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Abstract The effect of correlation between covariates on the proportionality test results of a specific covariate in the
Cox model is well documented problem by several authors. The first solution has been proposed for the Kolmogorov-
Smirnov (KS) test, the Cramér-von Mises (CvM) test, and the Anderson-Darling (AD) test. It consists of simulating the null
distribution of these test statistics, since this is only known if the covariates are uncorrelated. The results of the simulations
carried out by the proponents of this solution have not proved its effectiveness in all studied cases. The second solution is
based on the fact that the score function used in the tests mentioned above, and in the construction of the score tests, assumes
that all other covariates are proportional, which is not always true. The idea is therefore to introduce temporal parameters to
these covariates whose meanings match their proportionalities. Such a change in the score function requires estimation of
the new parameters introduced for each tested covariate.

In this article, we propose a simple technique to eliminate such an effect. The technique involves changing the covariate to
be tested by the residual of its linear regression against the other covariates in the model. This change retains the same null
hypothesis to be tested with a new covariate that is uncorrelated with the others. A simulation comparison of these techniques
is considered.

Keywords Anderson-Darling test, Kolmogorov-Smirnov test, Linear regression, Monte Carlo method, Partial likelihood,
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1. Introduction

The Cox model [1] is an essential tool in survival analysis, describing the link between survival time and the
covariates in a data set. It expresses the death rate of an individual 4 in the following form:

Xi(®) = do(t)exp { 57X | ()
where 3 = (B, ..., Bm)T is the vector of unknown parameters, X = (Xl(z), e Xr(ﬁ,))T is the covariates vector for
i-th individual, and Ao (¢) is an unknown baseline death rate.

The main hypothesis in this model is that the death rates ratio remains constant over time and depends only on
the covariates values. This hypothesis may not be verified in several cases. In this context, several tests have been
proposed for validation. They are divided into two classes,

Class of global tests or Cox model validation tests. We cite the work of [1, 5,6, 7, 8, 11, 13, 14]
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Class of partial tests. They are used to test the proportionality hypothesis for each covariate separetely (see
[2, 3,4, 12]).
The main tools used in the construction of the most proportionality tests are the following m score functions:

3 V(XY exp (57X 0}

Uj(ﬁ,t) - / XJ(Z) h kiln le(U), Jj=1..,m,
b 5% Vi) exp {5TX0)
k=1

where n is the number of individuals, N;(t) and Y;(t) are respectively the indicator of death and the indicator of risk
at time ¢ of the ¢-th individual. We denote I;(3,t) the inverse derivative of U;(f,t) for j = 1, ..., m. The unknown
parameters estimators in the (1) model are obtained by solving the system of equations U;(3,00) =0, j = 1,...,m.
We denote 3 = (Bl, ey Bm) the vector of these estimators.

The tests proposed by [2] to test the proportionality of a specific covariate X, (1 < p < m) in the (1) model are
the classic tests, namely the Kolmogorov-Smirnov (KS), the Cramér-von Mises (CvM) and the Anderson-Darling

(AD):
KS =\ (Bsw|U,0] . v =5,5) [ 0,60 a0,
0
Q > U (B? t)2 ”
ap=5,0) [ B gy, @
g o Gp(t)(1—3p(t)) P
where .J,(f3) is the p-th diagonal elements of the Fischer information matrix and ¢, (t) = {‘;(7?;))

The asymptotic distributions of the statistics of these tests are well determined in condition that the covariates are
independent. In the case of correlated covariates, [2] used the Monte Carlo method to simulate these distributions
under the null hypothesis. The simulation results showed that this technique does not perform well if the covariates
are strongly correlated (Tables 3 and 4 in [2]).

