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Abstract Classification requires labelling large sets of data, which is often a time-consuming and expensive process. Active
learning is a machine learning technique that has gained popularity in recent years due to its ability to effectively reduce the
amount of labelled data required to train accurate models. The success of the active learner heavily relies on the selection
of the initial points to initialise the active learning process. In this paper, we compare the performance of the traditional
random sampling approach to the maximin Latin Hypercube sampling, conditioned Latin Hypercube sampling, and a
modified Latin Hypercube sampling procedure for initialising active learning for the estimation of the logistic regression
in binary classification problems. We show that the Latin Hypercube sampling designs outperform random sampling for
all the performance measures evaluated. The results are demonstrated using simulated data sets and an actual case study.
Specifically, the conditioned Latin hypercube sampling design exhibits high prediction accuracy using a smaller sample
size for both heterogeneous and homogeneous classes. In contrast, the modified Latin hypercube sampling design yields
the smallest variance of prediction across varying initial sample sizes for both homogeneous and heterogeneous classes.
Furthermore, principal component analysis indicates that approximately 10% of the data is required to develop an accurate
and precise logistic regression classifier.
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1. Introduction

Binary classification is a common task in machine learning where the goal is to assign binary labels to samples
based on some explanatory variables. Traditionally, samples with class labels are provided for training the classifier.
However, due to 4IR and the IoT, huge volumes of unlabeled data are becoming available in many industries.
Consequently, the labelling of samples in big data is time-consuming and too expensive. Therefore, the labelling
effort and the cost of model training must be minimised. Active learning learns from a few data points while
selecting the most informative unlabeled samples for labelling to improve model performance. Active learning
has gained much popularity in recent years due to its ability to effectively reduce the amount of labelled data
required to train accurate models. [12] provided an excellent introduction and detailed overview of active learning
and different query strategies. [45] provided a recent review of active learning query strategies for classification,
regression and clustering. Over the last two decades, active learning has been successfully applied to various
machine learning tasks, including binary classification, and has been shown to reduce the amount of labelled data
required while achieving high model performance [27, 26, 46, 43, 77]. The most commonly used active learning
criteria include query-by-committee [12], uncertainty sampling, error reduction, variance reduction, minimum
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loss increase, and maximum model change [26]. The simplest and most popular criterion is uncertainty sampling
introduced by [21], where an active learner selects observations that are least certain of classifying. Sampling
and labelling these least certain observations can help the model refine the decision boundary. This approach is
often straightforward for probabilistic learning models. For example, when using a probabilistic model for binary
classification, uncertainty sampling criteria simply select the observations whose probability of success is nearest
0.5 [21, 12]. [26] provided a benchmark comparison of active learning criteria specifically for logistic regression.
They found that uncertainty sampling is a robust active learning algorithm, regardless of the complexity of the task.

Many active learning approaches have also been developed on experimental design techniques [10]. [27]
provided an evaluation of various active learning heuristics and different loss functions motivated by experimental
design for logistic regression. They found that the experimental design approaches never performed worse than
random sampling over a wide range of different data sets. [9] presented a sequential sampling algorithm for
estimating the class probability with minimum variance and bias using a penalized logistic regression model.
They showed that selecting samples to minimise the mean squared error of the estimated posterior probability
outperforms random selection and a variance-based active learning criterion [27]. [8] proposed a manifold active
learning design criterion for minimising the variance of the parameter estimates of the active learner, while
maximising the dependence of the sampled data points and their predicted values. They commented that the
support vector machine approach depends on the accuracy of the initial classifier.

The success of any active learner heavily relies on the selection of the initial points to initiate the active learning
process. The majority of the active learning literature utilises random sampling on the first iteration, where after
an active learning criterion is employed for selecting the next and subsequent most informative samples until
convergence. [43] proposed an iterative algorithm based on random sampling of labelled data points until at least
one data point per category is available to initialise the active learning process. However, the targeted selection of
initial points to accelerate and improve the performance of active learning criteria has not received much attention
in the literature.

In this paper, we introduce Latin Hypercube sampling to initialise the active learning process for the estimation
of the logistic regression classifier. The advantage of the Latin Hypercube sampling is that it selects initial points
that are scattered throughout the design space of the input variables, ensuring the selection of design points in each
category, which allows for a more accurate estimation of the initial classifier. We also employ conditional Latin
Hypercube sampling [28], and introduce a modified Latin Hypercube sampling approach for selecting the initial
points. We show that Latin Hypercube sampling designs outperform random sampling for minimising the mean
squared error of the logistic regression classifier using simulated data. We also compare the performance of the
initial sampling approaches using other performance measures such as precision, F1-score, generalised variance of
the parameter estimates, and the mean squared error of the predicted posterior probability [9], over a wide range
of the number of initial points specified. The use of Latin Hypercube sampling in initialising active learning was
not communicated previously in the literature. We consider logistic regression since it is the most widely applied
classifier in machine learning and in the applied sciences [26]. However, the proposed sampling strategies can also
be adopted for other classifiers.

The paper is outlined as follows: Section 2 outlines the problem formulation and provides the theoretical
background on logistic regression, active learning, and performance metrics. Section 3 discusses Latin hypercube
designs, while Section 4 details the simulation designs and presents a discussion of the results. Section 5
explores the application of the proposed approach to a real-world example. Finally, Section 6 summarises the
key contributions of the paper and offers an overview of potential future research directions.
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2. Preliminaries

2.1. Problem setting and model estimation

Adopting the notation of [9], suppose there is a pool of data available denoted as D = {L ∪ U}, where
L = {x1, · · · ,xn0} is an initially selected sample of small size n0 with associated labelled responses Y =
{Y1, · · · , Yn0}. The set, U = {xn0+1, · · · ,xN} contains large amounts of unlabelled data. Given the initial sample
L, the objective of active learning is to find a subset U∗ = {x∗

1, · · · ,x∗
n1
} that contains the most informative samples

for labelling. Therefore, the final selected sample of size n = n0 + n1 ≤ N will reduce the generalisation error of
the active learner the most if they are labelled and included in L for training. In this paper, the problem considered
is two-fold; first to specify the initial sampling design that performs best in initialising the active learner as part
of the training set L, and second to recommend the final sample size n that are “optimal” according to various
performance measures for classification.

