency tables with different probability distributions:
8 0
0 0

Table 7

0 1
2 5

Table 8
1 1
5 1

Table 9

1 1
3 3

Table 10
1 3
2 2

Table 11

2 2
2 2

Table 12
From Table (13), it can be observed that as entropy increases, both the HCUM and the Gini-Simpson index exhibit
a consistent upward trend. In contrast, Theil’s uncertainty coefficient does not show a regular or monotonic
increase corresponding to changes in entropy. This irregular behavior suggests that Theil’s uncertainty coefficient
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may not be a reliable criterion to compare different probability distributions, particularly when assessing their
degree of randomness or inequality. In terms of interpretation, HCUM directly represents the proportion of the
maximum possible uncertainty in the joint distribution. It provides a clear probabilistic meaning, values near
1 indicate high randomness and diversity, while values near 0 indicate complete concentration or certainty.
The Gini–Simpson Index, quantify concentration and diversity within a distribution, respectively; however,
they do not possess a direct connection to uncertainty in the information-theoretic sense. While these indices
effectively capture dominance or evenness among categories, they lack the explicit probabilistic interpretation that
entropy-based measures provide. From a theoretical foundation perspective, HCUM is grounded in information
theory, derived from Shannon’s entropy, and satisfies key properties such as non-negativity and weighted additivity.
In contrast, the Gini–Simpson index originates from ecological and probabilistic diversity studies, serving as
practical indicators of heterogeneity or inequality but without the same foundational link to information content.
In general HCUM offers clearer probabilistic interpretation and compatibility with information-theoretic analysis
and optimization frameworks, making it preferable when modeling uncertainty or diversity in categorical systems.

4. Optimization problems in contingency table

Contingency tables are widely used in statistics, machine learning, and information theory to analyze relationships
among categorical variables. A contingency table represents the joint distribution of two or more categorical
variables. Optimization problems related to contingency tables often aim to adjust cell values to satisfy constraints
while maximizing or minimizing the underlying objective function.
Here, we maximize or minimize the HCUM (X,Y ), depending on the problem, with some probability constraints.

Problem 1. Let T be a m× n contingency table, where each cell (pij) represents the probability of the joint
occurrence of categories i of variable X and category j of variable Y . The objective is to maximize(or minimize)
contingency uniformity measure subject to certain constraints imposed by the marginal distributions. That is,

max
T

HCUM (X,Y )

subject to ∑
i

∑
j

pij = 1, ∀i, j

∑
j

pij = pi+, ∀j

pij ≥ 0, ∀i, j

Solution 1. Define the Lagrangian

L = −
m∑
i

n∑
j

pij
ln pij
ln(mn)

+ λ

(
m∑
i

n∑
j

pij − 1

)
+

m∑
i

µi

(
n∑
j

pij − pi+

)
.

Differentiating the Lagrangian with respect to pij , we get

− 1

ln (mn)
(1 + ln (pij)) + λ+ µi = 0.

Solving for pij , we get

pij = e(λ+µi) ln (mn)−1. (5)
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Using the constraints, we obtain the coefficients satisfying

n∑
j=1

e(λ+µi) ln (mn)−1 = pi+,

this implies,

e(λ+µi) ln (mn)−1 =
pi+
n

(6)

from equations (5) and (6), we get
pij =

pi+
n

, ∀j = 1, 2, . . . , n.

The following example illustrates the application of the above theorem in a practical marketing context, showing
how the concept of maximizing HCUM can be used to model the most uncertain customer behavior.

Example 3. A company runs a marketing campaign for Product A. Customers are segmented into three age groups:
Young, Adult, and Senior. The company observes how customers from different age groups respond to the product
(that is, Buy or Not Buy), but only the age group distribution of its customers is known (that is,Young = 20%, Adult
= 60%, Senior = 20% ). Through an optimization problem, the company aims to maximize HCUM to model the
most uncertain scenario to understand the behavior of the customers. This allows the company to model the case
where customer responses are completely unpredictable, providing a benchmark for comparison against actual
observed behavior. The contingency table is defined as:

Age Group ↓ / Response → Buy Not Buy Row Total
Young p11 p12 0.2
Adult p21 p22 0.6
Senior p31 p32 0.2

Table 14. Initial data for Product A

To achieve maximum HCUM , the joint distribution is:

p11 = p12 = 0.1, p21 = p22 = 0.3, p31 = p32 = 0.1

Age Group ↓ / Response → Buy Not Buy Row Total
Young 0.1 0.1 0.2
Adult 0.3 0.3 0.6
Senior 0.1 0.1 0.2

Table 15. Joint distribution for Product A maximizing HCUM

That is, each age group is evenly split between buying and not buying.

