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Abstract  Accurate computer-aided lung cancer diagnosis is based on two sequential tasks: precise nodule
segmentation and reliable malignancy classification. To this end, we curated the largest open-source CT benchmark
to date by unifying five public repositories, resulting in 7,061 annotated slices from 571 patients for segmentation
and 17,351 slices from 1,208 patients for classification. A standardized pre-processing pipeline was developed
to harmonize voxel spacing, intensity windows, and label conventions. For segmentation, six encoder—decoder
architectures were evaluated, with the hybrid UNet++ achieving the highest validation performance (Dice
coefficient = 98.5%), demonstrating that attention-augmented dense skip pathways enable more accurate boundary
detection of lung nodules. These masks were then used to drive a two-phase classification strategy: models were
initially trained using ground-truth masks, followed by fine-tuning on predicted masks to emulate real-world
deployment scenarios. Our proposed NoduleHyperFusionNet a dual-stream EfficientNetV2-S architecture, achieved
the best overall discrimination (Accuracy = 92%, Fl-score = 89%, AUC = 91%). The EfficientNet-B3 model also
performed strongly, reaching an AUC of 94%.

Overall, this study demonstrates that the combination of attention-enhanced segmentation and lightweight
multichannel fusion architectures can significantly improve automated lung cancer workflows, reducing diagnostic
error rates without incurring prohibitive computational costs.
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1. Introduction

Lung cancer remains one of the most devastating malignancies worldwide, accounting for a substantial
portion of cancer-related deaths [1]. Its aggressive nature and often asymptomatic early stages underscore
the profound clinical urgency for precise and timely diagnostic interventions. Early detection is critically
correlated with improved patient survival rates and enables the application of less invasive and more
effective treatment modalities, highlighting the indispensable need for advanced, reliable diagnostic tools
within medical imaging [2]. The rise of deep learning (DL) has profoundly reshaped medical image analysis.
Convolutional Neural Networks (CNNs), in particular, have become essential tools for automating and
improving the accuracy of tasks such as detection, segmentation, and interpretation of complex patterns
in medical scans like Computed Tomography (CT) [1]. Their ability to learn complex hierarchical features
directly from raw image data has positioned them as central to next-generation diagnostic systems.
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In the context of lung cancer, deep learning plays a pivotal role in two primary tasks: nodule
segmentation and nodule classification. Segmentation involves the precise delineation of regions of interest,
such as lung nodules or tumors, providing crucial volumetric and morphological information for clinical
assessment. Early deep learning endeavors in this field prominently featured models like U-Nets [3] and
3D-CNNs [1], which consistently demonstrated robust capabilities in accurately identifying and outlining
lung nodules. Subsequent advancements have led to the development of more sophisticated architectures,
including hybrid models and the incorporation of attention mechanisms, as seen in architectures like
UNet++ [4], [36], SegFormer [35], [43] and DeepLabV3Plus [§] further refining the segmentation process
by directing the model’s focus to diagnostically relevant features within complex medical imagery [1].

Following accurate segmentation, the subsequent classification of lung nodules as either malignant
or benign is paramount for guiding patient management. Deep learning models, frequently integrated
with transfer learning paradigms, have achieved substantial improvements in classification accuracy,
with various architectures demonstrating high proficiency in distinguishing malignancies [1]. This study
investigates a wide array of deep learning models for this task, including advanced CNNs (e.g.,
EfficientNet-B3 [15], [32], ConvNeXt-Tiny [12], [13], EfficientNetV2-S [14], MobileNetV3-Large [16], [17]),
Vision Transformers (e.g., ViT-Small [18], MaxViT, [20]), and hybrid architectures (e.g., CoAtNet-0 [22]]).
Crucially, we propose NoduleHyperFusionNet, a novel and specialized architecture designed for multi-
scale feature fusion [24] from a comprehensive seven-channel input. This model leverages dual processing
streams with an EfficientNetV2-S backbone [14], [15] and lightweight attention for efficient and effective
information integration [25], representing a core contribution of this work.

To ensure the robustness and generalizability of our findings, this study uniquely leverages a
comprehensive combination of several publicly available CT scan datasets: Luna (LUng Nodule Analysis
2016) [26], MSD (The Medical Segmentation Decathlon) [27], LNDb [28], LungCt [30], and Lung-PET-
CT-Dx [51]. This deliberate aggregation of diverse datasets is an academically sound practice that aids
in mitigating potential biases from single-source data, significantly enhancing the models’ ability to
generalize and perform reliably across varied clinical contexts, different imaging protocols, and diverse
patient populations. Despite these advancements and diverse data sources, medical image analysis,
particularly for lung cancer datasets, frequently encounters inherent challenges such as the number of
benign cases significantly outweighing malignant ones. This can lead to models biased towards the majority
class, thereby diminishing their sensitivity to critical, but rare, malignant instances [41]. Furthermore,
computational demands and ensuring generalizability across diverse clinical settings remain significant
hurdles for widespread clinical integration. This paper comprehensively investigates various deep learning
techniques, including robust data augmentation strategies cite:Widodo2024-xz, the application of Focal
Loss [2], [31] to mitigate class imbalance, and a two-phase training process, to address these challenges
and enhance the reliability and efficiency of lung cancer diagnostics.

The remainder of this paper is structured as follows: Section 2 provides an overview of related works in
lung cancer segmentation and classification, detailing key deep learning architectures and methodologies.
Section 3 outlines the research methods, including the experimental setup, data preparation and
preprocessing, model architectures, training and optimization strategies, and evaluation metrics. Section
4 presents and discusses the empirical results obtained for both segmentation and classification tasks.
Finally, Section 5 concludes the paper and offers insights into future research directions.

Contributions The main contributions of this work are three-fold:

1. We introduce, to our knowledge, the largest curated public benchmark for this task, created by
harmonizing five diverse CT datasets, which enhances model generalizability.

2. We propose a novel dual-stream classification architecture, NoduleHyperFusionNet, which efficiently
fuses multi-scale features for highly accurate malignancy assessment.