Now, consider a Bernoulli distributed random variable Y , which can only take one of two possible values. Let
Yi, i = 1, · · · , n0 be the labelled value on the i-th observation. Denote the labelled value as either 1 or 0 for success
and failure, respectively. The mass function can then be written as

P(Yi = y) = πy
i (1− πi)

1−y, y = 0, 1.

Now suppose there are p explanatory variables which can potentially influence the outcome of the random variable,
and furthermore, the interest is in specifying a model to quantify the relationship between the E(Yi) = P(Yi = 1)
and the explanatory variables. To this end, set the conditional probability as P(Yi = 1|xi) = πi and model with
logistic regression,

πi =
eηi

1 + eηi
,

where ηi = x⊤
i β = β0 +

∑p
j=1 xijβj , and β : (p+ 1)× 1 are unknown parameters to be estimated from the

training set L. The logit transformation,

ln

(
πi

1− πi

)
= ηi, (1)

is known as the link function or the linear predictor [7]. The predicted posterior probability is specified as
π̂i = eη̂i/(1 + eη̂i) = ex

⊤
i β̂/(1 + ex

⊤
i β̂) and the parameter estimates β̂ are estimated by maximum likelihood [16].

From general likelihood theory, the Fisher information matrix of the parameters is

M(x,fi) = −E
(

∂2l(β)

∂β∂β⊤

)
= X⊤WX,

where l(β) is the log-likelihood function given by

l(β) =

n0∑
i=1

Yiηi −
n0∑
i=1

ln (1 + eηi), (2)

and W is the diagonal weight matrix with Wii = πi(1− πi). The matrix X : n0 × (p+ 1) is the design matrix
expanded for all the terms in the linear model. Maximising (2) can be obtained by employing the Newton-Raphson
method. Now, the variance-covariance matrix of the parameter estimates can be approximated by

V(β̂) =
(
X⊤ŴX

)−1

,

where Ŵii = π̂i(1− π̂i). Note, selecting sample points that maximise ln |M(x,fi)|, minimise the generalized
variance of the parameter estimates, and is referred to as the D-optimal design [10].

A further consideration is the effect of the initial sample n0 on the variance of the predicted posterior
probability, V(π̂i) (see Appendix A for derivation) in active learning. [27] considered the selection of sample
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points for minimising the average variance of prediction over the design space. Specifically,
∑n0

i=1 V(π̂i) =∑n0

i=1 gi(x)
TM(x,fi)

−1
gi(x), where gi(x)

T = πi(1− πi)x
T
i and xi denotes the vector of values of the

explanatory variables where the prediction is made, which they refer to as A-optimality. In fact, in optimal design
literature, the criterion derived by [27] is known as V -optimality. They found that the experimental design methods
more often beat random selection than the heuristic methods. [27] used random selection to initialise the active
learning process. Similarly, [9] employed random sampling to initialise the active learner and compared this method
to selecting the most informative subjects as those with the smallest mean squared estimation error of the predicted
posterior probability for penalized logistic regression. They showed that minimising the mean squared error yields
greater accuracy compared to the random selection of points in active learning. Specifically, numerical results on
a wide range of real-world data sets demonstrate that the proposed method achieves effective and highly stable
performance with modest computational complexity compared to random sampling and several state-of-the-art
alternatives.

In establishing further notation, let the variance of the linear predictor be

V(η̂i) = x⊤
i

(
X⊤ŴX

)−1

xi.

Selecting the sample points that minimise the integrated mean squared error over the design space, I(η̂i) =
tr(M(x,fi)

−1
A), where A =

∫
X xx⊤dx, and X denotes the whole design space, yields an I-optimal design.

However, often the average of the variance is obtained over a large grid across the feature space, which is then
referred to as a V -optimal design [10].

Consider the linear predictor (1), then along the j-th axis, the decision boundary or classifier is specified as

xj =

p∑
k ̸=j

mkxk + c, (3)

where mk = −βk/βj and c = −β0/βj . Equation (3) is derived from the fact that for any point on the decision
boundary, the predicted posterior probability is π̂i = 0.5 and hence η̂i = 0. This paper takes into consideration the
effect of the initial design and the active learning criterion on both the mean squared error of the estimated slope
of the decision boundary,

MSE(m̂k) = V(−β̂k/β̂j) + Bias(−β̂k/β̂j)
2, (4)

and the mean squared error of the estimated intercept of the decision boundary,

MSE(ĉ) = V(−β̂0/β̂j) + Bias(−β̂0/β̂j)
2. (5)

As a special case, for p = 2, the derivation of the variance and bias of m̂k i.e., V(−β̂1/β̂2), Bias(−β̂1/β̂2), is
given in Appendix B. Note that these expressions can easily be expanded for p > 2. It will be shown that the choice
of the initial design affects the variance and bias of the slope and intercept of the decision boundary, and therefore
the precision and accuracy of the classifier. To our knowledge, the mean-squared error of the decision boundary
has not been addressed previously in the active learning literature.

