
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 15, January 2026, pp 407–422.
Published online in International Academic Press (www.IAPress.org)

An Energy Valley Optimizer Approach for Solving the Modified Quadratic
Bounded Knapsack Problem with Multiple Constraints

Azka Huri ’Iin1, Agustina Pradjaningsih1,*, M. Ziaul Arif1, Apriani Soepardi2, Diva Rafifah Mutiara
Muhammad 3

1Department of Mathematics, FMIPA, Universitas Jember, Indonesia
2Department of Industrial Engineering, Universitas Pembangunan Nasional Veteran Yogyakarta, Indonesia

3Embassy of Indonesia in Cairo, Egypt

Abstract The Modified Quadratic Bounded Knapsack Problem with Multiple Constraints (MQBKMC) is an advanced
variant of the traditional knapsack problem that incorporates interaction profits among items, quantity bounds, and multiple
capacity constraints simultaneously. This study investigates the performance and parameter sensitivity of the Energy Valley
Optimizer (EVO) algorithm in solving the MQBKMC using a dataset of 20 items with predefined interaction profits. Two
critical parameters, namely the maximum number of function evaluations (MaxFes) and the number of particles (nParticle),
were analyzed to assess their effects on solution quality, computational time, and stability. Experimental results show that
increasing MaxFes consistently enhances solution quality, with the best objective value reaching Rp 6,286,994, whereas
increasing nParticle beyond a moderate level provides only marginal improvement and increases computational time,
indicating a trade-off between accuracy and efficiency. All experiments were conducted using MATLAB R2023a, and a
comparison with the Particle Swarm Optimization (PSO) algorithm confirmed EVO’s better convergence stability and profit
performance. Overall, the EVO algorithm demonstrates robustness and efficiency in addressing complex, high-dimensional,
and multi-constrained combinatorial optimization problems, offering practical insights for optimal parameter tuning in future
implementations.
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1. Introduction

The knapsack problem is recognized as one of the most fundamental and widely studied combinatorial optimization
models, with far-reaching applications across computer science, operations research, industrial engineering, and
logistics management [1]. At its essence, the knapsack problem involves selecting a subset of items from a
candidate set to maximize total profit, subject to constraints on available resources or capacity. Depending on
the nature of the decision variables, classical formulations include the 0-1 knapsack, bounded knapsack, and
unbounded knapsack [2]. Over time, a broad spectrum of variants has emerged to address practical complexities,
such as multi-objective optimization, multidimensional constraints, and item interdependencies, giving rise to the
single-objective knapsack, multi-objective knapsack, multidimensional knapsack, multiple-constraints knapsack,
and quadratic knapsack problems [3]. Recent research has explored various combinations of these variants, such
as the multiple constraints 0-1 knapsack [4, 5, 6, 7, 8, 9, 10, 11], multidimensional 0-1 knapsack [12, 13, 14],
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multidimensional 0-1 knapsack with multiple constraints [15, 16], multidimensional bounded knapsack [17],
multiple constraints bounded knapsack [18, 19], quadratic knapsack [20, 21, 22, 23, 24, 25, 26] and solving the
knapsack problem using several variations of metaheuristic methods [27, 28, 29, 30, 31, 32]. Each of these variants
introduces new dimensions of complexity to the solution space, posing significant challenges for the efficiency
and scalability of existing optimization techniques and thus continuing to drive the development of more advanced
solution methodologies in the field.

A particularly significant manifestation of the knapsack problem is found in inventory restocking and supply
chain optimization, where decision-makers must determine not only which items to replenish but also in what
quantities, all while seeking to maximize operational and economic gains. In practice, these optimization decisions
are complicated by a host of realistic constraints, such as finite storage capacity, budget limitations, and fluctuating
supply from vendors. The problem is further compounded by interactions among items: for example, the combined
selection of certain products may enhance overall value due to bundling effects or complementarities, whereas other
combinations may incur penalties or diminishing returns. These interdependencies naturally give rise to quadratic
terms in the objective function, reflecting the complex synergies or trade-offs present in actual inventory systems.
Moreover, managerial policies and market-driven considerations frequently impose upper and lower bounds on
item quantities, adding yet another layer of complexity. Together, these factors culminate in advanced knapsack
models characterized by nonlinear objectives, bounded item selection, and multiple, simultaneously active
constraints. Such formulations capture the inherent multidimensionality and dynamism of modern distribution
networks and highlight the persistent need for robust, adaptable optimization strategies capable of addressing real-
world logistical challenges.