To test the proportionality of X, [3] proposed a score test based on the following alternative:
N(®) = Mo()exp { 57X + 676, (Fo(t)/Fo(r) X0} 3

where T is the maximum time of the experiment, &, = (1, ..., cpdp)T, ¢y for k =1, ..., d, are a smooth functions,
bounded in L»[0, 1] and linearly independent, 6, = (95’7 ) 9512 )) is a parameters vector, and Fyy = 1 — exp{—Ag}
with f\o is the Breslow estimator of the baseline death rate under (1).

[3] also noted that this test score misjudges the proportionality of a proportional covariate if it is highly correlated
with another non-proportional one. [4] returns this fact to the formulation of the score test and the classic tests
above, which assumes that all the other covariates not concerned by the test are proportional, which is not always
the case. To remedy a such behaviour, he introduced a time parameters to these covariates in (3). Their introduction
serves to express the actual state of proportionality of each covariate other than the one being tested. The new
alternative is written as follows:

Ailt) = Ao(t) exp {BTX(“ + 307 (Bov)/ () X}“} , @

where 0; = (09),...,9‘%))7" and & = (1,...,pq,)" forj =1,...,m.

The null hypothesis to be tested becomes
H() . Gp = (0, ,0) (5)
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Under H,, the vector of the corresponding (m + d)-score functions (with d = ) d;) is written:

j=1
> Vi(wx >exp{/3Tx<k>+ 3 0T, <t>X“”}
n X k=1
Uso(8B,0,1) Z Jo | x50 - iz dN; (u)
=t é k<u)exp{ﬂTX<k>+J§ 9j%<t>X§-’”}
J#p (6)
3 Vi) X expd BTX®) 4 z 0T, (t)X““}
. k=1
_]l /6597t Z fo ¢l Xj(z) J#P dNZ(’U/)
Z Yi (w) exp{gTX<k>+ z 07, (t)X(k)}
J#p

with 1, (t) = &; (Fo(t)/FO(T)) forl=1,..djandj=1,..,m
The resolution of the sub-system extracted from (6)

{ Ujo(ﬁaeaT) = 07

Uj(B,0,7) =0, forj#pandl=1,....d; ’ forj=1,...m

allows the parameters estimation of the model (4) under Hy. We denote B* and 0 the vectors of the obtained
estimators. Note that their estimation is necessary for each proportionality test of each covariate. On the other hand
the remaining sub-system from (6) with replacing the vectors /5 and 6 by their estimators 5* and 6 respectively:

Un(B*,0,7), forl =1,...,d,

presents the essential part in the test statistic of Hy. The test, which we denote (Kr.score), is a chi-square with
d,, degrees of freedom. The classical tests (2) adapted to the alternative (4), are denoted (K7.KS), (Kr.CV) et (Kr.AD).

In this article, we propose a reformulation of the score tests, in particular that of [3], using a simple technique
that eliminate the effect of correlation between the covariates on the test result. This technique consists of replacing
the covariate under the test by its residual from its linear regression as a function of the other covariates. It will
also be applied to the classic tests mentioned above. The structure of the paper will be as follows: in section 2, we
present this proposed reformulation in detail. In Section 3, a simulation study will be carried out to examine the
results of this test reformulation application in the presence of correlation between covariates and to compare them
with those of the [4] test. We finish with a conclusion

2. Proposed reformulation

The score tests which are the subject of the proposed reformulation are based on the following general alternative:
A(t) = Ao(t) exp {5Tx<i> Fu, 9p)XIgi>} cie{l,..n) )

such that U is a real function which verifies ¥(¢,0) = 0 and 0, = (015,1), e Gz(;d”)). It is clear that the alternative (3)
is part of the class (7).