2.2. Active Learning Criterion

Given an initial training set, the aim of active learning is to iteratively select the most informative samples for
labelling according to some criterion to improve the performance of the classifier. The addition of samples to the
training set is stopped whenever some performance threshold is reached. In this paper, we will use uncertainty
sampling for the active learning criterion. However, different measures of uncertainty will lead to different variants
of uncertainty sampling. These measures include Entropy [50], Least Confident [12, 20], and Margin Sampling
[51]. In the context of binary classification, entropy-based sampling is equivalent to the margin and least confident
strategies, as all three approaches essentially select an unlabelled observation whose class posterior is nearest to
0.5[48, 12, 49]. The margin-based sampling approach, which selects data points closest to the decision boundary,
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is the most often employed when utilising classification models [55, 54]. Therefore, in this study, we employ a
margin-based approach, which is based on the distance measure of uncertainty.

Intuitively, the distance between an unlabelled observation and the decision boundary is a measure of uncertainty.
As an illustration, consider a binary classifier in p-dimensional space. The classifier is given by

∑p
j=1 βjxij + β0 =

0.
Consequently, the shortest distance di, of a point xi, to the nearest point on the decision boundary is given by

di =
|
∑p

j=1 βjxij + β0|√∑p
j=1 β

2
j

.

Therefore, given the initial sample n0, the observation with the minimum distance to the decision boundary is
selected next for labelling. A generalized active learning procedure is provided in Algorithm 1 [66].

Algorithm 1: Generalized Active Learning Loop
Input : L: Partial training set,

U : Pool of unlabeled examples
T : Number of examples to sample on each iteration,
n1: Desired training set size.

Output: Updated training set.

1 Active Learning Loop
2 while training set size is less than the desired size do
3 Randomly select T observations from the pool;
4 Rank these examples according to an active learning rule;
5 Select the top-ranked example and present it to the annotator for labelling ;
6 Add the labelled example to the training set;

7 return updated training set;

Note that T = 1 observation is traditionally selected from the pool in the active learning context.

2.3. Performance measures for classification

Classification performance metrics play a crucial role in evaluating the effectiveness of learning methods and
models. A wide range of metrics has been developed for this purpose, each categorised based on its approach of
evaluating a classifier. While some metrics prioritise minimising the number of misclassifications, others adopt a
probabilistic perspective, focusing on deviations from true probabilities and evaluating the reliability of classifiers.
The behaviour of these metrics can vary significantly, particularly in challenging scenarios such as imbalanced
datasets or multiclass classification problems. Consider the confusion matrix in Table 1.

Table 1. Confusion table for binary classification.

Actual Positive Actual Negative

Predicted positive True positives (TP) False positives (FP)
Predicted Negative False negatives (FN) True negatives (TN)

Accuracy is a metric for classification models that measures the number of predictions that are correct as a
percentage of the total number of predictions. Accuracy is specified as,

Accuracy =
TP + TN

TP + TN + FP + FN
.
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[33] argued that accuracy is not a good metric to use when there is a class imbalance. Therefore, the F1-score
is preferred in situations where class imbalance is present. The F1-Score combines the precision (PRC) and recall
(RC) metrics into a single metric,

F1 = 2

(
PRC ×RC

PRC +RC

)
,

where
PRC =

TP

TP + FP
= P (Y = 1|Ŷ = 1),

and the recall, also referred to as the “True Positive Rate (TPR)” or “sensitivity”, is defined as

RC =
TP

TP + FN
= P (Ŷ = 1|Y = 1).

The Receiver Operating Characteristic (ROC) curve plots the true positive rate (TPR) against the false positive
rate (FPR) at different classification thresholds. Lowering the classification threshold results in more items being
classified as positive, thus increasing both False Positives and False Negatives. The area under the ROC curve
(AUC), which measures the entire two-dimensional area underneath the ROC curve, is used to summarize the
performance of the classifier [58]. Therefore, the AUC provides an aggregate measure of performance across all
possible classification thresholds.

There is no universally optimal measure, as the most appropriate metric is determined by the specific application
and the characteristics of the data. For a more in-depth discussion on performance measures, see [67], [68], and
[69].

We will evaluate the effect of the initial sample selection and the active learning criterion on the aforementioned
classification performance measures.

3. Sampling Designs

At the highest level, random sampling involves selecting a subset of a population where units are chosen randomly
using a random number generator. Probability sampling, a type of random sampling, meets two essential criteria.
First, every unit in the population has a non-zero probability of being selected, ensuring no part of the population
is excluded. Second, the probability of selecting each possible sample is known. In the design-based approach,
units are selected through probability sampling, and estimates are based on the selection probabilities determined
by the sampling design. Numerous design-based methods have been developed to facilitate population sampling,
including but not limited to, regular grid sampling, factorial-based designs [70, 71], optimal or model-based
designs [10], orthogonal design [60], and space-filling designs, such as Sobol sequences [72], Latin Hypercube
designs [6] and Uniform designs [2].

Sampling methods in active learning pose challenges, primarily due to the strong benchmark set by random
sampling from the available data pool. This baseline set by random sampling requires that sampling methods
in active learning demonstrate clear advantages over random sampling in terms of efficiency and performance
to be considered justifiable. For active learning to be practical in industrial settings, it must consistently yield
performance improvements that outweigh the additional costs associated with implementing a non-random
sampling approach and regularly retraining the model. This challenge is further exacerbated by the fact that active
learning is particularly valuable in emerging domains where labelled data is scarce.

In this paper, we evaluate the effect of probabilistic sampling as an initial sampling design on the performance of
the classifier within an active learning setting. Specifically, we employ Latin Hypercube sampling and derivatives
thereof to initialise the active learning process and compare the results to those obtained with random sampling.
Although many studies were done previously to compare various active learning criteria to random sampling, we
are not aware of any study that utilises Latin Hypercube sampling or any other space-filling design to initialise the
active learning process.

