

Micro Generalized Star Semi Closed Sets in Micro Topological Spaces

P. Sathishmohan ¹, S. Mythili ^{1,*}, K. Rajalakshmi ², S. Stanley Roshan ¹

¹Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, Tamil Nadu, India

²Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore - 641 008, Tamil Nadu, India

Abstract The main objective of this paper is to introduce a new class of sets namely micro generalized star semi closed set (briefly Mic-g*’s closed set) and micro generalized star semi open set (briefly Mic-g*’s open set) in micro topological spaces. Few characteristics of these sets are explored. In addition the notions of micro generalized star semi closure (briefly Mic-g*’s Clr.) and micro generalized star semi interior (briefly Mic-g*’s Intr.) are outlined.

Keywords Micro topology, Mic-g*’s closed set, Mic-g*’s open set, Mic-g*’s interior, Mic-g*’s closure.

AMS 2010 subject classifications 54A05, 54A10, 54A99

DOI: 10.19139/soic-2310-5070-2790

1. Introduction

The concept of semi open and generalized closed set was introduced by Levine [9, 8] in 1963 and 1970 respectively. Veerakumar [18] defined g* closed set in 1994. In 2011, Pushpalatha and Anitha [10] studied the properties of g*’s closed sets in topological spaces. Lellis Thivagar and Carmel Richard [7] refined general topology and identified a new form of topological space called nano topological space where he defined nano semi open set in 2013.

Bhuvaneshwari and Mythili Gnanapriya [2] introduced nano generalized closed sets in 2014. The concept of nano generalized star closed set and nano generalized star semi closed set was defined by Rajendran et.al., [12, 11] in 2015. Chandrasekar [3] extended the concepts of nano topology to micro topology and defined micro semi-open and micro pre-open in 2019. Jasim et.al., [6] defined micro generalized closed sets in 2021. In 2022, Sandhiya and Balamani [13] introduced and studied the properties of micro g* closed set. In 2024, Sathishmohan et. all., [15, 16] studied the properties of micro semi-open, micro pre-open sets, micro α -open sets and micro β -open sets in micro topological spaces respectively. In this paper we defined a new set namely micro generalized star semi closed set (briefly Mic-g*’s closed set) and micro generalized star semi open set (briefly Mic-g*’s open set) in micro topological spaces.

2. Preliminaries

Definition 2.1

[3] Let U be the Universe. R be an equivalence relation on U and $\tau_R(X) = \{U, \emptyset, L_R(X), U_R(X), B_R(X)\}$, where $X \subseteq U$. $\tau_R(X)$ satisfies the following axioms:

*Correspondence to: S. Mythili (Email: mythiliskumar2002@gmail.com), Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, Tamil Nadu, India.

1. U and $\emptyset \in \tau_R(X)$.
2. The union of elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$.
3. The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

That is, $\tau_R(X)$ forms a topology on U is called the nano topology on U with respect to X . $(U, \tau_R(X))$ is called the nano topological space.

Definition 2.2

[3] Let $(U, \tau_R(X))$ is a nano topological space here $\mu_R(X) = \{N \cup (N' \cap \mu) : N, N' \in \tau_R(X)\}$ and called it Micro topology of $\tau_R(X)$ by μ where $\mu \notin \tau_R(X)$.

Definition 2.3

[3] The Micro topology $\mu_R(X)$ satisfies the following axioms.

1. U and $\emptyset \in \mu_R(X)$.
2. The union of elements of any sub collection of $\mu_R(X)$ is in $\mu_R(X)$.
3. The intersection of the elements of any finite sub collection of $\mu_R(X)$ is in $\mu_R(X)$.

The triplet $(U, \tau_R(X), \mu_R(X))$ is called Micro topological spaces and The elements of $\mu_R(X)$ are called micro-open sets and the complement of a micro-open set is called a micro-closed set.

Definition 2.4

[3] The micro closure of a set A is denoted by $\text{Mic-cl}(A)$ and is defined as $\text{Mic-cl}(A) = \cap \{B : B \text{ is micro-closed and } A \subseteq B\}$.

Definition 2.5

[3] The micro interior of a set A is denoted by $\text{Mic-int}(A)$ and is defined as $\text{Mic-int}(A) = \cup \{B : B \text{ is micro-open and } A \supseteq B\}$.

Definition 2.6

[3] Let $(U, \tau_R(X), \mu_R(X))$ be a micro topological space and $A \subseteq U$. Then A is said to be micro semi-open if $A \subseteq \text{Mic-cl}(\text{Mic-int}(A))$ and micro semi-closed if $\text{Mic-int}(\text{Mic-cl}(A)) \subseteq A$.

Definition 2.7

[3] Let $(U, \tau_R(X), \mu_R(X))$ be a micro topological space and $A \subseteq U$. Then A is said to be micro pre-open if $A \subseteq \text{Mic-int}(\text{Mic-cl}(A))$ and micro pre-closed if $\text{Mic-cl}(\text{Mic-int}(A)) \subseteq A$.