Addressing the complexity inherent in advanced knapsack models, such as those characterized by nonlinear
objectives and multiple constraints, poses considerable challenges for exact optimization approaches like branch
and bound or dynamic programming. The NP-hard nature of these problems often renders exact algorithms
computationally infeasible for large-scale instances, as solution times can increase exponentially with the number
of decision variables [3]. In response, metaheuristic algorithms have emerged as promising alternatives, offering a
balance between solution quality and computational efficiency by intelligently exploring vast and complex search
spaces. Inspired by natural phenomena—including biological evolution, collective animal behavior, and physical
processes—metaheuristics have demonstrated notable flexibility in handling diverse objective functions and
constraint structures without reliance on differentiability or linearity [33, 34, 35]. Among these, the Energy Valley
Optimizer (EVO) represents a recent advancement, drawing on principles from particle decay and the tendency
of systems to seek stable energy states [36]. In the EVO framework, candidate solutions are conceptualized as
particles that traverse an energy landscape, iteratively moving toward optimal or near-optimal regions. Empirical
studies have highlighted EVO’s strong performance across various benchmark functions, frequently outperforming
established algorithms such as Ant Colony Optimization, Firefly Algorithm, Harmony Search, and Cuckoo Search.
Its efficacy has also been demonstrated in engineering applications, including speed reducer design, hydrostatic
thrust bearing optimization, and ten-bar truss structures, where EVO has yielded competitive or optimal solutions
[37, 38, 39]. Additionally, EVO has been successfully applied to complex scheduling problems [40] and several
other engineering problems [41, 42, 43, 44]. Despite these promising results, its potential for addressing knapsack-
type optimization challenges remains largely unexplored in the literature.

In light of these developments, this research addresses a notable gap by exploring the suitability of the
Energy Valley Optimizer for solving sophisticated knapsack problems that involve nonlinear objectives, upper
and lower bounds on item selection, and multiple simultaneous constraints. These problem characteristics are
emblematic of many real-world scenarios, particularly in logistics and inventory management, where effective
decision-making must accommodate complex interactions among items and stringent operational limits. Beyond
implementing EVO for this class of problems, the study conducts a systematic evaluation of how variations in
the algorithm’s key parameters influence solution quality and computational efficiency. By conducting extensive
numerical experiments, this work aims to establish evidence-based recommendations for parameter tuning and to
demonstrate the practical value of EVO in addressing large-scale, multi-constrained combinatorial optimization
tasks. The results are anticipated to advance both the theoretical understanding and practical application of
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metaheuristic methods, reinforcing EVO’s promise as a powerful tool for challenging optimization settings that
defy conventional exact approaches.

2. Experimental Section

2.1. Data and Variables

This research adopts an experimental approach, drawing primarily on the dataset established by [19]. Notably,
the original dataset did not account for the interaction profits between items, a factor critical to the formulation of
quadratic objective functions. To incorporate this dimension, interaction profit values were systematically generated
at random within the interval [25, 50], ensuring the model captures the potential synergies or penalties arising
from item combinations. The experimental analysis was restricted to 20 dataset instances to ensure computational
feasibility and consistency across scenarios. A comprehensive summary of all variables utilized in this study is
presented in Table 1.

Table 1. Definitions and measurement descriptions of variables used in the inventory 50 optimization model.

Variable Definition Measurement Description
Weight (wj) Weight of each item. Measured in kilograms (kg).

Volume (vj) Space occupied by each item. Calculated as length × width × height (all items
are box-shaped) in cm2.

Purchase Price (bj) Initial cost to acquire each item. Based on supplier’s listed price.

Selling Price (sj) Price at which each item is sold to
customers. Set by the business for each item.

Profit (pj) Net gain from selling each item. Selling price minus purchase price.

Lower Bound (lj) Minimum quantity required for
each item. Determined by business demand.

Upper Bound (uj) Maximum quantity allowed for
each item. Based on item availability from the supplier.