As mentioned at the beginning of this article, the presence of the correlation between the covariate X, and the
others, especially if one of them is non-proportional, falsifies the results of the score tests. To remedy this problem,
and before proceeding with the test score construction, we propose a change in the covariates space. We express
the covariate X, as a function of the other covariates using the following linear model:

Xp =Y a;X;+ Zp,
j=1

J#p
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where Z,, is the residual of this adjustment. With this change, the alternative (7) becomes

Ai(t) = Ao(t) exp {BTX@ (L 0,) *,@} e {l,..n), (8)
such that X@ = (X 1(i), . X,,(,i)) and 8 = (51, ey Bm) are, respectively, the new covariate vector of the i-th
individual and the vector of new parameters with

X = x{ and B; = B; + Bypa;, if j £ p
X(Z) X\ and B, = B,.

We note that X, and X have the same parameter 3,,. So testing the propotionality of X, is equivalent to checking
that of X Wthh is uncorrelated with X ,j=1,...,mand j # p. The proportionality of the covariate X,,, according
to the alternatlve (8), is equivalent to the hypothesis Hyin (5).

Now we turn to the test score construction. The partial likelihood function, according to [9], under the alternative

(8) is written as follows

8;

n o0 X(Z) X(l)7379 ’
L(B,0,) = ]] / 2 o (X0 : <>p ) )dwu) ©)
i=1 | Y0 Z Y;(u ), X5, 8,0, u

such that g(X, Z, 3,6,t) = exp { 87X + U(t,0)Z} and §; = 1 if the i-th individual is deceased (0 otherwise).
Then the k-components of the score function obtained by deriving (9) are

9 _
a7 oB(L(3.0,))

Z/ log (X“XZB, ,))f

Uep (57 917)

el dN; (u)
z (W)g(XG), X5, 3,0y, u)
p=

Under the hypothesis Hy, these functions depend on the parameters vector B = (Bl, - Bm) which is unknown. We

will therefore replace it by its estimator 3 = ( Bi, ..., Bm) calculated according to the expression

z 5]+Bpa;,lfy #p
. =1,....,m.
ﬁ] { Bp, lf] _ ) .] 9 , M
Then the test statistic will be
Ui = U, (5,(0,..,0))
= 3 [T (#9000 - BBy avi),
i=1 0
where

(z)( )_ 8\I/(u,0) v (4) E(t B) _ S(l)( 76

= aop P b) ) S(O)(t7 )
Ot B) (tyexp {BTXD Y, SNt ) = > viwya® (t) exp { 57XV}
i=1 =1
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To complete the construction of this test, we need to look for the asymptotic distribution of U ; under Hy.
We pose

Bt.5) = S D 501, 5) = 3 XOV;(0) exp {BTXO),

i=1

ZX( exp{ﬂTX(Z }

§)(t,8) = Z b0 OXOTY (1) exp { 57RO

i

Il
—

3

))22Yi(t) exp {ﬂTX(i)}7

=1

such that the notation A% means AA”. We denote by j, the true value of 3. The Taylor expansion around 5,
allows us to write:

w205 = By) = (S(Bo) Z/ (XD — E(u, fo)}dMi(u) + 0p(1),

where () is the Fisher information matrix under Hy.
Under usual regularity conditions, the Doob-Meier decomposition, and the delta method, we can write

AN /0 {69 (w) — E(u, B)}aNy(u) =

n_1/2n oouﬁ(i)u—Nu: (u
Z/{ (u) — E(u, f)}dMi )+

w2 [ (B, Bo) — B, 515 (u, o) ().

0

The Taylor expansion applied to the function 5 —s E(u, 3) leads to

B ) B fo) = 2 (5 o)

Therefore

n—1/24:n—1/2n 00111(’3)u—~u~ i(u)—
7, Z/ {06 (u) — Bu, o) }dM;(u)
- /OO Ms(o) (u, Bo)dAo(u) nl/z(é ~ flo) + 0p(1) =
o 9B
123 | 09w — B foyans o)
i—1 70 ’ 1

SIS ufwz / (X0 — B(u, 5o)}dMi () + 0,(1),
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where ¥ and ¥; are respectively the probability limits of the random matrices,