3. We validate a robust two-phase training strategy, where models are first trained on ground-truth
masks and then fine-tuned on predicted masks, effectively simulating a real-world clinical workflow
and improving model robustness.
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2. Related Works

The application of deep learning (DL) has profoundly impacted medical image analysis, particularly in
the realm of lung cancer diagnostics. Convolutional Neural Networks (CNNs) have been instrumental in
automating and enhancing the precision of detecting and interpreting intricate imaging patterns derived
from medical scans, such as Computed Tomography (CT) [1]. The early and accurate identification of
lung cancer is critical, as it significantly correlates with improved patient survival rates and facilitates
less invasive treatment modalities [2].

2.1. Lung Cancer Segmentation

Segmentation, which involves precisely delineating regions of interest, is a foundational step in the
computational analysis of medical images. Early deep learning endeavours in this field prominently
featured models like U-Nets [3] and CNNs [1], which consistently demonstrated robust capabilities in
identifying and outlining lung nodules. Subsequent advancements have led to the development of hybrid
architectures and the incorporation of attention mechanisms, further refining the segmentation process
by directing the model’s focus to diagnostically relevant features within complex medical imagery [1].
Various deep learning architectures have been developed and extensively evaluated for their efficacy in
lung nodule segmentation.

Res34UNetV2 leverages a ResNet34 backbone [33] integrated within a U-Net V2 architecture. This
combination allows for enhanced feature extraction through the deep residual connections of ResNet,
which mitigate vanishing gradients and improve information flow, thereby boosting the U-Net’s capacity
for precise contextual understanding and spatial localization during segmentation. While a specific paper
on "Res34UNet V2 for lung cancer segmentation” was not directly found, similar U-Net based architectures
with ResNet backbones have been widely applied for medical image segmentation tasks, including lung
tumour segmentation Jayaram et al. 2025 used U-Net based architectures achieving dice score of 0.853
and F-score of 0.905 on the MSD dataset [34].

SegFormer introduces a transformer-based approach to semantic segmentation. Unlike traditional
CNNs, SegFormer utilizes a hierarchical transformer encoder to capture global contextual information
more effectively, followed by a lightweight all-MLP (Multi-Layer Perceptron) decoder. This design
allows for robust feature representation across various scales, which is crucial for accurately segmenting
objects of diverse sizes, such as lung nodules. Research has explored transformer-based models with
attention mechanisms for lung nodule segmentation to address challenges in extracting edge and semantic
information and capturing long-range dependencies[35], as in Hu et al. 2024 on LIDC-IDRI and LNDb
datasets achieved dic score of 88.29% and 78.51% respectively [7].

DeepLabV3Plus is a robust semantic segmentation model that integrates atrous convolutions (dilated
convolutions) and an encoder-decoder structure. The atrous convolutions enable the model to capture
multi-scale contextual information without increasing the number of parameters, making it particularly
effective for segmenting objects with varying sizes and shapes within medical images. This architecture has
been utilized in models for accurate lung nodule segmentation, often combined with attention mechanisms
and transformers to enhance global information integration [8].

LightUNet is a streamlined variant of the U-Net architecture, optimized for lower computational cost
and memory usage while maintaining strong segmentation performance [37]. Its efficiency makes it ideal
for resource-constrained settings and real-time medical imaging applications, such as early lung cancer
detection in CT scans. Said et al. (2023) demonstrated its effectiveness on the MSD dataset, achieving a
Dice score of 96.42% [38].

UNetPlusPlus extends the original U-Net by incorporating nested and dense skip pathways between
the encoder and decoder As shown in Figure 1. These redesigned connections facilitate richer feature
aggregation and more efficient information propagation, allowing for finer-grained segmentation results
and more precise boundary delineation compared to its predecessor[4]. UNet++ has been successfully
applied to various medical image segmentation tasks, including lung CT image segmentation to improve
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the efficiency of treating lung cancer, Dong et al. 2021 used U-Net++ on the LIDC-IDRI dataset achieving
an 83.43% Dice score value and 72.51% IOU score[36].

......................
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Figure 1. baseline UNet++ architecture

UNAR is a hybrid architecture that integrates UNetPlusPlus [4] with attention gates and a ResNet34d
backbone.The attention gates are crucial for improving segmentation performance. They work by
automatically learning to focus on target structures of varying shapes and sizes while suppressing irrelevant
information from background regions. For each skip connection, the attention gate takes a gating signal
from a deeper, more contextually-rich layer of the network and uses it to rescale the feature map from the
shallower, more spatially-detailed encoder layer. This process effectively filters the feature flow, ensuring
that only the most relevant activations are propagated to the decoder, which significantly enhances the
model’s precision in delineating complex nodule boundaries. Jayaram et al. (2025) reported an 85.3%
Dice score on the MSD dataset [34].
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Figure 2. Proposed UNAR Architecture with Attention Gates
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furthermore, the term ResNet34d, which serves as the UNAR model’s backbone, refers to an improved
variant of the standard ResNet-34 architecture. While maintaining the 34-layer structure, it incorporates
impactful modifications in its downsampling blocks to preserve more spatial information [44], as illustrated
in Figure 3. The key modifications are:

1. Modified Convolution in the Main Path (Path B): In a standard ResNet, the stride of 2 is applied
in the first 1x1 convolution of a downsampling block, which discards significant spatial information.
In ResNet-D, this stride is moved to the subsequent 3x3 convolution, allowing the model to learn
richer features before downsampling.

2. Average Pooling in the Skip Connection (Path A): The strided 1x1 convolution in the skip connection
is replaced with a 2x2 Average Pooling layer followed by a non-strided 1x1 convolution. This change
avoids information loss in the identity path.

These tweaks ensure that less spatial information is lost during downsampling, leading to better feature
representation and ultimately improving the segmentation performance of the UNAR model.

Output Output
Conv Conv
(1x1) (1x1) Conv
T i (1x1)
Conv Conv Conv
(3x3) (1x1, s=2) (3x3, s=2)
T T AvgPool
Cory Conv (2x2, s=2)
(1x1, s=2) (1x1)
Input Input
(a) ResNet (b) ResNet-D

Figure 3. Architectural comparison of a block in a standard ResNet (a) versus the ResNet-D (b). The key changes,
involve replacing the strided convolution in the skip connection (A) with an average pooling layer.