Definition 2.8

[4] Let $(U, \tau_R(X), \mu_R(X))$ be a Micro topological space. A set A is called an Micro- α open set (briefly, Mic- α OS) if $A \subseteq \text{Mic-int}(\text{Mic-cl}(\text{Mic-int}(A)))$. The complement of an Micro- α open set is called an Micro- α closed set.

Definition 2.9

[6] A subset B of $(X, \tau_R(A), \mu_R(A))$ is called micro generalized closed set (shortly, Mic g-closed) if $\text{Mic-cl}(B) \subseteq U$ for $B \subseteq U$ and U is micro-open set in $(X, \tau_R(A), \mu_R(A))$.

Definition 2.10

[13] Let $(U, \tau_R(X), \mu_R(X))$ be a micro topological space. A subset A of U is said to be micro g^* -closed if $\text{Mic-cl}(A) \subseteq L$ whenever $A \subseteq L$ and L is micro g-open in U .

Definition 2.11

[1] A subset A of a micro topological space $(U, \tau_R(X), \mu_R(X))$ is called Mic sg-closed set if $\text{Mic-cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is micro semi-open in U .

Definition 2.12

[1] A subset A of a micro topological space $(U, \tau_R(X), \mu_R(X))$ is called Mic gs-closed set if $\text{Mic-Scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is micro-open in U .

Definition 2.13

[14] In a micro-topological space $(U, \tau_R(X), \mu_R(X))$ the sub-set P is said a ‘micro-generalized pre-closed’ (shortly Mic-g.p-closed) if $\text{Mic.p.clo.}(p) \subseteq O$, where the set O is micro-open sub set of $(U, \tau_R(X), \mu_R(X))$.

Definition 2.14

[17] The Micro semi-closure of a subset M of U , denoted by $\text{Mscl}(M)$ is defined to be the intersection of all Micro semi-closed sets of $(U, \tau_R(X), \mu_R(X))$ containing A .

Definition 2.15

[17] The Micro semi-interior of a subset M of U , denoted by $\text{Msint}(M)$ is defined to be the union of all Micro semi-open sets of $(U, \tau_R(X), \mu_R(X))$ contained in A .

Remark 1

[5] The concepts of Micro pre-open and Micro semi-open sets are independent.

3. Micro Generalized Star Semi Closed Set

In this section, we introduce a new concept of micro-closed set namely micro generalized star semi closed set (briefly Mic-g*’s closed) and its interrelations with existing micro-closed sets are obtained.

Definition 3.1

Let $(U, \tau_R(X), \mu_R(X))$ be a micro topological space. A subset A of $(U, \tau_R(X), \mu_R(X))$ is said to be micro generalized star semi closed set (briefly Mic-g*’s closed) if $\text{Mic-Scl}(A) \subseteq V$, whenever $A \subseteq V$, V is micro g-open in U .

Example 3.1

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c, d\}\}$, $X = \{a\}$, $\tau_R(X) = \{U, \emptyset, \{a, b\}\}$, $\mu = \{b\}$, $\mu_R(X) = \{U, \emptyset, \{b\}, \{a, b\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{c, d\}, \{a, c, d\}\}$. Mic-g*’s closed = $\{U, \emptyset, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}\}$

Definition 3.2

The intersection of all Mic-g*’s closed sets containing A is said to be micro generalized star semi closure of A . (briefly Mic-g*’s Clr.(A)).

Example 3.2

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, d\}, \{b, c\}\}$, $X = \{b\}$, $\tau_R(X) = \{U, \emptyset, \{b, c\}\}$, $\mu = \{a\}$, $\mu_R(X) = \{U, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{d\}, \{a, d\}, \{b, c, d\}\}$. Mic-g*’s closed = $\{U, \emptyset, \{a\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. Let $A = \{a, b, c\}$, Mic-g*’s Clr.(A) = U . Let $B = \{b, c\}$, Mic-g*’s Clr.(B) = $\{b, c, d\}$.

Theorem 3.1

Every micro-closed set is Mic-g*’s closed.

Proof

Let A be a micro-closed set of U and $A \subseteq V$, V is micro g-open in U . Since A is micro-closed set of U , we have $A = \text{Mic-cl}(A)$ which implies that $\text{Mic-cl}(A) \subseteq V$. But $\text{Mic-Scl}(A) \subseteq \text{Mic-cl}(A) \subseteq V$. This implies that $\text{Mic-Scl}(A) \subseteq V$. Thus A is Mic-g*’s closed.

The converse part of the above theorem need not be true which is given by the following example.

Example 3.3

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c\}, \{d\}\}$, $X = \{a\}$, $\tau_R(X) = \{U, \emptyset, \{a, b\}\}$, $\mu = \{b, c\}$, $\mu_R(X) = \{U, \emptyset, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$, Mic-g*’s closed = $\{U, \emptyset, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}\}$. The subsets $\{a\}$, $\{c\}$, $\{a, c\}$, $\{b, d\}$, $\{a, b, c\}$ and $\{b, c, d\}$ are Mic-g*’s closed but not micro-closed.

