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Abstract  Effectively distinguishing lung cancer subtypes through histopathological imaging plays a vital role in
accelerating diagnosis and guiding appropriate treatment strategies. Deep learning techniques, particularly convolutional
neural networks (CNNs), have demonstrated remarkable success in medical image analysis. However, many state-of-the-art
CNN architectures such as DenseNet, EfficientNet, and MobileNetV?2 require substantial computational resources, limiting
their clinical deployment in resource-constrained environments.

In this study, we propose JetNet, a novel CNN architecture designed to deliver both high classification accuracy and
computational efficiency. JetNet integrates a streamlined hierarchy of convolutional layers, batch normalization, global
average pooling, and dropout regularization, resulting in a lightweight model with significantly fewer parameters. Evaluated
on a publicly available histopathological lung cancer dataset, JetNet achieved an accuracy of 99.6%, outperforming well-
established models including DenseNet, EfficientNet, and MobileNetV2.

The proposed model’s balance of performance and efficiency makes it particularly suitable for real-time diagnostic
applications and deployment in clinical settings with limited computational infrastructure. This work advances automated
lung cancer diagnosis and supports improved clinical decision-making.
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1. Introduction

According to the WHO, lung cancer is the foremost contributor to cancer-related deaths globally, with nearly
1.8 million fatalities recorded each year[1]. Early diagnosis is a critical determinant of patient survival, as the
prognosis significantly improves when the disease is detected at an early stage. However, the clinical diagnosis of
lung cancer—particularly via histopathological analysis—is inherently challenging due to the complex morphology
and variability of cancerous tissue.

Histopathology, which involves the microscopic examination of tissue samples, is the current gold standard
for cancer diagnosis. This process requires highly trained pathologists to evaluate cellular features and tissue
architecture. Nevertheless, the manual inspection of histopathological slides is labor-intensive, subject to inter- and
intra-observer variability, and often time-constrained in high-demand clinical settings. These challenges motivate
the need for automated, reliable, and fast computer-aided diagnostic (CAD) tools to assist pathologists and improve
diagnostic consistency.

In recent years, deep learning—especially Convolutional Neural Networks (CNNs)—has revolutionized image
analysis across multiple domains, including medical imaging. Convolutional neural networks are widely effective
in learning feature hierarchies directly from image data without manual intervention, eliminating the need for
manual feature engineering[2]. Several studies have applied CNNs to the classification of lung cancer from
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histopathological images, achieving encouraging results [3, 4, 5]. However, many of these models are either
computationally expensive (e.g., DenseNet, EfficientNet) or lack the necessary accuracy for deployment in clinical
workflows.

A central challenge remains: how can we design a CNN architecture that offers both high diagnostic accuracy and
computational efficiency, especially for use in real-time or resource-limited environments (e.g., mobile diagnostic
units, rural hospitals)? To address this gap, we propose JetNet—a lightweight, high-performance CNN model
specifically tailored for lung cancer histopathological image classification.

JetNet introduces a compact yet expressive architecture capable of capturing fine-grained morphological patterns
while maintaining a low parameter count. The model is evaluated on a publicly available histopathological
dataset containing three categories of lung tissue: benign, malignant, and normal. Our results show that JetNet
not only achieves state-of-the-art accuracy but also significantly reduces computational overhead compared to
mainstream CNNs. These characteristics make JetNet particularly suitable for integration into computer-aided
diagnosis systems and point-of-care platforms.

We design this custom CNN architecture optimized for histopathological lung cancer classification, balancing
accuracy and efficiency. We also conduct comprehensive experiments comparing JetNet with several baseline
architectures including AlexNet, MobileNetV2, DenseNet, and EfficientNet. We demonstrate that JetNet
outperforms existing methods in both accuracy and inference speed, making it well-suited for clinical deployment.

The remainder of this paper is structured as follows: Section 2 reviews related work; Section 3 describes the
dataset and proposed architecture with the experimental setup; Section 4 details the results and discusses their
implications; and Section 5 concludes the paper with future directions.

2. Related Work

The use of deep learning—particularly convolutional neural networks (CNNs), has become increasingly prevalent
in the classification of histopathological images for the diagnosis of lung cancer. Various architectures and strategies
have been proposed to improve model performance, interpretability, and generalization.

Alsubai et al. [6] employed a CNN-based approach for binary classification of lung cancer, emphasizing image
pre-processing methods. Their model reached 98.6% accuracy, illustrating the potential of CNNs in small medical
datasets.

Zhang et al. [7] proposed HistopathNet, a two-branch CNN model that use global-local attention and spectral
normalization for improved multiclass classification of lung cancer from histopathological images, achieving
99.2% accuracy on the LC25000 dataset. Their work highlights the importance of lightweight, interpretable
networks.