Note that obtaining the joint probability distribution in a contingency table based on given marginal probabilities
results in a uniform distribution along the corresponding rows or columns, and maximizing CUM yields a
consistent value for the marginals, making it independent of the size of the table. In the next problem, we present
a cost optimization framework under highly uncertain scenarios, which is particularly useful in manufacturing
industries to obtain reliable estimates.

Problem 2. Let T be a m× n contingency table, where each cell (pij) represents the probability of the joint
occurrence of categories i of variable X and category j of variable Y . Given the cost matrix [Rij ], associated with
the joint occurrence of events X = i and Y = j, the objective is to determine the joint probability distribution pij
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that either maximizes or minimizes the contingency uniformity measure, subject to constraint that the expected
cost calculated as the weighted sum of Rij with respect to pij , is equal to a fixed constant R0. That is,

max
T

HCUM (X,Y )

subject to ∑
i

∑
j

pij = 1, ∀i, j (7)

∑
i

∑
j

Rijpij = R0 (8)

pij ≥ 0, ∀i, j.

Solution 2. The Lagrangian function is

L = −
m∑
i

n∑
j

pij
ln pij
ln(mn)

+ λ

(
m∑
i

n∑
j

pij − 1

)
+ µ

(
m∑
i

n∑
j

Rijpij −R0

)
.

Differentiating the Lagrangian with respect to pij , we get

− 1

ln (mn)
(1 + ln pij) + λ+ µRij = 0.

Solving for pij , we get

pij = e(λ+µRij) ln(mn)−1. (9)

Using the equation (7), we obtain the coefficients satisfying

eλ ln(mn)−1
m∑
i

n∑
j

eµRij ln(mn) = 1,

this implies,
eλ ln(mn) =

e∑m
i

∑n
j e

µRij ln(mn)
. (10)

From equations (9) and (10), we get

pij =
eµRij∑m

i

∑n
j e

µRij
. (11)

Putting the value of pij in equation (8), we get

m∑
i

n∑
j

Rij
eµRij∑m

i

∑n
j e

µRij
= R0,

this implies,
m∑
i

n∑
j

(Rij −R0)e
µRij = 0. (12)

The nonlinear equation (12) can be numerically solved for µ using iterative root-finding methods such as the
Newton–Raphson, Secant, or Bisection algorithms. Once the optimal value of µ is obtained, it can be substituted
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into equation (11) to compute the desired result. Each iteration requires evaluating two double summations
over m× n elements, resulting in a computational complexity of O(mn) per iteration. Consequently, the overall
computational time increases linearly with the grid size. A weighted average can never exceed the largest value or
fall below the smallest value of the set being averaged. If R0 > Rmax or R0 < Rmin the equation (12) will have no
real solution for µ.

The following example demonstrates the application of the above theorem to a logistics optimization scenario,
where the goal is to maximize HCUM under cost constraints.

Example 4. A logistics company aims at optimizing the uncertainty of shipments between warehouses (X) and
stores (Y ) while ensuring that the total expected cost does not exceed a specified budget R0. Assume there are
three warehouses W1,W2,W3 and three stores S1, S2, S3. Let pij represents the proportion of total shipments from
warehouse xi to store yj , and let Rij denote the cost of shipping from warehouse i to store j. The objective is
to maximize the contingency uniformity measure HCUM (X,Y ), which corresponds to identifying the shipment
pattern that exhibits the highest level of uncertainty or randomness in allocation (that is, shipments are spread
out with minimal identifiable preference between specific warehouses and stores), subject to the expected cost
constraint.