The detailed dataset used in this study, including the parameters for all 20 items, is presented in Table 2. In
addition, the numerical values of the total weight, volume, and budget constraints are 8.100 kg2, 14.200 cm2, and
Rp. 8,870,000, respectively.

The interaction profit data utilized in this study are summarized in Table 3.

2.2. Methodology

The following procedure was implemented to solve the Modified Quadratic Bounded Knapsack Problem with
Multiple Constraints (MQBKMC) using the Energy Valley Optimizer (EVO) [36]:

1. Parameter Initialization
At the beginning of the optimization process, the algorithm requires the definition of several key parameters.
These include n (number of particles), d (number of decision variables), xj

(i,min) and xj
(i,max) (lower and

upper bounds for the j-th variable), and FESmax (maximum number of function evaluations allowed during
the optimization process).

2. Generation of Initial Solutions
An initial population of n particles is generated randomly to serve as candidate solutions. Each particle’s
position is represented as a vector in a matrix of size n× d. The initial value for each particle is calculated
using Equation 1:

xj
i = xj

(i,min) + rand
(
xj
(i,max) − xj

(i,min)

)
; i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , d (1)
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Table 2. Parameter Definitions and Data Values for 20 MQBKMC Items

No Barang lb ub w v b s
1 item 1 6 13 5 6720 344000 440000
2 item 2 6 15 17 7560 95000 132000
3 item 3 6 13 8 20150 70000 87000
4 item 4 3 15 9 5700 65000 69000
5 item 5 4 13 8 1188 165500 223000
6 item 6 6 17 15 155552 65000 72000
7 item 7 4 15 8 3525 60000 65000
8 item 8 5 14 7 480 50000 80000
9 item 9 8 17 9 157 22000 83000
10 item 10 11 15 15 155552 65000 72000
11 item 11 6 17 15 156 105000 88000
12 item 12 9 17 8 2900 71000 170000
13 item 13 5 12 10 11220 141000 120000
14 item 14 10 12 13 1370 10000 133000
15 item 15 11 6 12 4104 244000 22000
16 item 16 13 17 17 2736 20000 92000
17 item 17 7 9 9 1794 145000 220000
18 item 18 17 3 19 12852 110000 60000
19 item 19 3 7 8 4896 35000 46000
20 item 20 4 13 9 6090 95000 107000

Table 3. Interaction profits among items.

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 30 44 47 34 39 42 36 43 49 43 50 43 37 45 50 43 38 33 50
2 0 0 42 37 36 27 31 35 40 40 32 38 48 30 42 48 37 31 25 47
3 0 0 0 27 47 34 27 32 47 49 49 25 40 26 45 29 43 30 35 36
4 0 0 0 0 47 42 25 28 32 25 27 27 39 37 46 27 25 45 49 28
5 0 0 0 0 0 34 44 41 26 38 28 38 36 26 49 38 35 25 48 44
6 0 0 0 0 0 0 25 36 49 42 42 49 50 30 45 38 41 39 31 42
7 0 0 0 0 0 0 0 33 48 37 40 50 46 33 46 35 35 37 41 41
8 0 0 0 0 0 0 0 0 32 33 37 45 36 37 49 31 36 44 36 41
9 0 0 0 0 0 0 0 0 0 50 33 37 29 27 35 46 31 36 40 43

10 0 0 0 0 0 0 0 0 0 0 37 36 46 48 34 48 50 34 44 37
11 0 0 0 0 0 0 0 0 0 0 0 28 44 29 42 38 42 45 40 48
12 0 0 0 0 0 0 0 0 0 0 0 0 32 49 50 46 30 41 25 46
13 0 0 0 0 0 0 0 0 0 0 0 0 0 27 37 32 45 32 34 44
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 26 41 30 30 39
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 32 44 25 31
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 26 43 26
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 50 43
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 28
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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3. Mapping to Discrete Decision Variables
The continuous particle positions x are then transformed into discrete decision variables y, which represent
the number of each item selected. The transformation is done using Equation 2:

yj = lbj + ⌊xj × (ubj − lbj)⌋ ; j = 1, 2, . . . , n (2)

where yj is quantity of item j to be selected, lbj is minimum allowable quantity for item j, and ubj is
maximum allowable quantity for item j.