Theorem 3.2

Every micro semi-closed set is $\text{Mic-}g^*$'s closed.

Proof

Let A be a micro semi-closed set of U and $A \subseteq V$, V is micro g -open in U . Since A is micro semi-closed set of U , we have $A = \text{Mic-Scl}(A)$. This implies that $\text{Mic-Scl}(A) \subseteq V$. Thus A is $\text{Mic-}g^*$'s closed.

The converse part of the above theorem need not be true which is given by the following example.

Example 3.4

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, c\}, \{b, d\}\}$, $X = \{a, c\}$, $\tau_R(X) = \{U, \emptyset, \{a, c\}\}$, $\mu = \{c\}$, $\mu_R(X) = \{U, \emptyset, \{c\}, \{a, c\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{b, d\}, \{a, b, d\}\}$, micro semi-closed = $\{U, \emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{b, d\}, \{a, d\}, \{a, b, d\}, \{b, c, d\}\}$, $\text{Mic-}g^*$'s closed = $\{U, \emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{b, d\}, \{a, d\}, \{a, b, d\}, \{b, c, d\}\}$. The subset $\{b, c, d\}$ is $\text{Mic-}g^*$'s closed but not micro semi-closed.

Theorem 3.3

Every micro α -closed set is $\text{Mic-}g^*$'s closed.

Proof

Let A be a micro α -closed set of U and $A \subseteq V$, V is micro g -open in U . Since A is micro α -closed set of U , we have $A = \text{Mic-}\alpha\text{cl}(A)$ which implies that $\text{Mic-}\alpha\text{cl}(A) \subseteq V$. But $\text{Mic-Scl}(A) \subseteq \text{Mic-}\alpha\text{cl}(A) \subseteq V$. This implies that $\text{Mic-Scl}(A) \subseteq V$. Thus A is $\text{Mic-}g^*$'s closed.

The converse part of the above theorem need not be true which is given by the following example.

Example 3.5

Let $U = \{a, b, c, d\}$, $U/R = \{\{a\}, \{b\}, \{c\}, \{d\}\}$, $X = \{b, c\}$, $\tau_R(X) = \{U, \emptyset, \{b, c\}\}$, $\mu = \{c, d\}$, $\mu_R(X) = \{U, \emptyset, \{c\}, \{b, c\}, \{c, d\}, \{b, c, d\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{a\}, \{a, b\}, \{a, d\}, \{a, b, d\}\}$, micro α -closed = $\{U, \emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\}\}$, $\text{Mic-}g^*$'s closed = $\{U, \emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\}\}$. The subsets $\{a, c\}$, $\{a, c, d\}$ and $\{a, b, c\}$ are $\text{Mic-}g^*$'s closed but not micro α -closed.

Theorem 3.4

Every micro g -closed set is $\text{Mic-}g^*$'s closed.

Proof

Let A be a micro g -closed set of U and $A \subseteq V$, V is micro g -open in U . Since Every micro-open is micro g -open and A is micro g -closed set of U , we have $\text{Mic-cl}(A) \subseteq V$. But $\text{Mic-Scl}(A) \subseteq \text{Mic-cl}(A) \subseteq V$. This implies that $\text{Mic-Scl}(A) \subseteq V$. Thus A is $\text{Mic-}g^*$'s closed.

The converse part of the above theorem need not be true which is given by the following example.

Example 3.6

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b, c\}, \{d\}\}$, $X = \{a, c\}$, $\tau_R(X) = \{U, \emptyset, \{a, b, c\}\}$, $\mu = \{a, d\}$, $\mu_R(X) = \{U, \emptyset, \{a\}, \{a, d\}, \{a, b, c\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{d\}, \{b, c\}, \{b, c, d\}, \{b, d\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}\}$, micro g -closed = $\{U, \emptyset, \{d\}, \{b, c\}, \{c, d\}, \{b, d\}\}$, $\text{Mic-}g^*$'s closed = $\{U, \emptyset, \{b\}, \{c\}, \{d\}, \{b, c\}, \{c, d\}, \{b, d\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}\}$. The subsets $\{b\}$ and $\{c\}$ are $\text{Mic-}g^*$'s closed but not micro g -closed.

Theorem 3.5

Every micro g^* -closed set is $\text{Mic-}g^*$'s closed.

Proof

Let A be a micro g^* -closed set of U and $A \subseteq V$, V is micro g -open in U . Since A is micro g^* -closed set of U , we have $\text{Mic-cl}(A) \subseteq V$. But $\text{Mic-Scl}(A) \subseteq \text{Mic-cl}(A) \subseteq V$. This implies that $\text{Mic-Scl}(A) \subseteq V$. Thus A is $\text{Mic-}g^*$'s closed.