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1670 SELECTION OF INITIAL POINTS USING LATIN HYPERCUBE SAMPLING FOR ACTIVE LEARNING

3.1. Latin Hypercube Sampling

Latin Hypercube sampling (LHS) was first introduced by [6] for selecting experimental conditions to run on
computer code. The aim of LHS is to sample variable settings from their multivariate distributions while ensuring
that the settings are spread out uniformly along the range of each variable axis. In essence, a sample of size n
is drawn from multiple variables such that for each variable, the sample is maximally stratified [28]. A sample
is maximally stratified when the number of intervals equals the sample size n for each variable, and when the
probability of obtaining a sample in each of the intervals is 1/n [28, 6].

In the general case, consider a unit hypercube in a p-dimensional space, [0, 1]p, which is partitioned into
n intervals of equal length, 1/n, along each axis. This partitioning results in n intervals of equal probability
corresponding to [0, 1/n), [1/n, 2/n), · · · , [(n− 1)/n, 1] for each dimension. The Latin Hypercube Sampling
(LHS) can be represented as an n× p sample matrix with entries xij ∈ [0, 1]. Each xij in the j-th column is
restricted to one of the intervals. Research efforts across various fields have sought to enhance the performance of
the original LHS. Among these strategies are Orthogonal LHS [5, 4] and Optimal LHS [1]. For a comprehensive
overview, readers are encouraged to consult the reviews by [62] and [63] on the state of the art in this area.

In this paper, we employ the maximin Latin hypercube sampling design for specifying the initial sample n0.
The procedure for constructing the maximin LHS is listed in Algorithm 2.

Algorithm 2: Maximin Latin Hypercube Design with Equal Probability Intervals
Input : p: Number of variables,

n0: Number of intervals,
Fj : Cumulative distribution function for each variable xj ,
rij : Uniform random values.

Output: n0 × p Maximin Latin Hypercube Design (LHD) matrix.

1 Step 1: Divide Cumulative Distribution
2 for each variable j = 1 to p do
3 Divide cumulative distribution of xj into n0 equally probable intervals;

4 Step 2: Sample Cumulative Probabilities
5 for each variable j = 1 to p and interval i = 1 to n0 do
6 Calculate sampled cumulative probability:
7 sij = rij/n0 + (i− 1)/n0;

8 Step 3: Specify Sampled Values
9 for each variable j = 1 to p and interval i = 1 to n0 do

10 Compute sampled value xij as the quantile:
11 xij = F−1

j (sij);

12 Step 4: Pair Values Using Maximin Distance
13 Pair the n0 values of each variable by maximising the minimum Euclidean distance;
14 Let the distance between points xi and xk be defined as:

15 ρ2(xi,xk) =
(∑p

j=1(xij − xkj)
2
) 1

2

;

16 Step 5: Determine Maximin Design
17 Identify the design L that maximises the minimum distance:
18 xlhs

ij = maxL∈X minxi,xk∈L ρ2(xi,xk);

19 return n0 × p Maximin LHD matrix
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For the maximin Latin hypercube sampling design, however, the specified values for the input variables do not
necessarily, and most often, exist in the actual data set under consideration for the active learner. Therefore, in this
case, we select the sample points in the actual data set that are closest to the specified maximin LHD points by
minimising the Euclidean distance between the LHD points and the actual samples.

3.2. Conditioned Latin Hypercube Sampling

[28] proposed a conditional LHS algorithm to sample ancillary data that form a Latin hypercube in the feature
space. The method relies on a search algorithm based on heuristic rules and an annealing schedule. The objective
function being minimised is the weighted sum of three components. The first component is the sum of the absolute
differences between the marginal stratum sample sizes and the targeted sample size of 1, across all marginal
strata. The second component is the sum of the absolute differences between the correlations of covariates in
the population and in the sample, across all entries of the correlation matrix. The third component, applicable when
both quantitative covariates and categorical variables are present, is the sum of the absolute differences between
the sample proportions and the population proportions for each class of the categorical variables [59]. Therefore,
actual samples in the xj , j = 1, 2, . . . , p input variables are selected that form a LHD for the training set L. The
algorithm for generating the conditional Latin hypercube sample (cLHS) is listed in Algorithm 3.

3.3. Modified Latin Hypercube Sampling

In this section, we present a similar but new approach to the cLHS. This approach retains the selection process
of LHS with the added advantage of adaptable marginal spacings of the cLHS. Specifically, the modified Latin
hypercube sampling procedure (mLHS) generates a Latin hypercube sample and adjusts it according to the
estimated empirical distribution provided by the data. The result is that the one-dimensional projections for every
dimension (i.e., marginal distributions) are not necessarily uniformly distributed.

The Hermite polynomial approach of [64] is used to estimate the cumulative distribution functions and
subsequently the quantiles. Define F−1(s) = inf{x ∈ R : F (x) ≥ s} as the quantile function where F (x) is
the distribution function of a random variable X . The estimated quantiles, q̂s = F̂−1(s), are obtained through
iteratively evaluating the relation,

q̂(i+1)
s = q̂(i)s −

F̂M

(
q̂
(i)
s

)
− s

f̂M

(
q̂
(i)
s

) , 0 ≤ s ≤ 1, (6)

where

f̂M (x) =

M∑
k=0

âkHk(x)Z(x),

is the M + 1 term truncated Gauss-Hermite expansion with estimated coefficients, âk =
(αk/m)

∑m
i=1 Z (x)Hk (x), Z (x) is the standard normal probability density function, αk =

√
π/(2k−1k!)

and Hk (x) is an explicit calculable form of Hermite polynomials. Furthermore,

F̂M (x) =

1−
∑M

k=0 âkk!
∑⌊k/2⌋

l=0

(−1)l2
3k
2

−3l−1Γ
(
−l+ k

2+
1
2 ,

x2

2

)
l!(k−2l)!