4. Constraint Verification
Each solution vector y must satisfy the constraints imposed by the MQBKMC model, as in Equations 3 to 6:

n∑
j=1

wjyj ≤ C (3)

n∑
j=1

vjyj ≤ S (4)

n∑
j=1

bjyj ≤ M (5)

yj ∈ Z; lbj ≤ yj ≤ ubj ; j = 1, 2, . . . , n (6)

where wj is weight of item j, vj is volume of item j, bj is purchase price of item j, C is total weight capacity
of the container, S is total volume capacity of the container, and M is budget available for purchasing items.

5. Fitness Evaluation
For each candidate solution, the fitness value is calculated based on the total profit, which comprises both the
individual profits of selected items and the additional profits from item interactions. The objective function
is as in Equation 7:

Z =

n∑
j=1

pjyj +

n∑
i=1

n∑
j=1,i̸=j

pijyiyj (7)

where Z is total profit to be maximized, pj is profit of item j, and pij is profit from the interaction between
items i and j.

6. Best and Worst Solution Identification
Within each iteration, the algorithm identifies the best solution (Best Solution, BS) and the worst solution
(Worst Solution, WS) based on the evaluated fitness values. The fitness values are ranked from highest to
lowest, with the top three fitness values further utilized in the decay calculations for the alpha, beta, and
gamma parameters, which guide the particle updates in EVO.

7. Calculation of Average Evaluation and Stability Level
The algorithm computes the average objective value (EB), and the stability level (SLi) for each candidate
solution in Equations 8 and 9 as follows:

EB =

∑n
i=1 NELi

n
(8)

SLi =
NELi −BS

WS −BS
(9)

where NELi is objective value (total profit) for candidate solution i, BS is best (highest) objective value in
the current population, WS is worst (lowest) objective value in the current population, and SLi is stability
level for candidate i, indicating its relative quality.
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8. Position Update Mechanism
After evaluating the fitness of each solution NELi, the algorithm proceeds with different update strategies
based on the relationship between the fitness value and the average objective value EB:

1) If NELi > EB:
The solution is of above-average quality. The algorithm then compares the stability level SLi with a
stability boundary (SB).

a) If SLi > SB
Two types of decay, alpha and gamma, are performed simultaneously:

I. Alpha Decay:
It occurs when the particle satisfies SLi > SB and NELi > EB. At this stage, a portion of
the solution variables is refined by replacing their components with those of the best particle
(XBS). Two parameters are employed: Alpha Index I determines the number of variables that
may be refined [1, d], while Alpha Index II specifies the number of variables that must be
refined [1,Alpha Index II]. The selected variables are randomly replaced from XBS to enhance
the stability of the solution, and the new position of particle i is updated in Equation 10:

Xnew1
i = Xi

(
XBS(x

j
i )
)
; i = 1, 2, . . . , n; j = Alpha Index II (10)

where Xiis the current position of particle i, XBS is the best-known solution, and xj
i is the

value of the j-th decision variable.
II. Gamma Decay:

This phase takes place concurrently with the alpha decay process. In this stage, part of the
solution variables is adjusted by replacing certain components with those of a neighboring
particle (XNG) that is spatially close to the current particle. Two parameters are defined:
Gamma Index I specifies the range of variables that can potentially be modified [1, d], while
Gamma Index II indicates the subset of variables that must be modified [1,Gamma Index II].
The chosen variables are randomly substituted from XNG to simulate particle–environment
interaction and promote improved local exploration. This decay considers the distance to the
nearest neighbor (XNG), as shown in Equations 11 and 12:

Dk
i =

√
(xi − xk)2 + (yi − yk)2 (11)

Xnew2
i = Xi

(
XNG(x

j
i )
)
; i = 1, 2, . . . , n; j = Gamma Index II (12)

Here (xi, yi) and (xk, yk) are the coordinates of particle i and its neighbor k.

b) if SLi ≤ SB
Two types of beta decay are performed:

I. Beta Decay 1
The position is updated by considering both the best solution (XBS) and the population center
(XCP ), calculated in Equations 13 and 14 as follows:

XCP =

∑n
i=1 Xi

n
; i = 1, 2, . . . , n (13)

Xnew1
i = Xi +

r1 ×XBS − r2 ×XCP

SLi
; i = 1, 2, . . . , n (14)

where r1 and r2 are random numbers in the range [0, 1].