The converse part of the above theorem need not be true which is given by the following example.

Example 3.7

Let $U = \{a, b, c, d\}$, $U/R = \{\{a\}, \{b, c, d\}\}$, $X = \{b\}$, $\tau_R(X) = \{U, \emptyset, \{b, c, d\}\}$, $\mu = \{b\}$, $\mu_R(X) = \{U, \emptyset, \{b\}, \{b, c, d\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{a\}, \{a, c, d\}\}$, micro g^* -closed = $\{U, \emptyset, \{a\}, \{a, b\}, \{a, d\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$, Mic- g^* s closed = $\{U, \emptyset, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, b\}, \{a, c, d\}, \{a, b, d\}, \{a, b, c\}\}$. The subsets $\{c\}$, $\{d\}$ and $\{c, d\}$ are Mic- g^* s closed but not micro g^* -closed.

Theorem 3.6

Every Mic- g^* s closed set is micro gs-closed.

Proof

Let A be a Mic- g^* s closed set of U and $A \subseteq V$, V is micro g -open in U . Since every micro-open set is micro g -open and A is micro g^* s-closed set of U , we have $\text{Mic-Scl}(A) \subseteq V$. Thus A is micro gs-closed.

The converse part of the above theorem need not be true which is given by the following example.

Example 3.8

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c, d\}\}$, $X = \{a\}$, $\tau_R(X) = \{U, \emptyset, \{a, b\}\}$, $\mu = \{a, c, d\}$, $\mu_R(X) = \{U, \emptyset, \{a\}, \{a, b\}, \{a, c, d\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{b\}, \{c, d\}, \{b, c, d\}\}$, Mic- g^* s closed = $\{U, \emptyset, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}\}$, micro gs-closed = $\{U, \emptyset, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}\}$. The subsets $\{a, c, d\}$ and $\{a, b, d\}$ are micro gs-closed but not Mic- g^* s closed.

Theorem 3.7

Every Mic- g^* s closed set is micro gsp-closed.

Proof

Let A be a Mic- g^* s closed set of U and $A \subseteq V$, V is micro g -open in U . Since Every micro-open is micro g -open and A is Mic- g^* s closed set, we have $\text{Mic-Scl}(A) \subseteq V$. But $\text{Mic-}\beta\text{cl}(A) \subseteq \text{Mic-Scl}(A) \subseteq V$. This implies that $\text{Mic-}\beta\text{cl}(A) \subseteq V$. Thus A is micro gsp-closed.

The converse part of the above theorem need not be true which is given by the following example.

Example 3.9

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c, d\}\}$, $X = \{a\}$, $\tau_R(X) = \{U, \emptyset, \{a, b\}\}$, $\mu = \{b, c, d\}$, $\mu_R(X) = \{U, \emptyset, \{a\}, \{a, b\}, \{b, c, d\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}\}$, Mic- g^* s closed = $\{U, \emptyset, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$, micro gsp-closed = $\{U, \emptyset, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{a, b, d\}, \{a, b, c\}\}$. The subsets $\{a, b, c\}$ and $\{a, b, d\}$ are micro gsp-closed but not Mic- g^* s closed.

Remark 2

The subsets micro pre-closed and Mic- g^* s closed are independent to each other.

Proof

The proof of the remark follows from the Definitions 2.7, 3.1 and the Remark 1

Example 3.10

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, c\}, \{b, d\}\}$, $X = \{a, c\}$, $\tau_R(X) = \{U, \emptyset, \{a, c\}\}$, $\mu = \{a, b, c\}$, $\mu_R(X) = \{U, \emptyset, \{a, c\}, \{a, b, c\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{d\}, \{b, d\}\}$, micro pre-closed = $\{U, \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, b, d\}\}$, Mic- g^* s closed = $\{U, \emptyset, \{b\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}$. The subsets $\{a\}$, $\{c\}$, $\{a, b\}$ and $\{b, c\}$ are micro pre-closed but not Mic- g^* s closed and the subset $\{a, c, d\}$ is Mic- g^* s closed but not micro-pre closed.

Remark 3

The subsets Mic- g^* s closed and micro sg-closed are independent to each other.

Proof

The proof of the remark follows from the Definitions 2.11, 3.1.

Example 3.11

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, d\}, \{c, b\}\}$, $X = \{b\}$, $\tau_R(X) = \{U, \emptyset, \{b, c\}\}$, $\mu = \{a\}$, $\mu_R(X) = \{U, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{d\}, \{a, d\}, \{b, c, d\}\}$, $\text{Mic-g}^*\text{s closed} = \{U, \emptyset, \{a\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}$, $\text{micro sg-closed} = \{U, \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}$. The subsets $\{a, d\}$, $\{b, d\}$ and $\{c, d\}$ are $\text{Mic-g}^*\text{s closed}$ but not micro sg-closed and the subsets $\{b\}$ and $\{c\}$ are micro sg-closed but not $\text{Mic-g}^*\text{s closed}$.