2.2. Lung Cancer Classifications

For the classification of lung nodules, distinguishing between malignant and benign cases, CNNs integrated
with transfer learning paradigms have yielded substantial improvements in accuracy, with certain models
achieving high performance in identifying malignancies [1]. A persistent challenge in medical image
classification, particularly pronounced in lung cancer datasets, is class imbalance. This phenomenon
occurs when clinically significant but rare instances are underrepresented, leading to models biased
towards predominant classes and diminished sensitivity to critical minority classes [1],[30]. Such biases
can compromise diagnostic reliability in clinical settings [30]. To address this challenge, traditional
strategies like oversampling and under sampling, alongside synthetic data generation techniques such
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as SMOTE and ADASYN, have been explored [30]. A wide array of deep learning models has been
investigated for lung nodule classification, each offering unique architectural advantages. EfficientNet
B3, part of the EfficientNet family, employs compound scaling to balance network depth, width, and
resolution, optimizing both accuracy and efficiency. Its performance makes it a strong backbone for image
classification tasks, including accurate lung cancer diagnosis from histopathological images, highlighting
its potential in reliable medical diagnostic systems [9, 10, 11].

MaxViT-Tiny and MaxViT-Large are hybrid architectures that effectively combine the strengths of
Vision Transformers (ViT) with conventional CNNs. Max-ViT models introduce a multi-axis attention
mechanism that allows for both local and global feature extraction, leading to a more comprehensive
understanding of image context, which is beneficial for complex classification tasks like nodule malignancy
assessment. Hybrid transformer models, including those based on MaxViT, have been explored for multi-
classification of lung diseases using chest X-rays, showing robust results in detecting multiple lung lesions
20, 21].

ViT-Small is a transformer-based model that processes images as patch sequences using self-attention to
capture long-range dependencies. Unlike CNNs, it models global image relationships, providing an effective
alternative for feature extraction. ViT and its variants have shown promise in classifying pulmonary
nodules as benign or malignant by capturing both local and global contextual information [18, 19].

ConvNeXt-Tiny is a modern convolutional network designed to bridge the performance gap with recent
transformer models while retaining the simplicity and inductive biases of CNNs. It incorporates various
architectural innovations inspired by transformers, such as large kernel sizes and inverted bottleneck
blocks, to achieve state-of-the-art performance with a purely convolutional backbone. While a direct
reference for "ConvNeXt-Tiny for lung nodule classification” was not found, CNN-based structures are
widely used for lung nodule classification to improve diagnostic accuracy [12, 13].

EfficientNetV2-S is an evolution of the EfficientNet series, designed for faster training and improved
performance. It introduces a combination of Fused-MBConv blocks and smaller image sizes for initial
layers, leading to quicker training times and better accuracy, particularly for diverse image classification
challenges. EfficientNetV2 models have been investigated for classifying lung cancer images using
histopathology, demonstrating high accuracy in distinguishing different types of lung cancer [14, 15].

CoAtNet-0 is a novel hybrid model that strategically integrates convolution and attention mechanisms,
aiming to leverage the best of both worlds. It combines depth-wise convolutions for local feature extraction
with self-attention for global context modeling, making it effective across various data sizes and types,
including medical images [22]. While a specific paper on "CoAtNet-0 for lung nodule classification” was
not directly found, 3D attention-gated convolutional networks have been used for lung nodule malignancy
classification, highlighting the importance of incorporating contextual information [22, 42, 50]

MobileNetV3-Large is part of the MobileNet family, specifically designed for mobile and embedded
vision applications. It focuses on achieving a balance between high accuracy and computational efficiency
through automated search and novel architectural blocks, making it suitable for real-time or resource-
constrained diagnostic tools [16]. MobileNetV3, along with other transfer learning models, has been
explored for enhancing lung cancer classification from CT Scan images [17].

NoduleFusionNet is a specialized architecture often designed for medical image analysis tasks,
particularly for nodule characterization. While specific architectural details can vary, such networks
typically focus on multi-scale feature fusion and potentially incorporate domain-specific knowledge to
enhance the diagnostic performance for lung nodules, leading to more robust and accurate classifications.
Feature fusion techniques are critical for lung nodule classification, combining various descriptors to
improve the distinction between malignant and benign nodules [24].

2.3. Optimization Algorithms

Deep learning models rely on optimization algorithms to minimize loss functions and improve performance.
Adam (Adaptive Moment Estimation) combines the advantages of AdaGrad and RMSProp by computing
adaptive learning rates for each parameter. It achieves this by using exponentially weighted moving
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averages of both the gradient (the first moment, similar to momentum) and the squared gradient (the
second moment, similar to RMSProp). Its efficiency, fast convergence, and minimal hyperparameter tuning
make it ideal for non-convex problems in deep learning. In medical image analysis, particularly for lung
cancer segmentation and classification, Adam is widely used for its robust performance and ability to
generalize across diverse datasets [39].

2.4. Loss Functions

Loss functions are essential in deep learning, guiding model optimization by quantifying prediction
errors. In medical image segmentation, Dice Loss based on the Dice coefficient measures overlap between
predicted and ground truth masks, making it well-suited for imbalanced tasks like small lesion or lung
nodule segmentation [40, 41].

Dice Loss was applied for segmentation tasks, effective for measuring spatial overlap. The loss is defined

aS-LDice —1_ 23N pigite
SN gl te

where p; is the predicted probability for pixel i, g; is the ground truth label, and € is a smoothing factor
to prevent division by zero.

For classification, Cross-Entropy Loss is widely used, especially in multi-class settings, though it may
struggle with class imbalance by favoring dominant classes [42, 23]. To mitigate this, Focal Loss modifies
cross-entropy to emphasize hard, misclassified examples,

FL(pt) = —a(1 — py)7 log(pe)

where p; is the model’s estimated probability for the ground truth class, and o and v are focusing
parameters. We selected @ = 0.6 and v = 0.4 based on preliminary experiments to give more weight to
the underrepresented malignant class. enhancing performance in cases with rare but critical positive
samples, such as malignant lung cancer detection [31, 30].