Stat., Optim. Inf. Comput. Vol. 15, January 2026



A. H. ’IIN, A. PRADJANINGSIH, M. Z. ARIF, A. SOEPARDI AND D. R. M. MUHAMMAD 413

II. Beta Decay 2
The position is also updated toward both the best solution and the nearest neighbor in Equation
15:

Xnew2
i = Xi + (r3 ×XBS − r4 ×XNG) ; i = 1, 2, . . . , n (15)

where r3 and r4 are random numbers in the range [0, 1].
2) If NELi ≤ EB

The particle is considered to have a lower N/Z ratio, simulating electron capture. Its position is updated
in Equation 16 as:

Xnew
i = Xi + r; i = 1, 2, . . . , n (16)

where r is a random number in the range [0, 1].

9. Update and Iteration Control

a. Best Solution Update: After each iteration, update the current best solution (XBS) identified within the
population.

b. Function Evaluation Increment: Increase the function evaluation counter (FES = FES + 1)
c. Termination Condition: If FES = FESmax, terminate the algorithm; otherwise, proceed to step 4.

10. Parameter Initialization
At the beginning of the optimization process, the algorithm requires the definition of several key parameters.
These include n (number of particles), d (number of decision variables), xj

(i,min) and xj
(i,max) (lower and

upper bounds for the j-th variable), and FESmax (maximum number of function evaluations allowed during
the optimization process).

11. Generation of Initial Solutions
An initial population of n particles is generated randomly to serve as candidate solutions. Each particle’s
position is represented as a vector in a matrix of size n× d. The initial value for each particle is calculated
using Equation 17:

xj
i = xj

(i,min) + rand(xj
(i,max) − xj

(i,min)); i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , d

(17)

12. Mapping to Discrete Decision Variables
The continuous particle positions x are then transformed into discrete decision variables y, which represent
the number of each item selected. The transformation is done using Equation 18:

yj = lbj + ⌊xj × (ubj − lbj)⌋ ; j = 1, 2, . . . , n

(18)

where yj is quantity of item j to be selected, lbj is minimum allowable quantity for item j, and ubj is
maximum allowable quantity for item j.

13. Constraint Verification
Each solution vector y must satisfy the constraints imposed by the MQBKMC model, as in Equations 19 to
22:

n∑
j=1

wjyj ≤ C

(19)
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n∑
j=1

vjyj ≤ S

(20)

n∑
j=1

bjyj ≤ M

(21)

yj ∈ Z; lbj ≤ yj ≤ ubj ; j = 1, 2, . . . , n

(22)

where wj is weight of item j, vj is volume of item j, bj is purchase price of item j, C is total weight capacity
of the container, Sis total volume capacity of the container, and M is budget available for purchasing items.

14. Fitness Evaluation
For each candidate solution, the fitness value is calculated based on the total profit, which comprises both the
individual profits of selected items and the additional profits from item interactions. The objective function
is as in Equation 23:

Z =

n∑
j=1

pjyj +

n∑
i=1

n∑
j=1,i̸=j

pijyiyj

(23)

where Z is total profit to be maximized, pj is profit of item j, pij is profit from the interaction between items
i and j.

15. Best and Worst Solution Identification
Within each iteration, the algorithm identifies the best solution (Best Solution, BS) and the worst solution
(Worst Solution, WS) based on the evaluated fitness values. The fitness values are ranked from highest to
lowest, with the top three fitness values further utilized in the decay calculations for the alpha, beta, and
gamma parameters, which guide the particle updates in EVO.

16. Calculation of Average Evaluation and Stability Level
The algorithm computes the average objective value (EB), and the stability level (SLi) for each candidate
solution in Equations 24 and 25 as follows:

EB =

∑n
i=1 NELi

n

(24)

SLi =
NELi −BS

WS −BS

(25)

where NELi is objective value (total profit) for candidate solution i, BS is best (highest) objective value in
the current population, WS is worst (lowest) objective value in the current population, and SLi is stability
level for candidate i, indicating its relative quality.