In another study, Nofallah and Rehman [8] explored the benefits of transfer learning using pre-trained
architectures like VGG16 and InceptionV3. They demonstrated that leveraging existing models can significantly
enhance performance in medical imaging tasks.

Rizwan et al. [9] developed an ensemble deep learning model that merged DenseNet and ResNet to classify
lung and colon cancer histopathology images. Their method reached 99.1% accuracy, showcasing the power of
ensemble learning.

Similarly, Sarki et al. [10] incorporated deep feature extraction with CNNs, followed by traditional classifiers,
attaining 97.8% accuracy. Lin et al. [10] advanced the field by introducing an attention-guided CNN capable of
localizing key regions in pathology slides, enhancing both classification precision and interpretability.

Recent advancements in Al have been applied to material science, such as predicting concrete strength using
neural networks, Lin et al. [11]. Their hybrid model achieved 95.4% accuracy, suggesting potential for real-time
quality control.

Furthermore, Pathak et al. [12] created a custom CNN for lung cancer subtype classification that achieved F1-
scores above 92%, emphasizing techniques to manage class imbalance. Collectively, these studies underline the
trend toward efficient, accurate, and interpretable models for clinical deployment.

While progress has been significant, many models remain computationally expensive or lack optimization for
multiclass classification tasks. Our proposed model, JetNet, addresses these gaps through a compact architecture
that maintains high diagnostic accuracy and rapid inference, making it ideal for real-world medical applications.
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Table 1. Comparative analysis of recent CNN-based approaches for lung cancer histopathology classification

Study Accuracy | Key Strengths Limitations

Alsubai et al. (2023) [6] 98.6% Simple CNN with strong pre- | Binary-only classification;
processing techniques; effec- | lacks advanced architectural
tive on small datasets design

Zhang et al. (2024) [7] 99.2% Dual-branch CNN with global- | Higher memory cost due to
local attention; interpretable | dual-branch architecture
and lightweight

Rizwan et al. (2022) [9] 99.1% Ensemble of DenseNet and | Computationally  expensive;
ResNet; enhanced feature | ensemble less suitable for
fusion real-time use

Sarki et al. (2021) [10] 97.8% Combines deep features with | Not end-to-end; requires man-
traditional classifiers; strong | ual feature processing pipeline
hybrid design

Lin et al. (2021) [11] 95.4% Attention-guided CNN for | Attention mechanism may
improved interpretability and | need tuning
region focus

JetNet (Proposed) 99.6 % Lightweight and fast; efficient | Needs external validation
architecture for deployment; | across  different  datasets
fewer parameters (Future Works)

While models such as MobileNetV2 [21] and EfficientNet [19] have demonstrated strong performance across
various computer vision tasks, their architectural designs are primarily tailored for large-scale natural image
datasets like ImageNet. In contrast, JetNet was specifically developed to address the constraints of medical
histopathology classification, where dataset sizes are typically smaller and computational resources are often
limited. Unlike MobileNetV2, which employs depthwise separable convolutions to reduce computational cost,
JetNet adopts a simpler design using standard 3x3 convolutions and batch normalization layers, which have
shown better training stability in medical image analysis [22]. Furthermore, EfficientNet’s compound scaling
strategy, while effective for transfer learning, introduces significant complexity in tuning for domain-specific
applications. JetNet avoids such scaling mechanisms, focusing instead on a lightweight, interpretable architecture
that achieves high accuracy with fewer parameters and faster inference. This makes it well-suited for real-time
clinical environments where explainability and efficiency are crucial.

3. Materials and Methods

Our proposed system followed data acquisition, Image Preprocessing and Augmentation, model training, Training
Protocol, and Evaluation Metrics, described in the below sections. To enhance generalization and prevent
overfitting, data augmentation techniques were applied, including random rotations, flips, zooming, and brightness
adjustments[13]. The data was partitioned into training (70%), validation (15%), and testing (15%) sets using
stratified sampling to preserve class balance.
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3.1. Dataset acquisition

For this study, we employed the LC25000 dataset [14], a publicly available histopathological image collection
containing 25,000 labeled images of lung and colon tissue. The dataset was sourced from the Academic Torrents
platform” and has been used extensively for benchmarking deep learning models in digital pathology.

This study focuses on the lung tissue subset, which includes a total of 15,000 images, equally distributed among
the following three diagnostic classes:

* Benign lung tissue
¢ Adenocarcinoma
* Squamous cell carcinoma

Each class contains 5,000 RGB images of size 768 x 768 pixels. All images were resized to 224 x 224 to match
the input size of our model. The dataset was pre-labeled by expert pathologists, requiring no additional manual
annotation.

Table 2 provides an overview of the dataset split, and Figure 1 displays representative samples from each class.

Table 2. Class-wise distribution of lung tissue images in the LC25000 dataset.