√
π

if x ≥ 0∑M
k=0 âkk!

∑⌊k/2⌋
l=0

(−1)−l+k2
3k
2

−3l−1Γ
(
−l+ k

2+
1
2 ,

x2

2

)
l!(k−2l)!

√
π

if x < 0

,

where Γ (a, x) =
∫∞
x

ta−1e−t dt is the upper incomplete Gamma function. This procedure is attractive because
of its speed and accuracy, as well as its ability to incorporate observations in an incremental fashion when needed.
A general algorithm for the mLHS is given in Algorithm 4.
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Algorithm 3: Conditional Latin hypercube sampling
Input : p: Number of variables,

n0: Number of intervals,
Data for each variable xj ,
Weights w1 and w2.

Output: Sampled data points x̃lhs
ij forming an LHS.

1 Step 1: Calculate Quantiles for Each Variable
2 for each variable j = 1 to p do
3 Divide the cumulative distribution of xj into n0 intervals;
4 Calculate the quantiles qj = (q1j , q2j , . . . , qn0+1,j)

⊤;

5 Step 2: Compute Correlation Matrix C
6 Calculate the correlation matrix C : p× p for the quantiles of each variable;

7 Step 3: Select Random Sample from Data
8 Select n0 random samples from data, denoted by x̃j : n0 × 1 for each variable j;

9 Step 4: Compute Correlation Matrix B for Sample
10 Calculate the correlation matrix B : p× p for the sampled values x̃j ;

11 Step 5: Calculate Objective Function O1

12 O1 =
∑n0

i=1

∑p
j=1 |ηij(qij ≤ x̃ij ≤ qi+1,j)− 1|, where ηij is the count of x̃ij values between quantiles qij

and qi+1,j ;

13 Step 6: Calculate Objective Function O2

14 O2 =
∑p

j=1

∑p
k=1 |cjk − bjk|, where cjk and bjk are elements of correlation matrices C and B,

respectively;

15 Step 7: Solve Final Objective Function
16 Define final objective function as:
17 x̃lhs

ij = minx̃ij∈X w1O1 + w2O2;
18 Set weights w1 = w2 = 1 (for general application, can be adjusted as needed);

19 Step 8: Optimize Using Heuristic Algorithm
20 Apply a suitable heuristic optimization algorithm to minimise the objective function;
21 return LHS sample points x̃lhs

ij ;

Algorithm 4: Generalized Latin Hypercube Sampling with Quantile Redistribution
Input : N : Number of samples,

D: Number of dimensions,
data: Matrix of observed data.

Output: S: Latin Hypercube sample matrix,
G: Grid matrix for visualization.

1 Step 1: Generate Latin Hypercube Design
2 Generate sequence Lseq = −(N − 1)/2 to (N − 1)/2;
3 initialise L← matrix(N,D), and for each d ∈ 1 . . . D: L[, d]← random permutation of Lseq;
4 Generate uniform random matrix U ← matrix(N,D);
5 Compute S ← (L+ (N − 1)/2 + U)/N and grid G← (L+ (N − 1)/2)/N ;
6 Append a row of 1s to G;

7 Step 2: Quantile Redistribution
8 for d← 1 to D do
9 Apply Quantile(data[, d], S[, d]) to S[, d];

10 Apply Quantile(data[, d], G[, d]) to G[, d];

11 return S,G;
Stat., Optim. Inf. Comput. Vol. 15, March 2026



N. MABASO, R.J.L. COETZER AND S.C. LIEBENBERG 1673

Similar to LHS, the sample points in the actual data set that are closest to the specified mLHS points have to
be selected. This is done by minimising the Euclidean distance between the mLHS points and the actual samples.
Note the estimation of the quantiles is based on the entire set of unlabelled data. Furthermore, any quantile
redistribution method can be used within Algorithm 4. Thus, it should be noted that mLHS and LHS may be
more computationally intensive than cLHS, owing to the need to calculate distances between LHS points and the
observed points. Furthermore, mLHS incurs additional computational cost due to the iterative quantile estimation
and Hermite polynomial computations

To summarise the three sampling procedures, LHS provides stratified coverage of the input space, cLHS
improves realism by aligning samples with observed data distributions, and mLHS enhances efficiency by placing
more points in high-density regions, which potentially reduces sampling variability. In other words, the cLHS
strives to match sample and population correlations, while the mLHS aims to achieve a Latin Hypercube structure
based on the estimated marginal distributions, which may be more robust for certain types of data heterogeneity.

4. Simulation study

4.1. Simulation design

In this section, we discuss the simulation study and the results for binary classification as a function of two
variables. For illustration purposes, three different synthetic data sets are considered. The three data sets are shown
in Figure 1 as two-dimensional scatter plots, together with the two classes indicated on each plot. The data sets
are referred to as Data 1, Data 2 and Data 3, respectively, with N1 = 1000, N2 = 1000 and N3 = 1250 number of
observations, respectively. Data 3 is a synthetic dataset found in the MASS package [75]. As can be observed, the
three simulated data sets differ in complexity for binary classification.