17. Position Update Mechanism
After evaluating the fitness of each solution NELi, the algorithm proceeds with different update strategies
based on the relationship between the fitness value and the average objective value EB:
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1) If NELi > EB:
The solution is of above-average quality. The algorithm then compares the stability level SLi with a
stability boundary (SB).

a) If SLi > SB
Two types of decay, alpha and gamma, are performed simultaneously:

I. Alpha Decay:
It occurs when the particle satisfies SLi > SB and NELi > EB. At this stage, a portion of
the solution variables is refined by replacing their components with those of the best particle
(XBS). Two parameters are employed: Alpha Index I determines the number of variables that
may be refined [1, d], while Alpha Index II specifies the number of variables that must be
refined [1,Alpha Index II]. The selected variables are randomly replaced from XBS to enhance
the stability of the solution, and the new position of particle i is updated in Equation 26:

Xnew1
i = Xi

(
XBS(x

j
i )
)
; i = 1, 2, . . . , n; j = Alpha Index II (26)

where Xi is the current position of particle i, XBS is the best-known solution, xj
i is the value

of the j-th decision variable.
II. Gamma Decay:

This phase takes place concurrently with the alpha decay process. In this stage, part of the
solution variables is adjusted by replacing certain components with those of a neighboring
particle (XNG) that is spatially close to the current particle. Two parameters are defined:
Gamma Index I specifies the range of variables that can potentially be modified [1, d], while
Gamma Index II indicates the subset of variables that must be modified [1,Gamma Index II].
The chosen variables are randomly substituted from XNG to simulate particle–environment
interaction and promote improved local exploration. This decay considers the distance to the
nearest neighbor (XNG), as shown in Equations 27 and 28:

Dk
i =

√
(xi − xk)2 + (yi − yk)2 (27)

Xnew2
i = Xi

(
XNG(x

j
i )
)
; i = 1, 2, . . . , n; j = Gamma Index II (28)

Here (xi, yi) and (xk, yk) are the coordinates of particle i and its neighbor k.
b) If SLi ≤ SB

Two types of beta decay are performed:
I. Beta Decay 1

The position is updated by considering both the best solution (XBS) and the population center
(XCP ), calculated in Equations 29 and 30 as follows:

XCP =

∑n
i=1 Xi

n
; i = 1, 2, . . . , n (29)

Xnew1
i = Xi +

r1 ×XBS − r2 ×XCP

SLi
; i = 1, 2, . . . , n (30)

where r1 and r2 are random numbers in the range [0, 1].
II. Beta Decay 2

The position is also updated toward both the best solution and the nearest neighbor in Equation
31:

Xnew2
i = Xi + (r3 ×XBS − r4 ×XNG) ; i = 1, 2, . . . , n (31)

where r3 and r4 are random numbers in the range [0, 1].
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2) If NELi ≤ EB
The particle is considered to have a lower N/Z ratio, simulating electron capture. Its position is updated
in Equation 32 as:

Xnew
i = Xi + r; i = 1, 2, . . . , n (32)

where r is a random number in the range [0, 1].

18. Update and Iteration Control

a. Best Solution Update: After each iteration, update the current best solution (XBS) identified within the
population.

b. Function Evaluation Increment: Increase the function evaluation counter (FES = FES + 1).
c. Termination Condition: If FES = FESmax, terminate the algorithm; otherwise, proceed to step 4.

3. Results and Discussion

This section presents a comprehensive evaluation of the MQBKMC model utilizing a dataset comprising 20 item
types. The analysis investigates the influence of two critical parameters of the Energy Valley Optimizer (EVO):
the population size (nParticle) and the maximum number of function evaluations (FESmax) on solution quality,
computational efficiency, and result stability. All computational experiments were performed using MATLAB 2023
[45].

3.1. Effect of Particle Number (nParticle)

To systematically assess the influence of population size on the performance of the Energy Valley Optimizer (EVO),
first, we fixed the maximum number of function evaluations FESmax at 20,000, as the impact of this parameter
was not yet established. For each nParticle setting, 20 independent runs were conducted to ensure the statistical
robustness of the results.

Figure 1. Maximum profit achieved across 20 independent trials for each particle population size (nParticle), illustrating
the effect of population size on solution quality.
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As illustrated in Figure 1, the maximum profit obtained across 20 trials for each nParticle configuration exhibits
only minor fluctuations and remains within a relatively narrow and stable range. The absence of a consistent upward
or downward trend indicates that increasing the number of particles does not significantly influence the solution
quality produced by the Energy Valley Optimizer (EVO). This stability suggests that EVO can maintain reliable
performance regardless of population size.