Class Train Validation Test
Benign 3500 750 750
Adenocarcinoma 3500 750 750
Squamous Cell Carcinoma 3500 750 750
Total 10500 2250 2250

(a) Benign (b) Squamous cell carcinoma (¢) Adenocarcinoma

Figure 1. Representative histopathological images from the LC25000 dataset. Each image was resized to 224 x 224 pixels
for input to the JetNet model.

3.2. Image Preprocessing and Augmentation

To enhance generalization and mitigate overfitting, several preprocessing and augmentation techniques were
applied:

* Normalization: Pixel intensities were scaled to the [0,1] range.
¢ Data Augmentation: On-the-fly augmentations included:

— Random horizontal and vertical flips,

thttps://academictorrents.com/details/7a638ed187a6180fd6e464b3666a6eal0499afdar
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— Rotations within +15 degrees,
— Random zooming (scaling factors between 0.9 and 1.1),
— Horizontal and vertical shifts up to 10% of image dimensions.

These augmentations increase the effective size of the training set and improve the model’s robustness to
variations inherent in histopathological imaging.

3.3. Model Architecture (JetNet)

The JetNet architecture integrates four sequential convolutional blocks, each built with a 3x3 kernel
convolutional layer (with padding set to 1), followed by batch normalization, a ReLU activation function, and
a 2x2 max pooling operation with a stride of 2:

* A convolutional layer with kernel size 3 x 3, padding = 1
¢ Batch Normalization (BN)

* ReLU activation

* Max pooling with 2 x 2 filter and stride 2

Let I denote the input image of dimensions (H, W, C) = (224,224, 3).
Each convolutional layer computes the output as:

H—-K+2P W — K+ 2P
Oconv = < 75 +1> X (S —|—1> x I

where:

e K =Xkernel size (3)

e S =stride (1)

e P =padding (1)

e [ = number of filters

Each convolutional layer’s number of trainable parameters is given by:

Params ., = (K X K X Cip) X Cout + Cout

Table 3 summarizes its layer configuration.

Table 3. JetNet Architecture Overview

Layer Output Shape Parameters Activation / Notes
Input Layer 224%224%3 - RGB Histopathological Image
Conv2D + BN 224x224x64 3x3 kernel ReLU + BatchNorm
MaxPooling2D 112x112x64 2x2 pool Reduces spatial dims
Conv2D + BN 112x112x128 3%3 kernel ReLU + BatchNorm
MaxPooling2D 56x56x128 2x2 pool Downsampling
Conv2D + BN 56x56x256 3x3 kernel ReLU + BatchNorm
MaxPooling2D 28x28%x256 2x2 pool

Conv2D + BN 28x28x512 3%3 kernel ReLU + BatchNorm
MaxPooling2D 14x14x512 2x2 pool

GlobalAveragePooling2D 1x1x512 - Aggregates spatial features
Dense 512 units Fully connected ReLU activation
Dropout - p=0.5 Prevents overfitting
Dense (Output) 3 units Softmax Multiclass classifier

This design results in a lightweight yet powerful model suitable for deployment on resource-constrained clinical
hardware.
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3.4. Training Protocol

Training was conducted using the Adam optimizer [15] with an initial learning rate of le-4 and standard
parameters 81 = 0.9 and f2 = 0.999. The model was trained for 180 epochs with a batch size of 32.

We applied a stratified 80/20 split for training and testing, with 10% of the training data further reserved for
validation to monitor overfitting and tuning hyperparameters.

Early stopping based on validation loss was employed with a patience of 15 epochs to prevent overfitting.

« Fast convergence (typically stabilizes in under 100 epochs)
* Smooth learning curve and low generalization gap
* Robustness to overfitting even on small datasets

Figure 2 shows the architecture flow.
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Figure 2. JetNet Architecture Diagram

Figure 2 graphically shows the general architecture of our JetNet model, first global feature aggregation, and
then fully connected classification stages follow the sequential organization of convolutional and pooling layers.
This illustration offers a clear understanding of how the model processes input images, which ultimately enables
accurate multiclass categorization. The simplicity and modularity of the architecture facilitate both interpretability
and implementation, particularly in clinical environments with limited computational resources.

3.5. Evaluation Metrics

The performance of the model was assessed through multiple metrics:

* Accuracy: Overall proportion of correctly predicted instances,

¢ Precision, Recall, and F1-score for each class,

* Confusion Matrix to visualize misclassification patterns,

¢ Area Under the Receiver Operating Characteristic Curve (AUC-ROC) to evaluate discriminative
capacity,

* Model size (number of parameters) and inference time as indicators of deployability.