2.5. Data Augmentation

Data augmentation is a crucial technique in deep learning to enhance the diversity of training
datasets without actually collecting new data. This strategy helps to prevent overfitting, improve model
generalization, and boost robustness, especially when dealing with limited medical imaging datasets.
Common augmentation techniques include geometric transformations such as rotations, shifts, flips,
and scaling, which simulate variations in image acquisition and patient positioning [45, 46]. These
transformations expose the model to a wider range of plausible inputs, making it more invariant to minor
distortions. Additionally, photometric augmentations like brightness adjustments, contrast changes, and
noise injection can help the model become more robust to variations in image quality. Libraries like
Albumentations provide a wide range of fast and flexible augmentation techniques commonly used in
medical imaging pipelines [47].

3. Research Methods

This section outlines the methodologies employed for the lung cancer segmentation and classification tasks,
detailing the experimental setup, data handling, model training procedures, and evaluation protocols.

3.1. Experimental Setup and Tools

All experiments were conducted in Python 3.10. Deep-learning workflows were implemented with PyTorch
2.2 and the following companion libraries, as shown in Table 1:

3.1.1. Compute infrastructure training and inference were conducted on Kaggle notebooks using dual
NVIDIA T4 GPUs (16 GB VRAM each), with 30 GB RAM and four vCPUs. Mixed-precision training
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Table 1. libraries utilized

Purpose Library (version) Notes

Core tensor & autograd PyTorch 2.2.0 CUDA 11.8 backend

Data frames & numerics pandas 2.2.2, NumPy 1.26.4 —

CV utilities & metrics scikit-learn 1.5.0 Train/val/test splits, AUC, F1, DeLong stats

Image augmentation Albumentations 1.4.6 3D-compatible transforms enabled

Pre-trained backbones timm 0.9.16 EfﬁcientNet—Bi%, ConvNeXt-Tiny, MaxViT-Large
MaxV-Tiny

Visualization Matplotlib 3.9, Seaborn 0.13  Learning-curve & heat-map plots

(via autocast and GradScaler) was enabled to reduce GPU memory usage and training time. To ensure
reproducibility, deterministic behavior was enforced and all random seeds were set to 42.

3.2. Data Preparation and Preprocessing

Data preparation is essential for ensuring high-quality, model-ready inputs in deep learning workflows.

3.2.1. Datasets The study utilized Computed Tomography (CT) scan data specifically tailored for lung
cancer diagnostics. Most of the original datasets were in DICOM format and were subsequently converted
to PNG format for compatibility with the deep learning pipeline. For segmentation tasks, corresponding
mask images were generated according to the annotations available in each dataset or directly utilized if
already provided, figure 4 showing dataset preprocessing.

Data Preparation

HU window minus 1200 to Extract slices to 512x512

/_> zero PNG

Five datasets: LUNA16 =
LNDb = NSCLC = LungCT-
Diagnosis = Lung-PET-CT-Dx

;b anotations » | Ground-truth masks

Figure 4. Data Pre-Processing workflow

3.2.2. Data Harmonization Pipeline To create a unified benchmark, a standardized pre-processing
pipeline was applied to harmonize the diverse datasets. a standard lung window (-1200 to 0 Hounsfield
Units) was applied to the image intensities to maximize the contrast of pulmonary nodules and
surrounding parenchyma. These windowed values were then linearly scaled to an 8-bit grayscale range
and saved as PNG files.

Label conventions were also unified to a binary system (0: benign, 1: malignant). For the LIDC-IDRI
dataset, we followed the LUNA16 challenge protocol, defining a nodule as malignant if at least three of
four radiologists assigned it a malignancy rating of 3 or higher. For the LNDDb dataset, a 'finding’ score
greater than 3 was mapped to a malignant label. Critically, to ensure a single, unambiguous ground truth
per individual and prevent data leakage, a final **patient-level unification™* was performed. If any slice
from a patient contained a malignant nodule, the entire patient was assigned the malignant label for all
classification tasks. The datasets used in this study include:
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Luna : (Lunal6) is a subset of The LIDC/IDRI data set which is publicly available, including the
annotations of nodules by four radiologists TU2025 [26].

MSD: The medical Segmentation decathlon lung task [27]dataset corresponds to the NSCLC-
Radiogenomics collection from The Cancer Imaging Archive (TCIA) [48].

LNDb (Lung Nodule Database) comprises 294 CT scans retrospectively collected at Centro Hospitalar
e Universitario de Sao Jodo (CHUSJ), Porto, Portugal, between 2016 and 2018 [28].

LungCt : LungCT-Diagnosis Quantitative computed tomographic descriptors associate tumor shape
complexity and intratumor heterogeneity [29, 49]

Lung-PET-CT-Dx includes CT and PET-CT DICOM images of lung cancer patients, accompanied by
tumor location annotations in PASCAL VOC (XML) format [51].

Each dataset was meticulously organized into a CSV file, with each row detailing crucial information
for individual image slices. This CSV structure included: image-png paths: Direct links to the raw CT
scan image files in PNG format. mask-png paths: Direct links to the corresponding binary mask images
(also in PNG format) that delineate lung nodules, essential for segmentation training and evaluation.
patient number: A unique identifier for each patient, allowing for patient-level aggregation and analysis.
malignant or benign label: A categorical label indicating the ground truth malignancy status of the lung
nodule (malignant or benign), derived from existing labels or generated from a ’finding’ column (where
finding > 3 indicated malignancy for datasets like LNDD).

3.2.3. Dataset Statistics The classification dataset, compiled from Luna, MSD, LNDb, LungCt, and
Lung-PET-CT-Dx, includes 17,351 slices from 1,208 unique patients. The segmentation dataset, sourced
from Luna and MSD, contains 7,061 slices. As part of preprocessing, patient-level labels were unified by
assigning the maximum malignancy label (e.g., 1 for malignant) across all slices per patient, ensuring
label consistency. The distribution of patients, slices, and malignancy labels across training, validation,
and test sets for classification is summarized in Table 2:

Table 2. final dataset split

Split Patients Slices Benign (0) Malignant (1)

train 772 11425 2486 8939
val 194 2553 567 1986
test 242 3373 786 2587

Table 2 highlights the distribution of samples and the class imbalance within the dataset, particularly
the higher number of malignant cases, which was addressed during model training.