E:nl/o V (u, B)dN (u), ilznl/o V(u, B)dN (u),

This implies

<n V20, >=n i /O"{w@’)(u) — B, o)} ¥% exp {ﬂOTX(i)} Y () g ()
i=170
2mI ) / {9 (w) — B, A)HX© — (. )} exp { 7K}
i=170

i=1 70

Y; (u)dAo(w) 72T 4 0,(1) = By — 2127 1) T +0,(1),
where X5 is the probability limit of
Yo = n_l/ ﬁ(u,ﬂ:)dN(u),
0
with
=(2)

Viw )= 2 B0 (5 g

)®2
SO, B) '

Similarly, the Lindeberg condition (see [9])
_ " h ~ (i ~ T (i) P
n 12/ {35 () = B3, B0) 1150 () 5, (o 5y © 0 Yow)dAo(u) 5 0.
=170 ! -

is satisfied. This implies that the stochastic process n =/ QUj converges to the Gaussian distribution with mean 0.
In particular,

n 120, 25 N0, W),
where W = ¥, — 33 71(%)7.

Finally, to test the null hypothesis Hy, the score test statistic, which we denote (Re.score), is

fo er
Tsc:Uj/Wa

where W =n (22 -t (f)l)T). T is asymptotically X(Qip distributed when n tends towards co. Consequently,

Hy is rejected with a significance level « if T, > x%__(d,) where x%__(d,) is the (1 — «) critical value of the
X5, distribution.

By replacing 3 and X, respectively by é and X, in (2), we obtain the classical tests statistics under the proposed
reformulation. We denote them by (Re.KS), (Re.CV) and (Re.AD).
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3. Simulation study

In this section, we conduct a simulation study to examine the performance of the proposed reformulation. We
compare the results obtained with those of the application of the technique proposed by [4]. Thus the function ¥
in (8) must take the following form:

w(t,0,) = 036, (Fo(t)/Fo(7))

for the alternative used for this comparison to be the same.

3.1. Simulation setting

In this study, we consider two cases to examine the power and significance level of the tests presented in the
previous sections. In the first case, the ratio of death rates is monotonic as a function of time, while in the second,
it iS non-monotonic.

The number of repetitions is 5000. For the number of individuals, two values are considered: n = 100, 200. We
denote by X = (X7, X2) the pair of covariates generated from the multinormal distribution with mean (4.4) and
variance-covariance matrix

1 p
( pol >

such that p is the correlation between X; and Xs. For p, we took the following values: 0.3, 0.5, 0.7, 0.8, and 0.9.
The simulations were carried out using the R language [15]. Now, we present the two cases used to generate the
data.

3.1.1. Case 1: In this first case, we consider the following model :
Az (t) = exp{0.6tX; — 0.5X5}. 10)

The ratio of death rates under (10), is clearly monotonic as a function of time.
To generate the times of death from (10), we use the following expression

T; = log (1 — 0.6X; exp{0.5X2}log(U;)), fori =1,...,n,

where U is the i-th element of a n-values sequence generated from the Uniform[0,1].
The censoring times are generated from the Exponential distribution with parameter 0.28, which gives an average
percentage of censoring over the 5000 repetitions equal to 19.82%.

3.1.2. Case 2: To generate the death times, in this case we use the following model:
Ax (t) = exp{(0.2 +0.75 x 1jg.7,1)(t)) X1 — 0.5X>}. (11)
This is done using the expression

—IOg(UZ‘)/Al, siU; > Ag
Tiz —IOg(UT)/Al +O.7A2, SiAg SUSA4 s fOI‘iZl,...,ﬂ,
— IOg(Uz)/Al + 0.31427 siu < Ay
with U;, i = 1, ..., n, is a sequence of values generated according to the Uniform[0,1] and
A1 = exp{0.2X1 - 05X2}
As =1 —exp{—0.75X1}
Az = exp{—0.TA;}
Ay = exp{—A; (0.7 + 0.3exp{0.75X1})}
We note that the ratio of death rates under the (11) model is non-monotonic as a function of time. The censoring

times are generated from the Exponential distribution with parameter 0.53. The average censoring percentage over
the 5000 repetitions is equal to 38.47%. censoring probability p and different sample sizes n