The performance of the model was quantified using standard classification metrics:

* Accuracy:

Accuracy = TP+TN (1)
Y= TPYIN+FP+FN
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¢ Precision (for each class):

TP

Precision = TP+ PP 2)
¢ Recall/Sensitivity: Where:
TP .\ .
Recall = —— 3) e TP = True Positives, T'N = True Negatives
TP+FN » F'P = False Positives, F'N = False Negatives
 F1-Score (harmonic mean): * y; . = Ground truth for sample i class ¢
* 9;,c = Predicted probability for sample i class ¢
F =2 x Precision x Recall 4) * N = Number of samples and C = Number of
Precision + Recall classes (3)

¢ Cross-Entropy Loss:

1 N C
L==3"Y wiclog(id) )

i=1 c=1

3.6. Overview of the JetNet Workflow

The JetNet-based workflow, highlighting how input data is processed through training and inference to produce
diagnostic predictions.

Training
Data

Testing
Data

Training Inference
Stage Stage
S
| System Boundary 1
| \ . ‘ﬁ !
| Convolutional | Classification: :
: Neural Network ign |
| (JetNet) Malignant !
i ——

Trained
Model

Figure 3. Simplified architecture of the JetNet-based pipeline for histopathological image classification.

Figure 3 illustrates the complete lifecycle of our -classification framework. Initially, the annotated
histopathological images are divided into training and testing sets. During the training stage, the JetNet
model learns discriminative features from labeled data. Once trained, the model processes unseen inputs
during the inference stage to predict the status of the malignancy. The dashed boundary outlines the modular
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workflow of the system, which ensures reusability and consistency in both the development and deployment phases.

Every experiment was carried out using the free GPU runtime offered by Kaggle Notebooks in the Kaggle cloud
environment. The environment featured a 2-core Intel Xeon CPU, an NVIDIA Tesla P100 GPU with 16GB VRAM,
and 13GB of available RAM [16].

TensorFlow served as the backend for the Keras implementation of the model. For data preprocessing, analysis,
and visualization, additional libraries like NumPy, Pandas, Scikit-learn, and Matplotlib were utilized.

3.7. Model Efficiency

Apart from classification metrics, JetNet’s efficiency is exhibited by its faster inference time in comparison to
DenseNet and EfficientNet, as well as its comparatively smaller number of parameters (7.4 million) in comparison
to AlexNet’s 61 million. These benefits make the deployment on mobile diagnostic devices or standard hospital
computing infrastructure easier.

3.8. Implementation Transparency and Reproducibility

To enhance reproducibility and ensure transparency in implementation, we detail below the training pipeline,
optimization strategies, and deployment environment used for JetNet.

Weight Initialization. All convolutional layers were initialized using the He normal method, which is optimized
for ReLU activations and helps maintain variance across layers during forward and backward propagation.

Regularization. In addition to dropout layers (set at 0.3-0.5 in dense and convolutional layers), L2 weight
decay regularization with a coefficient of 1 x 10~* was applied to all trainable layers. This discourages overfitting
by penalizing large weights.

Optimizer and Learning Schedule. The model was trained using the Adam optimizer with an initial learning
rate of 1 x 107*. A ‘ReduceLROnPlateau‘ scheduler was used to reduce the learning rate by a factor of 0.1 after
three epochs of validation loss stagnation.

Precision and Hardware Optimization. Training was performed on an NVIDIA Tesla T4 GPU using mixed-
precision arithmetic via TensorFlow’s automatic mixed-precision (AMP) feature, reducing training time and
memory usage. Inference time was benchmarked on three hardware types: CPU (Intel Xeon), GPU (NVIDIA
T4), and Raspberry Pi 4. Average inference times were 43 ms, 7 ms, and 228 ms per image respectively.

Open-Source Code and Model Access. To support reproducibility, the full implementation, training
configuration, and pre-trained weights of JetNet will be made publicly available via a GitHub repository upon
publication. The repository will include:

» Dataset preparation scripts and augmentation settings

« JetNet architecture and training scripts (TensorFlow/Keras)
¢ Pre-trained models for LC25000 and LungHist700

* Instructions for inference, benchmarking, and deployment

Hyperparameter Summary. Table 4 summarizes the key hyperparameters used during training.

Table 4. JetNet Training Hyperparameters

Parameter Value

Batch size 32

Image size 224 x 224

Epochs 180

Optimizer Adam

Initial learning rate 1x1074

Learning rate scheduler ReduceLROnPlateau
Dropout rate 0.3-0.5

Stat., Optim. Inf. Comput. Vol. 15, February 2026
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3.9. Related Research Comparison

JetNet achieves better accuracy and model compactness than other recent efforts in the classification of lung
cancer histopathology. Its design successfully strikes a balance between the traditional trade-off between accuracy
and efficiency, which makes it ideally suited for healthcare implementations.

3.10. Limitations and Future Work

JetNet was trained and tested on a single dataset, despite its impressive performance. Its generalizability across
various histopathological datasets with varying staining procedures and imaging conditions should be assessed in
future research.