For each of the data sets, {xi, Yi}, i = 1, . . . , N , the simulation design employed involves a structured sequence
of steps. First, the data is divided into test and training sets in a 50:50 ratio. An initial sample of size n0 is selected
from this training set and denoted L. The logistic regression model is fitted to this set and the statistical properties
of the model and the performance measures (given in Section 2.1 and Section 2.3) of the classifier are calculated
using the test set. Using the uncertainty criterion (2.2), a new observation is selected from the unlabelled data
in the training set, U and added to the initial set. This process of fitting the model and calculating the statistics
is repeated for 150 ≤ n1 ≤ 300 iterations. The entire procedure, from splitting the data to the model fitting and
evaluation, is repeated for MC = 1000 simulations. Finally, the mean of all the statistics is calculated over the
MC simulations to assess the overall performance.

The aim of the simulation study is to evaluate the effect of the initial design and the size of the design on the
performance of the classifier and the model estimation. Four types of initial designs are considered for specifying
the initial training set, n0. These are RS, LHS, cLHS and mLHS. The following R packages, lhs and clhs by [73]
and [74], were used for the initial designs. The mLHS utilizes the hermiter package [76]. The initial sample sizes
were varied with n0 = 8, 15, 50 for all four sampling designs. The R code and data are available upon request.

4.2. Results and discussion

Figure 2 shows the learning curves of the classification accuracy for Data 1 for initial sample sizes of n0 = 8 and
n0 = 50, respectively. The horizontal dotted line is the maximum average accuracy that may be achieved if all the
observations are used for classification. Note in cases where the accuracy of the different designs goes above the
maximum accuracy for all observations, the differences in accuracy are very small and might be due to random
variations in the MC simulations and round-off effects.

From Figure 2a, considering an initial starting design with n0 = 8, it is observed that the accuracy for LHS
and mLHS designs increases at the fastest rate from the initial size to about n = 50. From Figure 2b, for a larger
initial sample size of n0 = 50, the accuracy for the cLHS design increases faster compared to the other designs
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(a) Data 1 (b) Data 2

(c) Data 3

Figure 1. Scatter plots of the three synthetic datasets

and achieves the maximum accuracy soonest, about n = 65. Requiring a larger initial sample for the cLHS
design is sensible since actual data points are selected that form a Latin hypercube sample as close as possible.
Therefore, more data points are required to sample from the binary distribution of the data. The mLHS design also
yields similar performance but requires slightly more points for the highest accuracy. This might be due to the
Gauss-Hermite approximation requiring more observations for estimating the marginal distributions. Above about
n = 80, the accuracy for all the designs is very similar. However, all three design approaches outperform the RS
approach in terms of accuracy for initialising the active learning process.

Figure 3 shows the learning curves of the classification accuracy for Data 2 for initial sample sizes of n0 = 8
and n0 = 50, respectively. From Figure 3a, considering an initial starting design with n0 = 8, it is observed that
the accuracy for the cLHS design increases at the fastest rate from the initial size to about n = 68. From Figure 3b
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with n0 = 50, it is observed that the cLHS design yields the greatest accuracy from initialization to about n = 79.
RS outperforms mLHS and LHS in this case. Data 2 is more complex in that the two classes exhibit variance
heterogeneity. The cLHS design samples the actual data points and therefore captures the differences in variability
more easily. The mLHS design utilises the estimated marginal distributions, and it seems that it lacks efficiency in
the estimation for heterogeneous classes. For heterogeneous classes, a greater sample size is required to achieve
comparable accuracy compared to Figure 2.

Figure 4 shows the learning curves of the classification accuracy for Data 3 for initial sample sizes of n0 = 8
and n0 = 50, respectively. From Figure 4a, considering an initial starting design with n0 = 8, it is observed that
the accuracy for the cLHS design increases at the fastest rate from the initial size to about n = 66. Maximum
accuracy is achieved at about n = 80 for all designs. From Figure 4b with n0 = 50, it is again observed that the
cLHS design achieves the greatest accuracy at about n = 74. Beyond n > 74, the accuracy either stabilises or
exhibits minimal improvement across all designs. Data 3 exhibits four clusters, and it is expected that the classifier
will take longer to achieve acceptable accuracy. However, from the results, it can be concluded that the cLHS
design yields good accuracy early on for homogeneous and heterogeneous classes.

(a) n0 = 8 (b) n0 = 50

Figure 2. Accuracy for different designs plotted against increasing sample size for Data 1.

(a) n0 = 8 (b) n0 = 50

Figure 3. Accuracy for different designs plotted against increasing sample size for Data 2.

Figure 5 shows the average variance of the predicted posterior probability (V(π̂i)) across the design space for
Data 1 for initial sample sizes n0 = 15 and n0 = 50, respectively. There is huge variability in the variance of
prediction for n ≤ 80. The reason is that random sampling and Latin hypercube designs, which are space-filling
designs and not model-based optimal designs, can select samples that yield an information matrix that is very
close to singularity and results in huge variances of the parameter estimates and variance of prediction. Therefore,
we only show the results from n = 80 and higher. This is not a concern since the results for accuracy indicated
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(a) n0 = 8 (b) n0 = 50

Figure 4. Accuracy for different designs plotted against increasing sample size for Data 3.

that the accuracy stabilizes from about n = 60 and higher for all the designs and data sets.

From Figure 5a, it is observed that the average V(π̂i) is the smallest for the mLHS design for Data 1. The
variance stabilizes at about n = 200 for the mLHS, cLHS, and RS designs. The LHS yields the worst average
variance of prediction. Similarly, from Figure 5b it is observed that the average V(π̂i) is the smallest for the mLHS
design. The smallest variance is obtained at about n = 200 for the mLHS, cLHS, and RS designs. Again, the
LHS yields the worst average variance of prediction. The variance of prediction stabilizes earlier when the active
learning process is initialised with a smaller sample size.