Stat., Optim. Inf. Comput. Vol. 15, March 2026
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n p | covar. | KrScore KrKS KrCV  KrAD | Re.Score Re.KS Re.CV Re.AD
03 X1 0.2658 0.2748 0.3686 0.3808 | 0.2630 0.2852 0.4082 0.4186

' Xs 0.0578 0.0428 0.0536 0.0586 | 0.0540 0.0384 0.0534 0.0570

05 X1 0.2290 0.2664 0.3204 0.3388 | 0.2322  0.2380 0.3486 0.3606

’ X5 0.0592 0.0542 0.0568 0.0674 | 0.0586 0.0358 0.0516 0.0564

100 | 07 X 0.1682  0.2790 0.2668 0.3086 | 0.1730  0.1742 0.2558 0.2642
Xs 0.0508 0.0890 0.0606 0.0926 | 0.0474 0.0320 0.0464 0.0458

08 X1 0.1308  0.3038 0.2260 0.3050 | 0.1288  0.1218 0.1836 0.1916

' Xs 0.0604 0.1600 0.0852 0.1494 | 0.0552 0.0362 0.0512 0.0542

09 X 0.0960 0.4846 0.2734 0.4544 | 0.0930 0.0822 0.1278 0.1318

’ Xo 0.0604 0.3944 0.1712 0.3628 | 0.0570  0.0324 0.0508 0.0518

03 X1 0.5060 0.5506 0.6594 0.6736 | 0.5372  0.5742 0.6986 0.7142

' Xs 0.0544 0.0406 0.0478 0.0466 | 0.0600 0.0424 0.0554 0.0560

05 X 0.4424 05302 0.5910 0.6096 | 0.4692 0.5116 0.6294 0.6434

' Xs 0.0664  0.0650 0.0584 0.0650 | 0.0624  0.0422 0.0554 0.0580

200 | 0.7 X3 0.3076 04746 0.4612 0.4980 | 0.3166  0.3450 0.4550 0.4654
Xs 0.0510  0.0958 0.0620 0.0708 | 0.0600 0.0364 0.0504 0.0506

08 X1 0.2156  0.4728 0.3828 0.4416 | 0.2228  0.2484 0.3386 0.3462

' Xs 0.0518 0.1678 0.0736 0.1138 | 0.0490 0.0332 0.0428 0.0464

09 X 0.1448 0.6110 0.3480 0.5122 | 0.1348 0.1394 0.1918 0.1940

' Xs 0.0552 0.4136 0.1462 0.2978 | 0.0554 0.0388 0.0478 0.0528

1487

Table 1. Estimated rejection probabilities of the proportionality hypothesis of X1 and X2 for different values of n and p in case 1

Case 1: Emplrical Power of Tests for X1 and n=100

Case 1: Emplrical Power of Tests for X1 and n=200

Empirical Power

Empiri

Corretation (o)

Case 1: Empirical Type | Error Rate for X2 and n=200

Keseoro

| Error Rate.

Empirical Type

Empirical Type | Error Rate

Kisoore fe.score

_—

Figure 1. Empirical Power and Type I Error Rate Curves across p in case 1

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1488

PROPORTIONALITY TEST IN THE COX MODEL WITH CORRELATED COVARIATES

n p | covar. | KrScore KrKS KrCV  KrAD | Re.Score Re.KS Re.CV  Re.AD
03 X3 04176  0.4592 0.4888 0.4834 | 0.4076 0.4346 0.4994 0.4802