Remark 4

The subsets $\text{Mic-g}^*\text{s closed}$ and micro gp-closed are independent to each other.

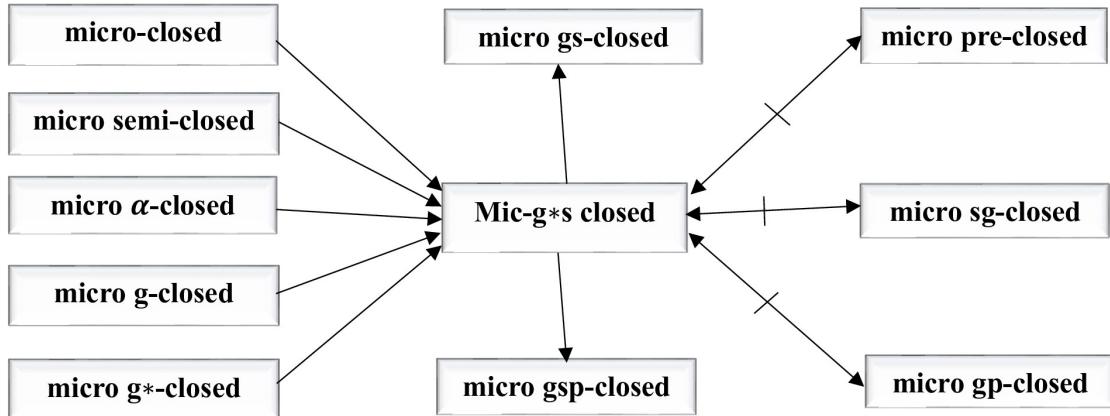
Proof

The proof of the remark follows from the Definitions 2.13, 3.1 and the Remark 1

Example 3.12

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c, d\}\}$, $X = \{c\}$, $\tau_R(X) = \{U, \emptyset, \{c, d\}\}$, $\mu = \{b\}$, $\mu_R(X) = \{U, \emptyset, \{b\}, \{c, d\}, \{b, c, d\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{a\}, \{a, b\}, \{a, c, d\}\}$, $\text{micro gp-closed} = \{U, \emptyset, \{a\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, c, d\}, \{a, b, d\}, \{a, b, c\}\}$, $\text{Mic-g}^*\text{s closed} = \{U, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$. The subsets $\{b\}$ and $\{c, d\}$ are $\text{Mic-g}^*\text{s closed}$ but not micro gp-closed and the subsets $\{c\}$ and $\{d\}$ are micro gp-closed but not $\text{Mic-g}^*\text{s closed}$.

The following diagram shows the relationship between $\text{Mic-g}^*\text{s closed}$ set with other existing sets where $A \rightarrow B$ represents A implies B but not conversely and $A \not\rightarrow B$ represents that both A and B are independent to each other.

*Theorem 3.8*

The union of two $\text{Mic-g}^*\text{s closed}$ subset is $\text{Mic-g}^*\text{s closed}$.

Proof

Let A and B be two $\text{Mic-g}^*\text{s closed}$ subsets of $(U, \tau_R(X), \mu_R(X))$ and V be a micro g-open set of U containing A and B . $A \subseteq V$, $B \subseteq V$ implies that $A \cup B \subseteq V$. Since A and B are $\text{Mic-g}^*\text{s closed}$, we have $\text{Mic-Scl}(A) \subseteq V$ and $\text{Mic-Scl}(B) \subseteq V$ respectively. But $\text{Mic-Scl}(A \cup B) = \text{Mic-Scl}(A) \cup \text{Mic-Scl}(B) \subseteq V$. This implies that $\text{Mic-Scl}(A \cup B) \subseteq V$. Therefore $A \cup B$ is $\text{Mic-g}^*\text{s closed}$.

Example 3.13

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c, d\}\}$, $X = \{c\}$, $\tau_R(X) = \{U, \emptyset, \{c, d\}\}$, $\mu = \{b, c\}$, $\mu_R(X) = \{U, \emptyset, \{c\}, \{c, d\}, \{b, c\}, \{b, c, d\}\}$, $\text{Mic-g}^*\text{s closed} = \{U, \emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$. Let $A = \{a, c\}$ is $\text{Mic-g}^*\text{s closed}$ and $B = \{d\}$ is $\text{Mic-g}^*\text{s closed}$ then $A \cup B = \{a, c, d\}$ is also $\text{Mic-g}^*\text{s closed}$.

Theorem 3.9

Let A be a $\text{Mic-}g^*$'s closed subset of $(U, \tau_R(X), \mu_R(X))$ and if $A \subseteq B \subseteq \text{Mic-Scl}(A)$, then B is $\text{Mic-}g^*$'s closed subset of $(U, \tau_R(X), \mu_R(X))$.