The shipment proportions are defined as:

Warehouse X ↓ / Store Y → y1 y2 y3
x1 p11 p12 p13
x2 p21 p22 p23
x3 p31 p32 p33

Table 16. Proportion of total shipments from xi to yj

The associated cost matrix is:

Warehouse X ↓ / Store Y → S1 S2 S3

W1 4 6 8
W2 5 3 7
W3 2 1 3

Table 17. Cost matrix for shipping from warehouses to stores

Assume the total expected cost budget is R0 = 6. Then, using equation (12), the computed value of µ = 0.435,
and by substituting it into equation (11), the optimized shipment proportions for maximum HCUM are given in the
following table 18

Warehouse X ↓ / Store Y → y1 y2 y3
x1 0.0613 0.1463 0.3497
x2 0.0948 0.0397 0.2261
x3 0.0257 0.0167 0.0397

Table 18. Proportion of total shipments from xi to yj for maximum HCUM

In the following example, we use a cost matrix obtained using a distance matrix of 20 different cities of a state of
Uttar Pradesh, India.

Example 5. The Government of Uttar Pradesh plans to operate intercity bus services connecting 20 selected
cities. For planning and data collection, the pairwise distances between city centers are available. According to
the Ministry of Housing and Urban Affairs, the operating cost has been estimated at 99.2 per kilometer [36] (page
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103). Let the 20 cities be denoted by C1, C2, . . . , C20. The flow of bus trips from city Ci to city Cj is represented by
the probability pij , indicating the proportion of total bus trips allocated from Ci to Cj . The objective is to determine
the probability matrix P = [pij ] that maximizes the evenness (or uncertainty) of these flows while satisfying a
cost constraint derived from the distance matrix. The distance matrix is denoted by D = [dij ], where dij is the
measured road distance (in kilometers) between cities Ci and Cj , as given in table 19. The corresponding cost
matrix is R = [Rij ], computed as Rij = c× dij , where c represents the cost per kilometer. The optimization seeks
to maximize the Contingency Uniformity Measure (HCUM ), which reflects the evenness of bus service allocation
across all city pairs, subject to an average cost constraint.
Assume the total expected cost budget is R0 = 80000. Then, using equation (12), the computed value of µ =
0.000317106, and by substituting it into equation (11), the optimized shipment proportions for maximum HCUM

are shown in the following table 20.

This formulation provides the most unbiased probability distribution consistent with known cost constraints,
enabling informed decision-making under uncertainty.
The next problem derives the probability distribution under a constraint on the variation in the contingency table,
measured using the data variance.

Problem 3. Let T be a m× n contingency table, where each cell (pij) represents the probability of the joint
occurrence of categories i of variable X and category j of variable Y . Given a cost matrix [Rij ], representing
the cost associated with the joint occurrence of events X = i and Y = j, the objective is to determine the joint
probability distribution pij that either maximizes or minimizes the contingency uniformity measure, subject to
constraint that the weighted sum of the squared deviations of the cost values Rij from their mean Rmean, using pij
as weights, is equal to a fixed constant R1. That is,

max
T

HCUM (X,Y )

subject to ∑
i

∑
j

pij = 1, ∀i, j (13)

∑
i

∑
j

(Rij −Rmean)
2pij = R1 (14)

pij ≥ 0, ∀i, j.

Solution 3. The Lagrangian function is

L = −
m∑
i

n∑
j

pij
ln pij
ln(mn)

+ λ

(
m∑
i

n∑
j

pij − 1

)
+ µ

(
m∑
i

n∑
j

(Rij −Rmean)
2pij −R1

)
.