3.2.4. Dataset Splitting and Class Imbalance Handling To ensure a fair and robust evaluation, free from
data leakage, specific protocols were established for dataset splitting and handling class imbalance.

Patient-Level Dataset Splitting As recommended for medical imaging tasks, a strict patient-level
splitting protocol was enforced for all classification experiments. This protocol ensures that all image slices
from a single patient belong exclusively to one data partition (training, validation, or test), preventing
the model from being evaluated on data from a patient it has already seen during training.

The splitting process was as follows:

1. A list of all unique patient identifiers was extracted from the complete classification dataset.

2. A corresponding list of patient-level labels was created.

3. This list of patients was first split into a training set (80%) and a test set (20%). The split was
stratified by the patient-level malignancy labels to maintain a similar distribution of benign and
malignant cases across the partitions.

4. The 80% training set was further split into a final training set (80% of the initial 80%, i.e., 64% of the
total) and a validation set (20% of the initial 80%, i.e., 16% of the total), again using stratification.
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5. The final slice-level dataframes were then constructed by selecting all slices belonging to the patient
IDs in each respective set.

For the segmentation task, which did not involve patient-level labels, a standard 80/20 stratified split on
the available slices was performed.

Class Imbalance Handling The compiled classification dataset exhibited a notable class imbalance, as
detailed in Table 2. To address this, a WeightedRandomSampler was employed for the training data
loader in all classification experiments. The weight for each individual sample in the training set was
calculated as the **inverse of its class frequency**. This procedure assigns a higher sampling probability
to instances from the underrepresented class (benign nodules), ensuring that the model is exposed to a
more balanced distribution of classes within each training batch. This method mitigates the risk of the
model developing a bias towards the majority (malignant) class and significantly improves its diagnostic
sensitivity to the minority class.

3.2.5. Feature Engineering for Classification For the classification task, seven distinct features were
extracted and combined to form a multi-channel input for each image slice. This involved several
transformations and derivations.

Global Image: The resized global CT scan slice.

Global Mask: The resized corresponding predicted segmentation mask of the nodule.

Contextual Image Crop: A resized crop of the image around the nodule, providing local context.

Distance Transform: A resized distance map from the nodule boundary, capturing shape information.

Edge Map: A resized representation of the edges within the image or around the nodule, highlighting
structural boundaries.

Zoomed Nodule Texture: A magnified and resized view focusing on the texture within the nodule.

Zoomed Nodule Shape : A magnified and resized view of the nodule’s shape from its mask.

1 Connganisl Crag Ol el | e
& Finiwrabd Wbl WaTure | 350 B L B

Figure 5. example of features extracted and used
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This comprehensive multi-channel input, created by resizing and cropping around the segmented nodule
using a defined 64 x 64 nodule crop size, aimed to provide a focused and enriched representation for the
classification models.

3.3. Data Augmentation

To enhance model robustness and prevent overfitting, an extensive data augmentation pipeline was
applied on-the-fly during training using the Albumentations library. Augmentations were applied only
to the training data. The pipeline included a combination of geometric, non-linear, photometric, and
regularization transformations, with specific parameters detailed in Table 3.

Table 3. Data Augmentation Pipeline and Parameters

Category Transformation Parameters
Geometric RandomResized Crop Target size: (256, 256), Scale range: (0.7, 1.0), Ratio range: (0.75, 1.33)
HorizontalFlip Probability: 0.5
VerticalFlip Probability: 0.5
RandomRotate90 Probability: 0.5
ShiftScaleRotate Shift limit: 0.0625, Scale limit: 0.15, Rotate limit: 30°
Non-Linear ElasticTransform Alpha: 120, Sigma: 6
GridDistortion Number of steps: 5, Distort limit: 0.3
Photometric RandomGamma Gamma range: (70, 130)
RandomBrightnessContrast ~ Brightness/Contrast limit: 0.25
Regularization CoarseDropout Max holes: 8, Max height/width: 32x32

3.4. Model Architectures

The study used a diverse set of deep learning architecture training tailored for both segmentation and
classification tasks following the steps presented in figure 6.

Evaluat using Dice
Coefficient and ToU then
Select best seg model

Predicted masks using best
seg model for all datasets Rl o Metrics: ACC « AUC « F1

Train seg models on
LUNALS & MSbecathion
rtracted nages 0 |—» o |

Figure 6. training steps and flow

3.4.1. Segmentation : models selected for evaluation:

Res34UNetV2: A U-Net variant incorporating a ResNet34 backbone to enhance feature extraction and
support precise segmentation.

SegFormer: A transformer-based semantic segmentation model that captures long-range dependencies
and global context.

UNetPlusPlus: An improved U-Net with nested, dense skip connections designed for finer feature
refinement and improved boundary delineation.

DeepLabV3Plus: Integrates atrous spatial pyramid pooling and encoder-decoder structure to capture
multi-scale contextual information.

LightUNet: A lightweight and computationally efficient U-Net variant optimized for faster inference,
suitable for resource-constrained environments.

UNAR: A hybrid architecture that fuses UNet+-+ with attention mechanisms and a ResNet34d
backbone, enhancing feature relevance and segmentation performance.

3.4.2. Classification: models evaluated for classification are:
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EfficientNet-B3: A convolutional network that balances accuracy and computational efficiency using
compound scaling.

MaxViT-Tiny / MaxViT-Large: Hybrid CNN-transformer models leveraging multi-axis attention for
robust feature extraction across scales.

ViT-Small: A Vision Transformer model that treats images as patch sequences, enabling global feature
learning via self-attention.

ConvNeXt-Tiny: A modernized convolutional architecture inspired by transformers, combining the
strengths of both paradigms.

EfficientNetV2-S: An advanced version of EfficientNet optimized for improved training speed and
accuracy.

CoAtNet-0: A hybrid architecture blending convolution and attention mechanisms for adaptability
across diverse visual tasks.

MobileNetV3-Large: A compact and efficient model tailored for mobile and embedded systems, offering
fast inference with reasonable accuracy.