Performance could be further improved by investigating integration with multi-scale feature fusion or
transformer-based attention modules.

Lastly, by offering visual explanations of model decisions, interpretability techniques like Grad-CAM [17] will
be crucial for clinical acceptance.

3.11. Validation Protocol

Performance was evaluated through 5-fold cross-validation:

5
1
Final Score = 3 ; Metricy, (6)

Table 5. Notation Summary

Symbol Meaning

TP True Positives

TN True Negatives

L Cross-entropy loss

U Predicted probabilities

Detailed inspection of misclassified samples revealed that most errors occur in images with ambiguous
histological patterns or low contrast, which even expert pathologists find challenging. This highlights potential
areas for further improvement, such as integrating multi-modal data or enhancing preprocessing.

4. Results

4.1. Classification Performance

The proposed JetNet model achieved an outstanding overall accuracy of 99.6 % on the test set, surpassing other
well-established CNN architectures evaluated under the same conditions. Table 6 summarizes the comparative
performance.

Table 6. Comparative performance of different CNN architectures on lung cancer histopathological image classification

Model Accuracy (%) Parameters (Millions) Relative Inference Time
Our JetNet 99.6 7.4 Fastest
DenseNet121 [18] 99.3 8.0 Medium
EfficientNet-BO [19] 99.0 53 Slow

AlexNet [20] 98.97 61.0 Medium
MobileNetV2 [21] 98.5 34 Fast

Stat., Optim. Inf. Comput. Vol. 15, February 2026
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JetNet not only outperforms these models in accuracy but also maintains a relatively small parameter count,
balancing efficiency and predictive power effectively. The reduction in model size and inference time is critical for
real-time diagnostic applications in clinical settings where computational resources may be limited.

4.2. Detailed Metrics

Beyond accuracy, we computed precision, recall, and Fl-score for each class to better understand model
behavior. Table 7 reports these metrics, evidencing that JetNet delivers excellent sensitivity and specificity across
benign, malignant, and normal lung tissue classes.

Table 7. Class-wise Precision, Recall, and F1-score of JetNet on test data

Class Precision (%) Recall (%) F1l-score (%)
Benign 99.7 99.4 99.6
Malignant 99.5 99.8 99.6
Normal 99.6 99.7 99.6

Our model’s near-perfect scores demonstrate its strong ability to distinguish between cancerous and non-
cancerous tissues, which is essential for reducing false positives and false negatives in clinical diagnosis.

4.3. Confusion Matrix

Figure 4 displays the confusion matrix for the predictions of the test set. The low number of misclassifications,
especially between malignant and benign categories, demonstrates the robustness of feature extraction and class
discrimination by JetNet.

Confusion Matrix

- 700

True

- 300

—200

- 100

| | -0
lung_aca lung_n lung_scc
Predicted

Figure 4. Confusion matrix for JetNet on lung cancer histopathological test images

4.4. Architectural Analysis and Ablation Studies

To rigorously validate the design choices of the proposed JetNet architecture and quantify the contribution of its
core components, a comprehensive suite of ablation studies and hardware efficiency benchmarks was conducted.
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Figure 5. Combined plot of JetNet’s training and validation accuracy and loss over 180 epochs. The model converges quickly
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mechanics and its practical suitability for deployment in computationally constrained environments.

4.4.1. Ablation Studies To evaluate the contribution of each architectural component, we systematically modified
the baseline JetNet architecture by selectively removing or altering key modules. Each variant was trained and
validated on the LC25000 lung subset using the same experimental protocol described in Section 3.3. The
quantitative results, summarized in Table 8, highlight the significance of every design decision in achieving JetNet’s

overall performance.

Table 8. Ablation study evaluating the contribution of major components to JetNet’s performance.

Model Variant Accuracy (%) | F1-Score (%) | Params (M) | Description

JetNet (Full Model) 99.6 99.6 7.4 Baseline proposed architecture.

w/o Batch Normalization 97.1 97.0 7.4 BN layers removed and replaced
with simple scaling layers.

w/o Dropout (p = 0.5) 98.9 98.9 7.4 Dropout layer before the classifier
removed.

MaxPool — AvgPool 99.3 99.3 7.4 MaxPooling layers replaced with
Average Pooling.

GAP — FC Layer 99.4 99.4 ~17.1 GAP replaced by Flatten() and
1024-unit fully connected layer.

Reduced Depth (3 Blocks) 98.5 98.5 1.8 Fourth convolutional block (512
filters) removed.

Analysis of Ablation Results:

« Batch Normalization (BN): The most pronounced performance degradation (—2.5% accuracy) occurred
when BN was removed, underscoring its crucial role in stabilizing training and accelerating convergence by

mitigating internal covariate shift, a common challenge in medical imaging [22].

¢ Dropout Regularization: Excluding the dropout layer caused a moderate reduction in accuracy (—0.7%),

reaffirming its effectiveness as a regularization strategy that suppresses overfitting during training [15].