Proof

Let V be a micro g -open set containing B . Since A is $\text{Mic-}g^*$'s closed, we have $\text{Mic-Scl}(A) \subseteq V$ whenever $A \subseteq V$. Given that $A \subseteq B \subseteq \text{Mic-Scl}(A)$, it then follows that, $A \subseteq B \subseteq \text{Mic-Scl}(A) \subseteq V$. $B \subseteq \text{Mic-Scl}(A) \subseteq V$ implies that $\text{Mic-Scl}(B) \subseteq \text{Mic-Scl}(\text{Mic-Scl}(A)) = \text{Mic-Scl}(A) \subseteq V$. Therefore, $\text{Mic-Scl}(B) \subseteq V$. Thus B is $\text{Mic-}g^*$'s closed.

Theorem 3.10

The subset A is $\text{Mic-}g^*$'s closed set of $(U, \tau_R(X), \mu_R(X))$ iff $\text{Mic-Scl}(A) - A$ has no non empty micro g -closed set.

Proof

Necessary part: Let A be a $\text{Mic-}g^*$'s closed subset of $(U, \tau_R(X), \mu_R(X))$. Suppose that K be a micro g -closed set of $\text{Mic-Scl}(A) - A$ implying that $K \subseteq \text{Mic-Scl}(A) - A$. Further, $K \subseteq \text{Mic-Scl}(A)$ but $K \not\subseteq A$. Then $K \subseteq A^C$. By using the fundamental result of set theory, we have $A \subseteq K^C$ where K^C is a micro g -open set containing A . Since A is $\text{Mic-}g^*$'s closed we have $\text{Mic-Scl}(A) \subseteq K^C$. This implies that $K \subseteq \text{Mic-Scl}(A)^C$. From the above we have $K \subseteq \text{Mic-Scl}(A)$ and $K \subseteq \text{Mic-Scl}(A)^C$. Therefore $K \subseteq \text{Mic-Scl}(A) \cap \text{Mic-Scl}(A)^C$ which concludes that $K = \emptyset$.

Sufficient part: Conversely Assume that $\text{Mic-Scl}(A) - A$ has no non empty micro g -closed set. Let N be a micro g -open set containing A . Suppose that $\text{Mic-Scl}(A) \not\subseteq N$ then $\text{Mic-Scl}(A) \subseteq N^C$ where N^C is a micro g -closed set not containing A . Since $\text{Mic-Scl}(A) \subseteq N^C$, $\text{Mic-Scl}(A) \cap N^C$ is a non empty g -closed subset contained in a set other than A . This implies that, there exists a non empty micro g -closed set of $\text{Mic-Scl}(A) - A$ which is a contradiction. Therefore $\text{Mic-Scl}(A) \subseteq N$, which implies that the subset A is $\text{Mic-}g^*$'s closed.

4. Micro Generalized Star Semi Open Set

In this section, we introduce a new concept of micro open set namely micro generalized star semi open set (briefly $\text{Mic-}g^*$'s open) and obtain its basic properties.

Definition 4.1

Let $(U, \tau_R(X), \mu_R(X))$ be a micro topological space. A subset A of $(U, \tau_R(X), \mu_R(X))$ is said to be micro generalized star semi open set (briefly $\text{Mic-}g^*$'s open) if its complement, A^C is micro generalized star semi closed.

Example 4.1

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c, d\}\}$, $X = \{c\}$, $\tau_R(X) = \{U, \emptyset, \{c, d\}\}$, $\mu = \{d\}$, $\mu_R(X) = \{U, \emptyset, \{d\}, \{c, d\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{a, b\}, \{a, b, c\}\}$, $\text{Mic-}g^*$'s closed = $\{U, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$, $\text{Mic-}g^*$'s open = $(\text{Mic-}g^*$'s closed) C = $\{U, \emptyset, \{c\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$

Definition 4.2

The union of all $\text{Mic-}g^*$'s open sets contained in A is said to be Micro generalized star semi interior of A . (briefly $\text{Mic-}g^*$'s $\text{Intr.}(A)$).

Example 4.2

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, d\}, \{b, c\}\}$, $X = \{b\}$, $\tau_R(X) = \{U, \emptyset, \{b, c\}\}$, $\mu = \{c\}$, $\mu_R(X) = \{U, \emptyset, \{c\}, \{b, c\}\}$, $(\mu_R(X))^C = \{U, \emptyset, \{a, d\}, \{a, b, d\}\}$, $\text{Mic-}g^*$'s closed = $\{U, \emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, c, d\}, \{a, b, d\}\}$, $\text{Mic-}g^*$'s open = $(\text{Mic-}g^*$'s closed) C = $\{U, \emptyset, \{c\}, \{b\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$. Let $A = \{a, b, d\}$, $\text{Mic-}g^*$'s $\text{Intr.}(A) = \{b\}$. Let $B = \{a, d\}$, $\text{Mic-}g^*$'s $\text{Intr.}(B) = \emptyset$.