NoduleFusionNet: A domain-specific architecture tailored for medical imaging, particularly lung
nodule classification. It emphasizes multi-scale feature fusion from diverse input channels to form
a rich representation. NoduleHyperFusionNet: This model represents a lighter and faster version of
"HyperFusionNet” architecture, specifically optimized for lung nodule classification. Its design prioritizes
efficiency while maintaining high performance. Key architectural features demonstrated in figure 7 include:

Seven channels input

Assemble into tensor

i

Split to global stream and
local stream

A

Local backbone

| Global backbone

SE attention fusion

Multi-scale aggregate
w

Linear head

Malignancy probability

Figure 7. Nodule Hyper Fusion Net layers

e Dual-Stream Processing: It utilizes two distinct streams for feature extraction: a ”Global” stream and
a "Local” stream, reducing the parameter count compared to more complex multi-stream designs.
Both streams leverage an EfficientNetV2 backbone, a powerful and efficient convolutional neural
network architecture [13, 24]pre-trained for robust feature representation.
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e Hierarchical Feature Extraction: Features are extracted from multiple stages of the backbones,
allowing for the capture of information at various scales.

o Lightweight Fusion: Instead of computationally intensive Cross-Attention mechanisms, NoduleHy-
perFusionNet employs lightweight channel attention for fusion across the two streams at each
hierarchical stage. This significantly enhances speed without sacrificing critical feature integration.

e Input Channel Handling: The model is designed to process a multi-channel input. The global
stream receives the global CT image (replicated to 3 channels), while the local stream processes
a combination of contextual image crop, distance transform, and edge map channels (totaling 3
channels). This specialized input assembly, drawing from critical feature fusion techniques [34, 33],
allows the model to leverage both broad contextual information and fine-grained nodule-specific
details.

e Final Aggregation and Classifier Head: After hierarchical fusion, features from different stages are
aggregated, passed through a final convolutional block, pooled using GeM pooling, and then fed
into a linear classifier head to produce the final malignancy prediction.

3.5. Training and Optimization

Model training involved iterative optimization to minimize the defined loss functions:

3.5.1. Optimizer: The Adam (Adaptive Moment Estimation) optimizer was used, known for its adaptive
learning rates and efficient convergence.

3.5.2. Loss Functions: Dice Loss was applied for segmentation tasks, effective for measuring spatial
overlap and handling class imbalance. Cross-Entropy Loss and Focal Loss were employed for classification.
Focal Loss specifically addressed class imbalance by down-weighting well-classified examples, enabling the
model to focus on harder, misclassified samples.

3.5.3. Learning Rate Schedulers: Various scheduling strategies from LRscheduler were utilized to
dynamically adjust the learning rate during training, including SequentialLR, LinearLR (for warm-up),
CosineAnnealingL.R, and ReduceLROnPlateau, to facilitate faster convergence and prevent overfitting.

3.6. Hyperparameters and Implementation Details

To ensure full reproducibility, as recommended by the reviewers, this section details the specific
hyperparameters used for training the segmentation and classification models. All random seeds were
set to 42 for deterministic behavior.

The training parameters for the segmentation models are summarized in Table 4. All segmentation
models were trained using a combined loss function consisting of 52% Binary Cross-Entropy and 48%
Dice Loss to balance pixel-wise accuracy and spatial overlap. The AdamW optimizer was used, and
the learning rate was dynamically adjusted by a ReduceLROnPlateau scheduler, which monitored the
validation Dice score.

For the classification task, a two-phase training strategy was employed with distinct hyperparameter
configurations for each phase, as detailed in Table 5. Phase 1 (training on ground-truth masks) utilized
a standard training recipe with Focal Loss and a sequential scheduler. Phase 2 (fine-tuning on predicted
masks) adopted a more advanced recipe with a combined loss function, the OneCycleLR scheduler,
gradient accumulation, and Mixup for regularization. The AdamW optimizer was used in both phases,
but with a stronger weight decay in Phase 2.

Data augmentation was performed using the Albumentations library. The training pipeline included
geometric transformations (RandomResizedCrop, HorizontalFlip, VerticalFlip, RandomRotate90,
ShiftScaleRotate), non-linear distortions (ElasticTransform, GridDistortion), photometric adjustments
(RandomGamma, RandomBrightnessContrast), and regularization techniques (CoarseDropout).
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Table 4. Hyperparameters for Segmentation Models

Parameter Value

Data & Batches

Training Batch Size 8

Validation Batch Size 16

Input Image Size (256, 256)

Optimizer (AdamW)

Learning Rates (LR)  Model-specific (e.g., 4e-4 for UNAR, le-4 for Res34UNetV2)

Weight Decay 2e-b

Betas (81, f2) (0.9, 0.999) (PyTorch default)

Epsilon (e) le-8 (PyTorch default)

LR Scheduler

Scheduler Type ReduceLROnPlateau

Monitored Metric Validation Dice Score

Patience 7 epochs

Decay Factor 0.5

Training Details

Epochs 70 (with early stopping patience of 13)
Loss Function 0.52 x BCEWithLogitsLoss 4 0.48 x SoftDiceLoss

Table 5. Hyperparameters for Two-Phase Classification Training

Parameter Phase 1 (GT Masks) Phase 2 (Predicted Masks)
Data & Batches

Training Batch Size 8 8

Input Size (Multi-channel) (224, 224) (224, 224)

Nodule Context Crop Size 64x64 64x64

Optimizer (AdamW)

Base Learning Rates (LR) Model-specific (e.g., 3e-4) Model-specific (e.g., 2e-4)
Weight Decay 2e-3 2e-3

Betas (81, o) (0.9, 0.999) (0.9, 0.999)

LR Scheduler

Scheduler Type Sequential LR (Linear warm-up + Cosine Annealing) OneCycleLR

Warm-up 5 epochs N/A (handled by OneCycleLR)
Pct_start (OneCycleLR)  N/A 0.1

Loss Function

Type FocalLossWithLabelSmoothing ComboLoss (70% Focal, 30% BCE)
Alpha () / Gamma (v) 0.56 / 2.0 0.25 (default) / 2.0

Label Smoothing 0.1 0.05

Training Details

Epochs per Phase 90 90

Encoder Freeze First 7 epochs First 10 epochs

Gradient Accumulation 1 4

Mixup Alpha None 0.2

3.7. Evaluation Metrics

The performance of the models was rigorously evaluated using a comprehensive set of metrics:

3.7.1. Segmentation: Performance metrics typically include Dice Coeflicient and IoU (Intersection over
Union), which are implicitly optimized by Dice Loss.
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3.7.2. Classification: For classification, slice-level predictions were aggregated to the patient level by
averaging probabilities, ensuring consistent patient-level diagnosis when multiple slices were available.

e Accuracy: Measures the overall correctness of predictions.

e F1-Score: Harmonic mean of precision and recall, providing a balanced assessment of classification
performance.

o AUC (Area Under the Curve): Evaluates the model’s ability to distinguish between classes across
different thresholds.

o Confusion Matrix: Offers a detailed view of classification outcomes, including true/false positives
and negatives.