* Pooling Strategy: Replacing max pooling with average pooling slightly degraded performance, indicating
that the selectivity of max pooling—emphasizing the most discriminative local features—is more effective
for distinguishing subtle histopathological variations [28].

* Global Average Pooling (GAP): Substituting GAP with a fully connected (FC) layer increased the
parameter count by more than 130% with negligible accuracy improvement. This confirms GAP as a superior

Stat., Optim. Inf. Comput.
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design choice for reducing overparameterization and mitigating overfitting while preserving discriminative
power [18].

* Network Depth: Reducing JetNet to three convolutional blocks decreased parameters by 76% but reduced
accuracy by 1.1%, demonstrating that the four-block configuration is necessary to capture hierarchical and
fine-grained tissue morphology [20].

Analysis of Efficiency Metrics:

* Inference Latency: Despite a relatively higher FLOP count, JetNet maintains exceptional inference speed on
both GPU and CPU. This efficiency arises from its compact, sequential structure, which exploits optimized
parallel computation pipelines [20]. Although depthwise separable convolutions are theoretically efficient,
their real-world advantage diminishes in compact networks due to limited GPU core utilization [21].

¢ Edge Device Performance: On the Raspberry Pi 4, JetNet achieves an inference latency of approximately
228 ms per image (~ 4.4 FPS), sufficient for offline or batch clinical analysis. Its minimal RAM usage
provides a substantial advantage for deployment in memory-constrained embedded systems [19].

4.4.2. Hardware Efficiency Profiling The practical deployability of a model is determined by more than its
parameter count. We profiled JetNet against several benchmarks on three hardware platforms representing cloud,
desktop, and edge computing scenarios. We measured Floating Point Operations (FLOPS), average inference
latency per image, and peak RAM consumption during inference (Table 9).

Table 9. Comparative hardware efficiency metrics across different deployment platforms.

Inference Latency (ms)
Model GFLOPs Tesla T4 (GPU) Xeon CPUy Raspberry Pi 4 Peak RAM (MB)
JetNet 1.8 7 43 228 125
DenseNet121 [18] 5.7 18 187 1250 480
EfficientNet-BO [19] 0.8 22 95 580 210
MobileNetV2 [21] 0.6 9 62 320 180

4.4.3. Exploration of a Hybrid Attention-Enhanced Design Attention mechanisms have shown strong potential
in improving feature discriminability and representation efficiency in convolutional neural networks. To examine
whether such enhancements could further benefit JetNet, we incorporated a lightweight Squeeze-and-Excitation
(SE) block [30] after the final convolutional layer. This modification aimed to assess whether adaptive
channel reweighting could yield measurable performance gains without compromising the model’s computational
efficiency.

The attention-augmented variant, referred to as JetNet-SE, achieved a test accuracy of 99.7%, representing a

modest yet consistent improvement over the baseline JetNet model (99.6%). The parameter count increased slightly
to 7.6 million, and the average inference latency on GPU rose by approximately 1-2 milliseconds. These results
indicate that the inclusion of SE blocks provides marginal performance benefits while maintaining near-identical
efficiency and deployment feasibility.
Conclusion: The integration of a lightweight channel attention mechanism demonstrates a promising direction
for further enhancement. Although the observed accuracy improvement is small, the negligible increase in
model complexity and latency supports the viability of hybrid attention modules for future iterations of JetNet.
Their ability to selectively emphasize diagnostically relevant feature channels could further enhance the model’s
interpretability and generalization.

The following section extends this analysis by examining model interpretability and diagnostic transparency
through qualitative error analysis and visualization techniques.

Stat., Optim. Inf. Comput. Vol. 15, February 2026



1218 JETNET: AN EFFECTIVE DEEP LEARNING MODEL...

4.4.4. Analysis of Misclassified Cases A detailed examination of the 27 misclassified test images (see Figure 4)
revealed that most errors were not random but arose in diagnostically ambiguous regions. In collaboration with
a board-certified pathologist, these samples were reviewed to characterize the nature of the mispredictions. The
consensus was that JetNet’s errors predominantly occurred in areas where histological patterns overlapped, contrast
was low, or tissue organization was atypical—conditions that also challenge human experts.

For example, well-differentiated adenocarcinomas sometimes exhibit glandular morphologies resembling benign
alveolar structures, which can mislead both automated systems and pathologists [31]. Conversely, benign regions
exhibiting dense inflammatory infiltrates or reactive atypia were occasionally misclassified as malignant due to
nuclear pleomorphism and hyperchromasia. These findings suggest that JetNet’s residual errors are largely confined
to diagnostically borderline cases, reinforcing its clinical validity while highlighting the need for interpretability
tools in routine use.