Theorem 4.1

1. Every micro-open set is $\text{Mic-}g^*$'s open.
2. Every micro semi-open set is $\text{Mic-}g^*$'s open.
3. Every micro α -open set is $\text{Mic-}g^*$'s open.

4. Every micro g-open set is Mic-g*’s open.
5. Every micro g*-open set is Mic-g*’s open.
6. Every Mic-g*’s open set is micro gs-open.
7. Every Mic-g*’s open set is micro gsp-open.

Proof

Proof follows from the above theorems(Theorem 3.1 - Theorem 3.7).

Theorem 4.2

The intersection of any two Mic-g*’s open subset is Mic-g*’s open.

Proof

Let A and B be two Mic-g*’s open subsets of $(U, \tau_R(X), \mu_R(X))$. Let N be a micro g-closed set containing A and B respectively. This implies that A^C and B^C are Mic-g*’s closed subsets of $(U, \tau_R(X), \mu_R(X))$. By Theorem 3.8, we have $A^C \cup B^C$ is Mic-g*’s closed. But $(A \cap B)^C = A^C \cup B^C$. Therefore $(A \cap B)^C$ is Mic-g*’s closed. Thus we conclude that $A \cap B$ is Mic-g*’s open.

Example 4.3

Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c, d\}\}$, $X = \{c\}$, $\tau_R(X) = \{U, \emptyset, \{c, d\}\}$, $\mu = \{a, d\}$, $\mu_R(X) = \{U, \emptyset, \{d\}, \{c, d\}, \{a, d\}, \{a, c, d\}\}$, Mic-g*’s open = $\{U, \emptyset, \{a\}, \{c\}, \{d\}, \{c, d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{b, c, d\}, \{a, b, d\}, \{a, c, d\}\}$. Let $A = \{c, d\}$ is Mic-g*’s open and $B = \{a, d\}$ is Mic-g*’s open then $A \cap B = \{d\}$ is also Mic-g*’s open.

Theorem 4.3

Let A be a subset of $(U, \tau_R(X), \mu_R(X))$. A is Mic-g*’s open iff $N \subseteq \text{Mic-Sint}(A)$ whenever $N \subseteq A$, where N is micro g-closed.

Proof

Sufficient part: Suppose that $N \subseteq \text{Mic-Sint}(A)$ where N is a micro g-closed set contained in A. $N \subseteq A$ implies that $A^C \subseteq N^C$. This further implies that N^C is a micro g-open set containing A^C . $N \subseteq \text{Mic-Sint}(A)$ implies that, $(\text{Mic-Sint}(A))^C = \text{Mic-Scl}(A^C) \subseteq N^C$. Therefore A^C is Mic-g*’s closed. Thus we conclude that A is Mic-g*’s open.

Necessary part: Conversely, Assume that A is Mic-g*’s open. Let $N \subseteq A$, where N is micro g-closed set. $N \subseteq A$ implies that $A^C \subseteq N^C$, where N^C is a micro g-open set containing A^C . Since A^C is Mic-g*’s closed, we have $\text{Mic-Scl}(A^C) \subseteq N^C$. But $(\text{Mic-Sint}(A))^C = \text{Mic-Scl}(A^C)$. Therefore $(\text{Mic-Sint}(A))^C \subseteq N^C$ implies that $N \subseteq \text{Mic-Sint}(A)$ which concludes the proof.

Theorem 4.4

Let A be a Mic-g*’s open subset of $(U, \tau_R(X), \mu_R(X))$ and if $\text{Mic-Sint}(A) \subseteq B \subseteq A$, then B is Mic-g*’s open.

Proof

Given that $\text{Mic-Sint}(A) \subseteq B \subseteq A$ and A is Mic-g*’s open. The complement of A, A^C is Mic-g*’s closed. Also, $\text{Mic-Sint}(A) \subseteq B \subseteq A$ implies that $A^C \subseteq B^C \subseteq \text{Mic-Scl}(A^C)$. It then follows from Theorem 3.9 that B^C is Mic-g*’s closed. This implies that B is Mic-g*’s open which concludes the proof.

5. Conclusion

A new class of micro sets namely micro generalized star semi closed set (briefly Mic-g*’s closed set) and micro generalized star semi open set (briefly Mic-g*’s open set) in Micro topological spaces are introduced. Mic-g*’s closed set produces many results when compared to other micro closed sets in micro topological spaces. The main motive behind the introduction of Mic-g*’s closed set is to analyze the basic properties of micro topology in a theoretical way which will further help in applying the concepts in Cryptography. The concept of Mic-g*’s closed set is defined by using micro g-open set from the micro topology. Also, some of their characteristics are studied and its relationship with some other classes of micro closed sets had been discussed. Further, using Mic-g*’s closed

sets, many concepts like Continuous, Compactness, Locally Connectedness etc., can be defined which enriches micro topology.