4. Results and Discussion

This section presents the empirical results obtained from the proposed deep learning architecture for lung
cancer segmentation and classification. The performance of various models was rigorously evaluated using
comprehensive metrics for each task.

4.1. Segmentation Results

For the segmentation task, all models were trained on a dataset of 7,061 annotated slices from 571
patients, which was split into training, validation, and held-out test sets. Performance was assessed using
the Dice Score on both validation and test data to measure segmentation accuracy and generalizability,
respectively. The comprehensive results are presented in Table 6.

Table 6. Final Segmentation Model Leaderboard on Validation and Test Sets

Model Validation Dice Test Dice
UNAR 0.9840 0.9827
Res34UNetV2 0.9804 0.9789
SegFormer 0.9783 0.9765
UNetPlusPlus 0.9774 0.9751
DeepLabV3Plus 0.9767 0.9748
LightUNet 0.9754 0.9732

As shown in Table 6, the UNAR model achieved the highest performance on the validation set with a
Dice Score of 0.9840. This superiority was confirmed on the unseen test set, where it also attained the
top score of 0.9827, demonstrating its strong generalization capabilities. The Res34UNetV2 model also
performed robustly, securing the second-highest scores on both validation (0.9804) and test (0.9789) sets.
The consistently high scores across all evaluated architectures underscore the effectiveness of modern
deep learning approaches for precise lung nodule segmentation, a critical precursor to accurate diagnosis.
The small and consistent drop from validation to test scores across all models indicates that our training
methodology successfully avoided significant overfitting.

Figure 8 illustrates the training and validation history for these segmentation models, including metrics
such as loss, Dice, and IoU over epochs. The plots provide additional insight into the convergence and
stability of these models during the learning phase.

4.2. Classification Results

The classification models were evaluated on an extensive dataset, integrating data from Luna, msd,
LNDbD, LungCt, and Lung-PET-CT-Dx datasets, which encompassed 17351 slices and 1208 patients. Key
classification metrics included Accuracy, Fl-score, and Area Under the Curve (AUC), with patient-level
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Figure 8. Segmentation Models training and validation history.

aggregation of probabilities to derive final predictions. All classification models underwent a two-phase
training process to optimize their performance and leverage both ground truth and predicted segmentation
information. The two-phase training process for the classification models involved:

4.2.1. Phase 1 (Training with Ground Truth Masks): In the initial phase, models were trained using
ground truth segmentation masks. This allowed the models to learn robust features directly from precisely
delineated nodules, minimizing the noise and inaccuracies that might arise from imperfect segmentation.
This phase established a strong foundation for the classification task.

4.2.2. Phase 2 (Fine-tuning with Predicted Masks): Following the initial training, the models were
fine-tuned using predicted segmentation masks generated by the best-performing segmentation model
(UNAR). This crucial step simulated a real-world scenario where ground truth masks are unavailable and
the classification model relies on automatically segmented nodules. This fine-tuning process helped the
models adapt to potential variations and errors in predicted masks, thereby enhancing their robustness
and the generalizability in a practical deployment setting. While a comprehensive set of models was
evaluated, the initial discussion highlighted a few specific models (MobileNetV3-Large, EfficientNetV2-S,
CoAtNet-0, and EfficientNet-B3) to illustrate the general performance trends and the impact of the two-
phase training strategy. The complete results for all tested classification models are presented in Table 7,
providing a detailed overview of their performance.

The training and validation history for individual classification models, illustrating the progression
of loss, AUC, accuracy, and Fl-score over epochs, is provided in separate figures 9 and 10 for
NoduleHyperFusionNet Phase 1 and 2. Furthermore, the patient-level confusion matrices for the champion
classification models are presented in figure 11, offering a detailed breakdown of true and false predictions

As shown in Table 7, the NoduleHyperFusionNet model demonstrated the highest accuracy among all
tested classification models, achieving 0.924341. This model also exhibited a strong F1 Score of 0.891495
and an AUC of 0.918135, indicating a balanced performance in precision and recall, and a high capability
to discriminate between classes. The EfficientNet-B3 also performed exceptionally well with an accuracy
of 0.880165, an F1 Score of 0.911315, and a remarkable AUC of 0.939582, suggesting its robustness in
classification. Models like MaxViT-Large and NoduleFusionNet also showed competitive performance
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Table 7. Final Classification Model Leaderboard

Model Accuracy F1 Score AUC

EfficientNet-B3 0.880165 0.911315 0.939582
MaxViT-Tiny 0.777293  0.825939 0.836118
MaxViT-Large 0.842795  0.880795 0.922785
ViT-Small 0.659389  0.792553 0.793671
ConvNeXt-Tiny 0.655022  0.791557 0.640675
EfficientNetV2-S 0.68559 0.806452  0.635527
CoAtNet-0 0.655022  0.791557 0.816962
MobileNetV3-Large 0.703057 0.805714 0.785907

NoduleFusionNet-B0 0.847162  0.881356 0.916371
NoduleFusionNet-V2 0.834711  0.871795 0.898035
NoduleHyperFusionNet  0.924341  0.891495 0.918135

with AUC values exceeding 0.90, demonstrating their potential for accurate lung cancer classification.
Conversely, models such as ViT-Small, ConvNeXt-Tiny, and EfficientNetV2-S showed comparatively lower
performance across all metrics, indicating areas for further optimization or that these architectures may
be less suited for this specific classification task without significant modifications. It is noteworthy that
while NoduleHyperFusionNet achieved the highest overall accuracy (0.924), the EfficientNet-B3 model
obtained a slightly higher Fl-score (0.911 vs. 0.891). The Fl-score is the harmonic mean of precision
and recall and is particularly sensitive to the balance between false positives and false negatives for the
malignant class. This result suggests that while NoduleHyperFusionNet is better at correctly classifying
all cases (especially true negatives), EfficientNet-B3 demonstrates a slightly more balanced performance
between precision and recall for identifying malignant nodules, making both models strong contenders
depending on the desired clinical application.