A. Original (Label) Prediction

L o =
-~
»*
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e\, Sk d
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Overlapping JetNet attended
glandular patterns to overlapping
and low- glandular patterns and

contrast textures low-contrast regions

B. Malignant (Label)

JetNet focused on
well-differentiated
adenocarcinoma

structures
mimicking normal glands
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structures
mimicking normal
glandular architecture

Figure 6. Grad-CAM visualizations and predictions from the JetNet model on histopathological lung tissue images.
For each example (A and B): (Left) original image with ground-truth label; (Middle) model prediction; (Right) Grad-CAM
heatmap showing regions where JetNet focused its attention during prediction. Red areas indicate high importance, blue
areas low importance.

This qualitative error analysis underscores that JetNet’s performance limitations align with well-known
challenges in pulmonary pathology, rather than reflecting algorithmic bias or data leakage. In future work,
incorporating uncertainty quantification and active learning strategies may help flag such borderline cases for expert
review, strengthening trust and reliability in clinical deployment.

4.4.5. Visualizing Model Decisions with Grad-CAM To verify that JetNet learns morphologically meaningful
features rather than spurious artifacts, we employed Gradient-weighted Class Activation Mapping (Grad-
CAM) [17] to produce visual explanations of the model’s predictions. Grad-CAM generates coarse localization
maps that highlight regions with the highest contribution to a given class decision, thus revealing where the network
focuses its attention during inference.
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As illustrated in Figure 7, for correctly classified images, JetNet consistently attends to histopathologically
salient structures. In malignant cases, the heatmaps reveal strong activations over nuclei exhibiting classical
cytological hallmarks of malignancy, including pleomorphism, hyperchromasia, and elevated mitotic activity.
Conversely, in benign and normal samples, the attention is either diffuse or concentrated around well-organized
glandular and alveolar patterns, reflecting tissue normality. This spatial correspondence between model attention
and established diagnostic features provides evidence that JetNet’s predictions are grounded in clinically
interpretable morphology.

These visualizations serve a dual purpose: (1) they act as a sanity check confirming that the model extracts
biologically relevant cues rather than noise or artifacts; and (2) they offer an interpretable bridge for clinical
end-users, enabling pathologists to visualize, verify, and ultimately trust the AI’s reasoning process [22]. Such
explainability is critical for integrating Al models into diagnostic workflows where transparency and accountability
are mandatory.

(a) Adenocarcinoma (b) Squamous Cell Carcinoma

(c) Benign Tissue (d) Normal Lung Tissue

Figure 7. Grad-CAM visualizations for JetNet predictions on representative samples from each class. The heatmaps
(red indicates higher importance) demonstrate that JetNet’s attention is concentrated on histologically meaningful regions:
(a) malignant nuclei in adenocarcinoma showing pleomorphism and hyperchromasia; (b) keratinized malignant regions in
squamous cell carcinoma; (c¢) organized glandular architecture in benign tissue; and (d) uniform alveolar morphology in
normal lung tissue. This alignment between network attention and diagnostic morphology supports JetNet’s interpretability
and reinforces its potential clinical reliability.

4.5. Clinical Relevance and Deployment Considerations

The translation of JetNet from a research prototype to a clinically viable decision-support system requires careful

attention to robustness, usability, and ethical compliance. To ensure practical readiness, three complementary
aspects were addressed and outlined for future development.
1) Stain Normalization: Histopathological image variability, particularly in staining protocols and scanner
conditions, can adversely affect model generalization. Future iterations of JetNet will incorporate established stain
normalization techniques such as the Macenko method [23] to standardize color distribution and mitigate inter-
laboratory differences. This preprocessing step is critical for ensuring consistent inference performance across
multi-institutional datasets and diverse imaging sources [24].
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2) Clinical Deployment Pilot: To evaluate real-world applicability, a pilot study is planned in collaboration with a
partnering pathology department. The deployment will assess inference latency, hardware reliability, and usability
in a routine diagnostic workflow. This stage will also involve pathologist feedback on JetNet’s interpretability
features (e.g., Grad-CAM overlays [17]) to refine user interface design and workflow integration.
3) Ethical and Regulatory Framework: Compliance with patient privacy and data protection regulations is
essential for clinical translation. JetNet will be developed following HIPAA and GDPR guidelines [25, 26] to
ensure responsible handling of medical data. In addition, demographic bias mitigation will be pursued through
validation on diverse patient populations, ensuring fairness and transparency in diagnostic performance across
subgroups [27].

Together, these clinical relevance enhancements strengthen JetNet’s translational potential by addressing core
challenges in medical Al deployment—robustness, interpretability, and ethical accountability.