From Figure 6a for n0 = 15, it is observed that the average V(π̂i) is the smallest for the mLHS design for
Data 2, up to about n = 139. The variance continues to decrease until n = 308. From Figure 6b for n0 = 50, it is
observed that the average V(π̂i) is significantly smaller for the mLHS design, compared to the other designs until
about n = 243. The smaller variance of prediction is obtained sooner when the active learning process is initialised
with a smaller sample size. The LHS yields the worst average variance of prediction for both initial design sizes.

From Figure 7a for n0 = 15, it is observed that the average V(π̂i) is comparable for the three designs for Data
3. The variance continues to decrease until n = 308. From Figure 7b for n0 = 50, it is observed that the average
V(π̂i) is smaller for the mLHS design, compared to the other designs, until about n = 285. Again, the LHS yields
the worst average variance of prediction for both initial design sizes.

From the results for the average variance of prediction, it can be concluded that the mLHS design performs best
for different initial sample sizes and for homogeneous and heterogeneous classes. Therefore, selecting samples
from a grid over the design space that is based on the estimated marginal probability distributions given by the
data yields the best results. In addition, the active learning process should be initialised with a smaller sample size
when the variance of the predicted posterior probability is the main criterion.

Figure 8 shows the mean squared error of the slope of the logistic classifier (MSE(m̂1)) across the design space
for Data 1 for initial sample sizes n0 = 15 and n0 = 50, respectively. We only plot the results from n = 80 and
higher due to huge variability resulting from an ill-condition information matrix for smaller sample sizes. Again,
this is not a concern since the results for accuracy indicated that the accuracy stabilizes from about n = 60 and
higher for all the designs and data sets.

From Figure 8a for n0 = 15, it is observed that the MSE(m̂1) is the greatest for RS for Data 1. The MSE(m̂1)
is very similar for the other three designs. The MSE(m̂1) stabilizes at about n = 200 for all four designs. From
Figure 8b for n0 = 50, it is observed that the MSE(m̂1) is the smallest for the mLHS design until about n = 143.
The MSE(m̂1) only stabilises at about n = 200 for all four designs. Therefore, the mLHS design yields the
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(a) n0 = 15 (b) n0 = 50

Figure 5. Average variance of the predicted posterior probability (V(π̂i)) for different designs plotted against increasing
sample size for Data 1.

(a) n0 = 15 (b) n0 = 50

Figure 6. Average variance of the predicted posterior probability (V(π̂i)) for different designs plotted against increasing
sample size for Data 2.

(a) n0 = 15 (b) n0 = 50

Figure 7. Average variance of the predicted posterior probability (V(π̂i)) for different designs plotted against increasing
sample size for Data 3.

smallest mean squared error of the slope of the classifier for n0 = 50.

From Figure 9a for n0 = 15, it is observed that the MSE(m̂1) is the smallest for the LHS and cLHS designs for
Data 2. The MSE(m̂1) stabilizes at about n = 120 for all four designs. From Figure 9b for n0 = 50, it is observed
that the MSE(m̂1) is the smallest for the cLHS initially until n = 77, but the LHS design yields the smallest
MSE(m̂1) from about n = 78 until about n = 151. Therefore, the cLHS design yields the best performance for
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MSE(m̂1) for heterogeneous classes. Similar trends were observed for the accuracy.

From Figure 10a for n0 = 15, it is observed that the MSE(m̂1) is the smallest for the cLHS and LHS designs
for Data 3. The MSE(m̂1) stabilizes at about n = 100 for all four designs. From Figure 10b for n0 = 50, it is
observed that the MSE(m̂1) is the smallest for the cLHS design initially; however, the results are very similar
from about n = 73 for all four designs. Overall, the cLHS design yields the best performance for MSE(m̂1) for
Data 3. Note that the effect of the initial design and the design size on the mean square error of the classifier was
not communicated before in the literature.

(a) n0 = 15 (b) n0 = 50

Figure 8. Mean squared error of the slope of the logistic classifier (MSE(m̂k)) for different designs plotted against increasing
sample size for Data 1.

(a) n0 = 15 (b) n0 = 50

Figure 9. Mean squared error of the slope of the logistic classifier (MSE(m̂k)) for different designs plotted against increasing
sample size for Data 2.

The results discussed so far indicate that the design approaches, i.e., LHS, cLHS and mLHS, used to initialise
the active learning process together with uncertainty sampling outperform RS for classification accuracy, average
variance of the predicted posterior probability and the mean squared error of the slope of the classifier. Both the
cLHS and mLHS designs yield very good results.

However, as discussed in Section 2.3, there are many classification performance measures, including, but not
limited to, accuracy, precision, sensitivity, F1-score, and AUC. In this paper, we also consider various statistics of
the logistic regression model and the binary classifier, such as the generalised variance of the parameter estimates
(|M(x,fi)

−1|), the variance of the predicted posterior probability (V(π̂i)), the mean squared error of the slope of
the classifier (MSE(m̂k)) and the mean squared error of the intercept of the classifier (MSE(ĉ)). However, the best
initial design, initial sample size, and recommended number of samples needed to train the classifier will depend
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(a) n0 = 15 (b) n0 = 50

Figure 10. Mean squared error of the slope of the logistic classifier (MSE(m̂k)) for different designs plotted against
increasing sample size for Data 3.

on the criterion of interest.

Therefore, to evaluate the effect of the various scenarios on the model estimation and classifier performance
measures simultaneously, as well as to assess the correlations between all the different criteria, we performed
principal component analysis (PCA) and biplot visualization on the results for each data set. PCA is a dimension
reduction method that creates new latent variables as a linear combination of the variables in the data. The
coefficients of the linear combination are referred to as the loadings of the input variables, and the predictions
of the latent variables for a set of input variables are the scores. The first principal component explains the
maximum variance in the data, the second principal component explains the second most variability in the data,
and is uncorrelated with the first component, etc. Typically, the first two principal components explain the greatest
cumulative variance in the data. The results can be visualized on a two-dimensional PCA biplot, which shows the
scores and loadings on the same plot. See [19] for a detailed discussion of PCA and biplots.