The patient-level aggregation strategy proved crucial in handling multiple slices per patient, providing
a robust final prediction. The high AUC scores observed in the better-performing models indicate
their strong ability to distinguish between benign and malignant cases. The varying performance across
models highlights the importance of architectural choice and training methodology for optimal diagnostic
accuracy in lung cancer classification.

5. Discussion

The comprehensive evaluation of deep learning models for lung cancer segmentation and classification
presented in this study demonstrates significant advancements in automated diagnostic capabilities. Our
findings underscore the effectiveness of specialized architectures and multi-phase training strategies in
achieving high performance on diverse medical imaging datasets.

For the segmentation task, the superior performance of the UNAR model, evidenced by its Dice Score
of 98.40% (Table 6), highlights the critical role of advanced U-Net variants enhanced with attention
mechanisms and robust backbones. This result is consistent with the literature indicating that UNet++'s
nested and dense skip pathways, combined with attention gates, enable finer-grained segmentation and
selective focusing on diagnostically relevant features, which is crucial for accurate nodule delineation [4],
[24]. The high Dice Scores across other tested segmentation models like Res34UNetV2 (98.04%) and
SegFormer (97.83%) further validate the robustness of deep learning in precisely outlining lung nodules.
The visual trends in figure 8, depicting the convergence of loss and stability of Dice and IoU metrics
during training, corroborate these quantitative results, demonstrating that these models learn effectively
and generalize well to unseen segmentation data.
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In the realm of lung nodule classification, the implemented two-phase training process proved
instrumental in enhancing model robustness and generalizability. By initially training on ground truth
masks (Phase 1) and subsequently fine-tuning on predicted masks (Phase 2), our approach effectively
bridges the gap between ideal training conditions and real-world clinical deployment, where segmentation
is typically automated. This strategy addresses the inherent inaccuracies of automated segmentation while
preparing the classification models to perform optimally with real-time pipeline outputs.

Among the classification models, NoduleHyperFusionNet emerged as the top performer with an
accuracy of 92.43%, an F1 Score of 89.15%, and an AUC of 91.81% (Table 7). Its strong performance
suggests that specialized fusion architectures, particularly when combined with efficient backbones
like EfficientNetV2-S, are highly effective in integrating complex multi-channel features (including
global image, masks, contextual crops, distance transforms, and edge maps) for robust malignancy
assessment. The EfficientNet-B3 model also demonstrated exceptional discriminative power with an
AUC of 93.96%, reinforcing the utility of the EfficientNet family’s compound scaling for balancing
accuracy and computational efficiency [10], [11]. The training history plots (Figure 9, Figure 10 for
NoduleHyperFusionNet) would visually confirm their stable learning dynamics and strong performance
progression.

The adoption of Focal Loss was pivotal in addressing class imbalance—common in medical datasets
where malignant cases are underrepresented [30], [31]. By emphasizing hard-to-classify examples, it
reduced bias toward the dominant benign class and enhanced sensitivity to malignant findings. Confusion
matrices ( Figure 11) further elucidate model performance by detailing false positives and false negatives,
offering clinically valuable insight into error patterns.

While the results are highly promising, certain aspects warrant discussion for future research. The
reliance on predicted masks in Phase 2 of classification training, while simulating real-world conditions,
means that classification performance is inherently tied to the accuracy of the segmentation model.
Further improvements in segmentation could directly translate to enhanced classification accuracy.
Additionally, although the dataset size is substantial (17,351 slices, 1,208 patients), further validation
on independent, external datasets from diverse clinical settings would strengthen the generalizability
and clinical applicability of these models. The computational demands of some larger models, even with
optimizations like mixed-precision training on GPUs, might still pose deployment challenges in resource-
constrained environments, suggesting a continued need for research into more lightweight yet equally
performant architectures.

6. Conclusion

This study successfully established and evaluated a robust deep learning framework for the automated
segmentation of lung nodules and the classification of lung cancer, leveraging a diverse set of CT scan
datasets. We investigated various state-of-the-art deep learning architectures for both tasks, employing
advanced training methodologies, including a two-phase training process for classification models to
enhance real-world applicability. For lung nodule segmentation, the UNAR model demonstrated superior
performance, achieving an impressive Dice Score of 0.984012. This highlights the effectiveness of
integrating attention mechanisms and strong residual backbones within U-Net-based architectures for
the precise delineation of complex anatomical structures, a critical step for accurate diagnosis.

In the classification task, our two-phase training strategy, which involved initial training with ground
truth masks followed by fine-tuning with predicted masks, proved highly beneficial in bridging the gap
between theoretical performance and practical deployment. The NoduleHyperFusionNet model emerged as
the top classifier, exhibiting high accuracy 92.43%, F1 Score 89.15%, and AUC 91.81%. The EfficientNet-
B3 also showed exceptional discriminative capabilities with a remarkable AUC of 93.96%. The utilization
of Focal Loss effectively addressed the class imbalance inherent in medical datasets, further enhancing
the models’ sensitivity to critical malignant cases. These results collectively underscore the immense

Stat., Optim. Inf. Comput. Vol. 15, March 2026



H. AKRAM, A. MOHSIN 1887

potential of deep learning techniques to improve the accuracy and efficiency of lung cancer diagnostics
significantly. The high performance achieved in both segmentation and classification tasks can contribute
to earlier detection, leading to improved patient survival rates and facilitating more targeted treatment
strategies. Future efforts will aim to improve model generalizability through validation on larger, more
diverse external datasets. Research will also explore lightweight architectures to reduce computational
overhead for deployment in clinical environments and enhance model interpret-ability to increase trust
and adoption among healthcare professionals. Addressing these challenges will further solidify the role of
deep learning as a vital tool in lung cancer diagnosis and management.
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