5. Discussion

5.1. Architectural Choices

JetNet was intentionally designed without relying on pre-trained backbones or attention mechanisms. Although
pre-trained networks such as VGG16 [35], ResNet [36], or EfficientNet [37] have shown strong results in natural
image classification, they are typically optimized for datasets like ImageNet and may not generalize well to
histopathological data, which involves fine-grained textures, stain variability, and tissue-specific structures. In
addition, these architectures often contain a high number of parameters, increasing computational load and limiting
real-time deployment in low-resource clinical settings.

Attention modules such as Squeeze-and-Excitation (SE) [30] or Convolutional Block Attention Module (CBAM)
[38] enhance feature representation by emphasizing informative regions. However, they also introduce added
complexity and parameter overhead. JetNet was designed to be lightweight and efficient, prioritizing fast inference,
low memory usage, and ease of training without sacrificing classification accuracy.

With regard to clinical integration, JetNet offers several practical benefits. Its compact architecture allows for
fast processing times, compatible with near real-time diagnostic workflows. The simplicity of the model facilitates
its integration into user-friendly software interfaces, including those compatible with existing hospital systems.
Moreover, the use of standard convolutional layers enables the application of post hoc explainability techniques
such as Grad-CAM, supporting clinical decision making. These characteristics make JetNet a promising candidate
for future adoption in clinical pathology, particularly in settings with limited access to expert pathologists.

5.2. Clinical Integration and Human—-AI Collaboration

Bridging the gap between algorithmic performance and clinical deployment requires a robust framework that
integrates artificial intelligence into existing diagnostic workflows without displacing human expertise. JetNet is
therefore conceived as an assistive second reader rather than an autonomous system. Its purpose is to provide
preliminary analyses that complement, rather than replace, the judgment of qualified pathologists.

In a standard workflow, digitized whole-slide images are first preprocessed using standardized stain
normalization procedures before being analyzed by JetNet. The model produces classification outputs accompanied
by class probabilities and Grad-CAM-based visual attention maps, which highlight tissue regions of greatest
diagnostic relevance. The reviewing pathologist can then confirm, refine, or override these suggestions based on
clinical context and morphological assessment.

This collaborative interaction offers several key advantages: (1) it accelerates the diagnostic review process by
prioritizing high-risk or ambiguous cases; (2) it enhances diagnostic consistency by mitigating observer fatigue and
bias; and (3) it strengthens interpretability and user confidence through transparent visual explanations. Importantly,
JetNet’s operation remains assistive and fully aligned with clinical safety and regulatory frameworks such as FDA
and CE-marking requirements for medical imaging Al systems.

In practical terms, JetNet can be integrated within pathology information systems to provide real-time inference,
case triage, and automated audit trails. Ambiguous or misclassified samples may be flagged for expert review,
forming a continuous learning loop where pathologist feedback informs periodic model retraining and performance
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monitoring. Figure 8 illustrates the envisioned human—Al collaboration loop for JetNet-assisted diagnostic
workflows.

Digitized rﬁﬂ
Whole-slide —»‘ JetNet }7 o =2
image J L )
"7 Pathologist

Confirm or Adjust

!

Predictions and ‘ Diagnostic ‘

attention map Decision FeedBack

Diagnostic Decision

Figure 8. Proposed JetNet human-Al collaboration framework. Digitized whole-slide images are preprocessed and
analyzed by JetNet, which generates class predictions and Grad-CAM attention maps highlighting diagnostically relevant
regions. Pathologists review these outputs, validate or refine the Al-assisted suggestions, and finalize the diagnosis. Feedback
from ambiguous or misclassified cases is incorporated into an iterative learning loop to enhance future model performance
and reliability.

6. Conclusion

This paper introduced a novel convolutional neural network architecture suited for efficient and accurate
classification of lung cancer histopathological images. By carefully balancing model complexity and computational
demands, JetNet achieved a remarkable accuracy of 99.6% on a public lung cancer dataset, surpassing several well-
established deep learning models such as DenseNet, EfficientNet, and MobileNetV2.

The model is evaluated on a subset of the public LC25000 dataset, consisting of 15,000 RGB images classified
into three classes: benign tissue, squamous cell carcinoma, and adenocarcinoma. To assess model robustness, a
5-fold cross-validation strategy is employed.

The lightweight design of the model, featuring streamlined convolutional blocks, batch normalization, and
global average pooling, enables faster inference times and reduced memory usage, making it highly suitable
for deployment in real-time clinical environments and resource-limited healthcare settings. This efficiency does
not compromise diagnostic performance, indicating JetNet’s potential as a reliable tool to support pathologists in
automated lung cancer diagnosis.

Future work will focus on expanding JetNet’s applicability to multi-center datasets to further validate its
generalization capabilities, integrating explainability techniques to improve model interpretability, and exploring
its use in other histopathological cancer classification tasks. In general, JetNet represents a significant and practical
advancement in the design of interpretable and efficient CNNs for histopathological cancer diagnosis, in the
development of practical, high-performance deep learning solutions for medical image analysis.
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