This observation is further supported by the summarized results in Table 4, where the average profit values
range closely from Rp6,251,559 to Rp6,286,994. Such a narrow interval reinforces the conclusion that varying
the number of particles has minimal impact on the optimizer’s ability to generate high-quality solutions for the
MQBKMC problem. Despite the differences in population sizes, the algorithm consistently converges to solutions
of comparable quality.

In terms of computational effort, a moderate increase in computation time is observed as the number of particles
is raised—from 70.140 seconds at nParticle = 50 to 75.727 seconds at nParticle = 250. Although this represents
a gradual increase, the overall difference remains relatively small. This indicates that while larger populations do
introduce additional computational workload, the impact on runtime remains manageable within the tested range.

Moreover, the deviation percentages across 20 trials remain low for all configurations, consistently below 1%.
This low variability demonstrates the algorithm’s robustness and its ability to produce repeatable results. The
smallest deviation occurs at nParticle = 100 (0.575%), whereas the largest is observed at nParticle = 250
(0.956%). Even so, these differences are minimal and do not indicate any instability in the algorithm’s behavior.

Although the profit values slightly increase with larger particle populations, the improvements are relatively
small across all configurations. The setting with nParticle = 250 achieves the highest profit, though it also shows
a slightly higher deviation percentage. Overall, nParticle = 250 remains a reasonable choice for subsequent
experiments, as it provides the best profit with only a minor increase in computational time, despite not being
the most statistically stable configuration.

Table 4. Effect of particle number (nParticle) on total profit, computation time, and deviation percentage.

(nParticle) Profit Computation Time (s) Deviation Percentage
50 Rp6,274,137 70.140 0.603%

100 Rp6,251,559 71.729 0.575%
150 Rp6,274,572 73.083 0.712%
200 Rp6,273,559 75.053 0.828%
250 Rp6,286,994 75.727 0.956%

3.2. Effect of Maximum Function Evaluation FESmax

To evaluate the influence of the maximum number of function evaluations (FESmax) on the performance of the
Energy Valley Optimizer (EVO), a series of experiments was conducted using a fixed particle population of 250, as
established in the previous analysis. The outcomes of these experiments are comprehensively presented in Figure
2 and Table 5, which summarize the algorithm’s performance across five different FESmax configurations, each
assessed over 20 independent trials. Together, these visual and numerical results offer clear insights into how
increasing the evaluation budget affects both solution quality and computational effort.

As shown in Figure 2, increasing the FESmax leads to a consistently upward trend in the maximum profit
achieved across trials. This pattern is further supported by the quantitative results in Table 5, where the average
profit increases substantially from Rp5,893,437 at FESmax = 1, 000 to Rp6,285,271 at FESmax = 200, 000. This
monotonic improvement reflects the benefits of allocating a larger number of function evaluations, enabling the
EVO to explore the search space more thoroughly, avoid premature convergence, and ultimately reach higher-
quality solutions. The clear separation among the profit curves in Figure 2 reinforces this observation, illustrating
how larger evaluation thresholds consistently yield better optimization outcomes.

However, this improvement in solution quality is accompanied by a considerable increase in computation
time. According to Table 5, computation time rises sharply with increasing FESmax, from only 1.493 seconds
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at FESmax = 1, 000 to 77.884 seconds at FESmax = 200, 000. Despite this increase, the deviation percentage across
trials remains low and stable, with all values staying below 1.3%. The relatively narrow spread of profit values in
Figure 2 further confirms this consistency, indicating that even at high evaluation limits, the EVO produces reliable
and reproducible results.

Figure 2. Maximum profit obtained across 20 independent trials for varying values of maximum function evaluations FESmax,
highlighting the impact of evaluation limits on optimization performance.

The combined insights from Figure 2 and Table 4 highlight the importance of selecting an appropriate evaluation
threshold when applying metaheuristic algorithms to complex optimization problems. While larger FESmax
values significantly enhance the effectiveness and robustness of the EVO, they also require substantially greater
computational resources. Therefore, in practical applications, it is crucial to balance the trade-off between solution
quality and computational cost. Excessively large evaluation thresholds may yield diminishing returns relative to
their computational expense, making the choice of FESmax a key consideration in the practical deployment of the
EVO.