' X5 0.0736  0.0458 0.0556 0.0620 | 0.0514 0.0376 0.0564 0.0580

05 X3 0.3540 0.4382 0.4380 0.4462 | 0.3472 0.3564 0.4228 0.4070

' X5 0.0722  0.0620 0.0622 0.0702 | 0.0498 0.0330 0.0572 0.0558

100 | 0.7 X3 0.2646 04184 0.3626 0.3856 | 0.2410 0.2376 0.2926 0.2822
X5 0.0684 0.1034 0.0702 0.0986 | 0.0532 0.0330 0.0494 0.0502

08 X3 0.2084 0.4474 0.3480 0.3958 | 0.1788  0.1738 0.2228 0.2148

’ X5 0.0646  0.1896 0.1076 0.1534 | 0.0532 0.0378 0.0556 0.0608

09 X3 0.1418 0.5924 0.3996 0.5162 | 0.1104 0.0890 0.1278 0.1252

' X5 0.0658 0.4400 0.2376 0.3714 | 0.0544 0.0350 0.0540 0.0542

03 X3 0.6910 0.7712 0.7546 0.7540 | 0.7084  0.7524 0.7652 0.7604

’ X5 0.0532  0.0440 0.0510 0.0520 | 0.0620 0.0388 0.0494 0.0502

05 X4 0.6206  0.7484 0.7018 0.7132 | 0.6270 0.6616 0.6870 0.6794

' X5 0.0638 0.0756 0.0594 0.0628 | 0.0582 0.0416 0.0514 0.0508

200 | 0.7 X3 0.4560 0.6842 0.5844 0.6066 | 0.4400 0.4572 0.4970 0.4866
X5 0.0546  0.1348 0.0756 0.0922 | 0.0508 0.0402 0.0508 0.0508

08 X3 0.3508 0.6818 0.5194 0.5732 | 0.3184 0.3248 0.3612 0.3590

' X5 0.0602 0.2384 0.1064 0.1532 | 0.0546 0.0382 0.0542 0.0576

0.9 X3 0.2168 0.7608 0.5226 0.6408 | 0.1876  0.1710 0.2068 0.2064

Xs 0.0568 0.5408 0.2564 0.4118 | 0.0552 0.0372 0.0488 0.0504

Table 2. Estimated rejection probabilities of the proportionality hypothesis of X7 and X5 for different values of n and p in case 2

| Error Rate.

Empirical Type

Case 2: Emplrical Power of Tests for X1 and n=100 Case 2: Emplrical Power of Tests for X1 and n=200

T T T T T T T T T T T T
05 06 07 08 09 03 04 05 08 07 08 09

Correlation (g) Corretation (o)

Case 2: Empirical Type | Error Rate for X2 and n=100 Case 2: Empirical Type | Error Rate for X2 and n=200

Kisoore fe.score

Empirical Type | Error Rate
\,

== - _ _—

Figure 2. Empirical Power and Type I Error Rate Curves across p in case 2
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The results of Table 1 and Table 2 show clearly, by testing the proportionality of X; and X5, that the proposed
reformulation works well for the different values of n and p in the case of the score test and the classical tests. We
also note that the technique of [4] led to results similar to those of the proposed reformulation in the case of the
score test. For the classical tests, it has difficulty detecting the proportionality of X5 for large values of p.

4. Conclusion

To test the proportionality hypothesis of a specific covariate in the Cox model, a major risk arises when the covariate
tested and another non-proportional covariate are correlated. To remedy this problem, a reformulation of the score
tests and the classical tests is proposed. The idea is to change the covariate to be tested by a new covariate, which is
uncorrelated with the others and has the same proportionality property as the changed covariate. It stands out for its
simplicity of implementation and speed of execution compared with the [4] technique, which requires parameter
estimation for each proportionality test for each covariate.

A simulation study is carried out to examine and compare the performance of the two techniques. The results
clearly show that the proposed reformulation is an effective solution for testing the proportionality of a covariate
correlated with the others in the Cox model.
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