REFERENCES

1. Bhavani R, "On Strong Forms of Generalized Closed Sets in Micro Topological Spaces", *Turkish Journal of Computer and Mathematics Education*, 12(11), (2021), 2772 - 2777, (<https://turcomat.org/index.php/turkbilmat/article/view/6301>).
2. Bhuvaneshwari K, Mythili Gnanapriya K, "Nano Generalized Closed Sets", *International Journal of Scientific and Research Publications*, 4(5), (2014), 1 - 3, (<http://www.ijsrp.org/research-paper-0514.php?rp=P292682>).
3. Chandrasekar S, "On Micro Topological Spaces", *Journal of New Theory*, 26, (2019), 23 - 31, (<https://dergipark.org.tr/en/pub/jnt/issue/42082/506329>).
4. Chandrasekar S, Swathi G, "Micro- α -open sets in Micro Topological Spaces", *International Journal of Research in Advent Technology*, 6(10), (2018), 2633 - 2637, (<https://ijrat.org/downloads/Vol-6/oct-2018/Paper%20ID-610201820.pdf>).
5. Hariwan Z. Ibrahim, "On Micro b-open Sets", *Asia Mathematica*, 6(2), (2022), 20 - 32, (<https://doi.org/10.5281/zenodo.7120591>).
6. Jasim T. H., Mohsen S. S., Eke K. S., "On Micro-Generalized Closed Sets and Micro-Generalized Continuity in Micro Topological Spaces", *European Journal of Pure and Applied Mathematics*, 14(4), (2021), 1507 - 1516, (<https://doi.org/10.29020/nybg.ejpam.v14i4.3823>).
7. Lellis Thivagar M, Carmel Richard, "On Nano Forms of Weakly Open Sets", *International Journal of Mathematics and Statistics Invention*, 1, (2013), 31 - 37, (<https://api.semanticscholar.org/CorpusID:124753578>).
8. Levine N, "Generalized Closed Sets in Topology", *Rendiconti del Circolo Matematico di Palermo*, 19, (1970), 89 - 96, (<https://doi.org/10.1007/BF02843888>).
9. Levine N, "Semi Open Sets and Semi Continuity in Topological Spaces", *The American Mathematical Monthly*, 70, (1963), 36 - 41, (<https://doi.org/10.1080/00029890.1963.11990039>).
10. Pushpalatha A, Anitha K, "g*-s-Closed Sets in topological spaces", *International Journal of Contemporary Mathematical Sciences*, 6(19), (2011), 917 - 929, (<https://www.m-hikari.com/ijcms-2011/17-20-2011/anithaIJCMS17-20-2011.pdf>).
11. Rajendran V, Anand B, Sharmila Banu S, "On Nano Generalized Star Semi Closed sets in Nano Topological Spaces", *International Journal of Applied Research*, 1(9), (2015), 142 - 144, (<https://www.allresearchjournal.com/archives/2015/vol1issue9/PartC/1-8-115-405.pdf>).
12. Rajendran V, Sathishmohan P, Indirani K, "On Nano Generalized Star Closed Sets in Nano Topological Spaces", *International Journal of Applied Research*, 1(9), (2015), 04 - 07, (<https://www.allresearchjournal.com/archives/2015/vol1issue9/PartA/1-8-38-495.pdf>).
13. Sandhya S, Balamani N, "Micro g* Closed Sets in Micro Topological Spaces", *Journal of Research in Applied Mathematics*, 8(4), (2022), 16 - 20, (<https://www.questjournals.org/jram/papers/v8-i4/C08041620.pdf>).
14. Saja S Mohsen, "Micro-Generalized Pre-Minimal Closed Sets in Micro-Topological Spaces", *Journal of Physics: Conference Series*, 1818(1), (2021), 012118 (<https://doi.org/10.1088/1742-6596/1818/1/012118>).
15. Sathishmohan P, Stanley Roshan S and Rajalakshmi K, "On Micro Pre-Neighborhoods in Micro Topological Spaces", *Indian Journal of Science and Technology*, 17(22), (2024), 2346 - 2351, (<https://doi.org/10.17485/IJST/v17i22.741>).
16. Sathishmohan P, Poongothai G, Rajalakshmi K, and Thiruchelvi M, "On Micro Semi-Pre Operators in Micro Topological Spaces", *Indian Journal of Natural Sciences*, 15(84), (2024), 74900 - 74907, (<https://www.extrica.com/article/24326/pdf>).
17. Selvaraj Ganesan, "m ω -Closed sets in Micro Topological Spaces", *International Journal of Scientific Research and Engineering Development*, 4(3), (2021), 285 - 303, (<https://ijsrred.com/volume4/issue3/IJSRED-V4I3P39.pdf>).
18. Veerakumar M. K. R. S., "Between Closed Sets and g-closed Sets", *Kochi Journal of Mathematics (former Memoirs of the Faculty of Science Kochi University Series A Mathematics)*, 615, (1994), 51 - 63, (<https://www.scribd.com/document/395217720/N1BRA1>).