Table 5. Effect of maximum function evaluations (FESmax) on total profit, computation time, and deviation percentage.

FESmax Profit Computation Time (s) Deviation Percentage
1000 Rp5,893,437 1.493 1.048%
5000 Rp5,973,054 0.824 1.082%
10000 Rp6,085,901 3.915 1.293%

100000 Rp6,227,851 38.978 0.650%
200000 Rp6,285,271 77.884 0.660%

Overall, the parameter analysis demonstrates that increasing the number of particles beyond a moderate threshold
does not yield significant improvements in solution quality, while higher values of FESmax generally lead to higher
profits, but with diminishing returns and greater computational cost. Importantly, after a certain point, further
increasing FESmax results in only marginal improvements, suggesting that excessively large evaluation limits may
not be necessary. The algorithm’s performance remains stable and consistent across multiple independent trials, as
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indicated by the low deviation percentages observed in the results. The convergence behavior of EVO for example
in trial 2, as illustrated in Figure 3, further confirms the algorithm’s efficiency: the best fitness values are typically
achieved early in the search, with later function evaluations contributing little additional improvement. This rapid
and stable convergence highlights EVO’s robustness and reliability for solving the MQBKMC under the tested
parameter settings.

Figure 3. Convergence plot of the Energy Valley Optimizer (EVO) for the MQBKMC in trial 2 (nParticle = 250, FESmax =
200, 000), showing rapid achievement of best profit with minimal improvement in later evaluations.

For benchmarking purposes, the performance of the EVO was further compared with that of the Particle Swarm
Optimization (PSO) algorithm under identical settings. The results, summarized in Table 5, indicate that EVO
consistently achieved higher average profits and lower deviations across all test instances, while maintaining
comparable computation times. This confirms the better exploration–exploitation balance of the EVO compared to
PSO.

As illustrated in Figure 4, the comparison between EVO and PSO across different particle sizes highlights a
clear performance distinction between the two algorithms. The results show that EVO consistently achieves higher
maximum profit values than PSO for every tested population size, demonstrating its better capability in handling
the MQBKMC optimization problem.

The performance patterns of both algorithms exhibit a similar trend: as the number of particles increases from 50
to 200, the maximum profit steadily improves. EVO shows its peak performance at a particle size of 250, whereas
PSO reaches its highest value at 200 particles. Despite these variations, EVO maintains a consistently higher profit
curve across all configurations, indicating its stronger balance between exploration and exploitation during the
search process.

An additional observation from Figure 4 is the magnitude of separation between the two curves. This consistent
gap suggests that EVO is more effective at navigating complex landscapes and avoiding premature convergence
compared to PSO. While PSO demonstrates gradual improvement as the population grows, its maximum profit
remains below that of EVO, signaling limitations in its ability to exploit promising regions of the search space as
effectively.
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Figure 4. Comparison of the Maximum Profit between EVO and PSO under Different nParticle.

Overall, Figure 4 reinforces the advantage of EVO over PSO in terms of solution quality and robustness. The
consistently higher profit values obtained by EVO confirm its enhanced capability to escape local optima and
converge toward more optimal solutions for the MQBKMC problem.

4. Conclusion

This study demonstrates that the Energy Valley Optimizer (EVO) is an effective and reliable metaheuristic approach
for solving the Modified Quadratic Bounded Knapsack Problem with Multiple Constraints (MQBKMC). The
parameter analysis reveals that increasing the particle population size may yield slightly better profit values. In
contrast, increasing the maximum number of function evaluations (FESmax) consistently enhances solution quality,
with the best objective value reaching Rp6,286,994, although with diminishing returns at higher computational
costs. EVO achieves most of its optimal profits early in the search process, confirming its rapid convergence and
strong exploration–exploitation balance.

Comparative benchmarking with the Particle Swarm Optimization (PSO) algorithm further indicates that EVO
tends to perform better than PSO, achieving higher average profits and lower deviation percentages under identical
experimental settings. Overall, EVO provides a stable, efficient, and scalable framework for tackling complex
combinatorial optimization problems, particularly when parameters are carefully tuned to balance accuracy and
efficiency. Future work will focus on evaluating EVO’s scalability using larger benchmark instances and comparing
its performance with other advanced metaheuristic algorithms to further validate its robustness.
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