Differentiating the Lagrangian with respect to pij , we get

− 1

ln(mn)
(1 + ln pij) + λ+ µ(Rij −Rmean)

2 = 0,

solving for pij , we get

pij = e(λ+µ(Rij−Rmean)
2) ln(mn)−1. (15)

Using the equation (13), we obtain the coefficients satisfying

eλ ln(mn)−1
m∑
i

n∑
j

eµ(Rij−Rmean)
2 ln(mn) = 1,
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this implies,

eλ ln(mn) =
e∑m

i

∑n
j e

µ(Rij−Rmean)2 ln(mn)
. (16)

From equations (15) and (16), we get

pij =
eµ(Rij−Rmean)

2∑m
i

∑n
j e

µ(Rij−Rmean)2
. (17)

Putting the value of pij in equation (14), we get

m∑
i

n∑
j

(Rij −Rmean)
2 eµ(Rij−Rmean)

2∑m
i

∑n
j e

µ(Rij−Rmean)2
= R1,

this implies,
m∑
i

n∑
j

((Rij −Rmean)
2 −R1)e

µ(Rij−Rmean)
2

= 0. (18)

The nonlinear equation (18) can be numerically solved for µ using iterative root-finding methods such as the
Newton–Raphson, Secant, or Bisection algorithms. Once the optimal value of µ is obtained, it can be substituted
into equation (17) to compute the desired result. Each iteration requires evaluating two double summations
over m× n elements, resulting in a computational complexity of O(mn) per iteration. Consequently, the overall
computational time increases linearly with the grid size. Because of increased nonlinearity, convergence may be
slightly slower.

The following example illustrates how the above theorem can be applied to an employee–task assignment problem,
where the objective is to maximize HCUM while balancing cost efficiency and fairness.

Example 6. A company aims to assign employees (X) to tasks (Y ) such that the assignment is both cost-effective
and fair. Each assignment incurs a cost Rij , which reflects the suitability of employee i for task j; a higher cost
indicates a greater mismatch. In addition to minimizing cost, the company seeks to balance the objectives: fairness
(modeled by maximizing the contingency uniformity measure HCUM ). To avoid scenarios where only the easiest
or hardest tasks are allocated (that is, extreme assignments), the company imposes a constraint on the variance of
assignment costs. This ensures a fair distribution of workload across employees while maintaining efficiency.
Assume there are three employees and three tasks. Let pij represent the probability of assigning employee i to task
j. The initial probability matrix is given in Table 21, and the cost matrix is presented in Table 22.

Employee ↓ / Task → y1 y2 y3
x1 p11 p12 p13
x2 p21 p22 p23
x3 p31 p32 p33

Table 21. Initial assignment probabilities pij

Employee ↓ / Task → y1 y2 y3
x1 4 6 8
x2 5 3 7
x3 2 1 3

Table 22. Assignment cost matrix Rij
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Employee ↓ / Task → y1 y2 y3
x1 0.0847 0.0969 0.1633
x2 0.0862 0.0924 0.1203
x3 0.1112 0.1524 0.0924

Table 23. Optimal assignment probabilities under cost variance constraint

The variance constraint on the assignment cost is fixed at R1 = 6. Solving the optimization problem using
equation (18), we obtain µ = 0.0507. Substituting this into equation (17), we derive the optimal assignment
probabilities shown in Table 23.
Table 23 reflects a solution that balances efficiency and fairness by distributing assignments in a way that respects
the cost variance constraint while maximizing the uncertainty in the assignment process.

5. Numerical Illustration

This section presents the applicability of the CUM through real-world data analysis.

Example 7. We analyze the State/UT-wise data on the number of public and private hospitals enrolled under
the Ayushman Bharat–Pradhan Mantri Jan Arogya Yojana (AB-PMJAY) from 2018–19 to 2024–25 using the
contingency uniformity measure, in order to compare the distributional patterns between public and private
hospitals.
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Figure 2. Trends in AB-PMJAY enrollment for public and private hospitals across States/UTs (2018–2025)

In the above plot, odd-numbered columns represent public hospital data, while even-numbered columns
correspond to private hospitals. From the visualization, it can be observed that private hospitals exhibit a more
uniform pattern of participation in AB-PMJAY across States/UTs compared to public hospitals. This suggests that
the distribution of private hospital enrollment is more balanced and less localized.
To validate our claim, a statistical significance test is conducted using two-sample t-test one-tailed at the 5%
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Year Public (HCUM ) Private (HCUM )
2018–19 0.7008 0.6202
2019–20 0.5033 0.6192
2020–21 0.3900 0.7021
2021–22 0.4315 0.7163
2022–23 0.3613 0.7001
2023–24 0.3121 0.7024
2024–25 0.6158 0.6949

Table 24. HCUM across years for Public and Private Hospitals

significance level:

H0 : H̄CUM(pub) = H̄CUM(priv) vs H1 : H̄CUM(priv) > H̄CUM(pub)

The mean and variance of the contingency uniformity measures for public(X̄) and private(Ȳ ) hospitals are
X̄ = 0.4738, Ȳ = 0.6793, S2

X = 0.0236 and S2
Y = 0.0017. The test statistics is computed as

Tobs =
X̄ − Ȳ − (H̄CUM(pub) − H̄CUM(priv))√

S2
X

n − S2
Y

m

The corresponding p-value is
p = P (T > Tobs) = 0.0057

which is less than the significance level of 0.05. Hence, we reject the null hypothesis and conclude that the average
contingency uniformity measure for private hospitals is significantly higher than that for public hospitals. This
implies that private hospitals demonstrate a more uniform and balanced participation pattern across Indian States
and Union Territories under the Ayushman Bharat–Pradhan Mantri Jan Arogya Yojana scheme.

Next, we compare different datasets with varying sizes or category counts.

Example 8. Suppose we have market-related data for three different products, and the objective is to select one of
them for an advertising campaign based on this information.

Age group ↓/Response → Buy Not Buy
Young 10 20
Adult 30 10
Senior 10 20

Table 25. Product 1,H = 1.6957, HCUM = 0.9464

Age group ↓ /Popularity → Popular Not Popular Neutral
Young 5 15 10
Adult 10 20 10
Senior 15 5 10

Table 26. product 2, H = 2.1115, HCUM = 0.9610

Although entropy alone cannot be used to directly compare Tables 25, 26, and 27 due to differences in their
category structures. The normalized entropy measure HCUM provides a consistent basis for comparison. Among
the products, Product 2 exhibits the highest HCUM , indicating a higher degree of uncertainty or variability in
its distribution. This higher unpredictability suggests broader and more diverse engagement, making Product 2 a
suitable candidate for targeted advertisement efforts.
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Age group ↓ /Popularity → Popular less Popular Not Popular Neutral
Young 5 0 2 3
Adult 10 2 12 1
Senior 3 10 5 9

Table 27. product 3, H = 2.1738, HCUM = 0.8748

In the above example we clearly see that we have different number of categories for different products, but we can
compare them through HCUM for quantification.
A higher CUM represents a distribution that approaches maximum uncertainty a situation where all customer
segments or response probabilities are nearly uniform. This can be viewed as a worst-case or benchmark scenario,
reflecting a market in which consumers behave randomly and no identifiable segment responds disproportionately
better than another. In such a case, a marketer has minimal ability to target specific groups, optimize advertising
budgets, or forecast returns. Therefore, maximizing CUM is useful conceptually as a theoretical upper bound
that describes the limit of unpredictability. However, in practical marketing applications, the goal may often the
opposite. Advertisers usually aim to identify the most predictable, stable, and targetable consumer segments those
with lower uncertainty. Thus, one may instead aim to minimize CUM to locate a distribution with the least
randomness and the highest concentration of likely responders. A lower CUM indicates that certain customer
segments are meaningfully different and therefore offer opportunities for targeted interventions and improved
campaign efficiency.
High HCUM models a benchmark scenario of broad unpredictability or wide appeal, which is desirable when
selecting a product to promote widely. Low HCUM would be desirable in a different context such as precision
targeting or niche segment marketing.

6. Conclusion

We propose a Contingency Uniformity Measure, as a meaningful measure for quantifying data concentration,
serving as a robust and normalized entropy-based framework for assessing uncertainty in contingency tables.
The fundamental properties of CUM, such as non-negativity, non-expansibility, maximality at the uniform
distribution, and weighted additivity, are established to support its theoretical stability. The applicability of
CUM is demonstrated through various examples involving different types of two-way tables. Furthermore, we
formulate three optimization problems based on CUM under the constraints of fixed marginals, fixed cost, and
fixed variability, reflecting realistic scenarios across domains. Appropriate examples are presented to highlight the
practical relevance and real-life applications of each formulation.
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