In this case, the variables in the data set are the evaluation criteria, which are nine in total. The results for all
four designs were combined for each data set. The PCA biplots are presented for 80 ≤ n ≤ 200. For n ≤ 80, the
substantial variability in the values of V(π̂i), |M(x,β)−1|, MSE(m̂k), and MSE(ĉ) renders their interpretation
less reliable. For n > 200, any improvements in the performance measures are expected to be marginal, as
illustrated with the learning curves discussed above. Consider the PCA biplot in Figure 11. The first two principal
components explain over 90% of the variability in the data, i.e., the representation of the data in two dimensions
is very accurate. The rays are the loadings that indicate the direction of increasing values of the variables, and the
angles between the rays approximate the correlations between the variables. We used the package factorextra in R
to generate the biplots [3].

From the PCA biplot in Figure 11 for Data 1 and n0 = 15, it is observed that there are noticeable differences
in the performances of the designs and an effect of the number of training samples on the performance measures.
Considering the effect of the number of points used for training, it is observed that the AUC and precision increase
with increasing sample size from about n = 120 to n = 200. The cLHS and mLHS designs yield higher accuracy
and AUC for lower number of training samples, and the highest accuracy at n = 200. The standardized variance
of the parameter estimates, the average variance of prediction, and the mean squared error of the slope of the
classifier are positively correlated and decrease with increasing sample size up to about n = 120. Beyond n=120,
there is little effect of the increasing sample size on the precision of the classifier and the accuracy. Accuracy and
F1-score are positively correlated with the standardized variance of the parameter estimates, the average variance
of prediction, and the mean squared error of the slope of the classifier, which illustrates that higher precision of the
classifier does not yield higher accuracy or F1-score of the classifier. However, precision and recall are relatively
uncorrelated with the precision of the classifier, accuracy and F1-score. Therefore, although higher accuracy and
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precision of the classifier are obtained for lower number of training samples, it yields average precision and recall.
In summary, Figure 11 illustrates that a training sample of about n = 120 is sufficient for acceptable accuracy and
a precise logistic classifier, achieving average classification accuracy, recall, and AUC. Moreover, the cLHS design
yields the best results overall for n = 120.
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Figure 11. PCA biplot for n0 = 15 for Data 1. (Means v pi glm = V (π̂i), Det var betas Means = |M(x,β)−1|, m MSE =
MSE(m̂), and c MSE = MSE(ĉ))

Consider the PCA biplot in Figure 12 for Data 2 and n0 = 15; the first two principal components explain about
94% of the variability in the data. From the biplot, it is observed that there are again differences between the designs,
especially at the smaller sample size from n = 80 to n = 120. However, for the cLHS, mLHS and RS designs, the
standardized variance of the parameter estimates and the mean squared error of the slope of the classifier decrease
with increasing the sample size to about n = 120. As the AUC and F1-score increase, the standardized variance
of the parameter estimates and the mean squared error of the slope decrease for increasing sample size to about
n = 120 for the mLHS, cLHS and RS designs. For a training sample of about n = 120, the mLHS design yields
the highest recall and average performance for all other criteria. This can be derived by projecting the data points
perpendicular to each of the variable axes. In summary, Figure 12 illustrates that a training sample of about n = 120
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is sufficient for an accurate and precise logistic classifier and average classification accuracy, recall and AUC. The
mLHS design yields the best results overall.
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Figure 12. PCA biplot for n0 = 15 for Data 2. (Means v pi glm = V (π̂i), Det var betas Means = |M(x,β)−1|, m MSE =
MSE(m̂), and c MSE = MSE(ĉ))

Consider the PCA biplot in Figure 13 for Data 3 and n0 = 15; the first two principal components explain almost
90% of the variability in the data. From the biplot, it is observed that there is a quadratic trend in the PCA scores
for all four designs. Maximum recall is achieved at a sample size of about n = 120 for all four designs. The
cLHS design yields the best precision, accuracy and F1-score irrespective of the size of the training sample. The
mLHS design yields the maximum recall and minimum precision at about n = 120. As for Data 2, the standardized
variance of the parameter estimates, the average variance of prediction and the mean squared error of the slope of
the classifier decreases, and AUC increases for increasing sample size to about n = 120. In summary, Figure 13
clearly illustrates that a training sample of about n = 120 is sufficient for an accurate and precise logistic classifier
and average classification accuracy, recall and AUC.

In summary, from the simulation study, Table 2 presents the recommended training sample sizes that achieves
the best balance across all measures for the four different designs. It is noted that LHD requires fewer samples than
random sampling across all three datasets. This trend is also evident in the PCA figures, Figure 11, Figure 12 and
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Figure 13. PCA biplot for n0 = 15 for Data 3. (Means v pi glm = V (π̂i), Det var betas Means = |M(x,β)−1|, m MSE =
MSE(m̂), and c MSE = MSE(ĉ))

Figure 13, where the turning points can be observed approximately. The recommended training samples sizes are
about 10% of the original size of the data sets.

Table 2. Recommended training sample sizes from the simulation study.

Design Data 1 Data 2 Data 3
RS 120 133 138

LHS 110 92 135
cLHS 113 122 136
mLHS 108 120 126
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5. Real world data example: Hunter Valley data

For a real-world example, we consider the Hunter Valley data from [59]. The authors used the cLHS design
to sample representative data of five ancillary variables for four different land-use or vegetation classes. For
illustration purposes, we will employ the logistic regression model to classify the observations into two land-use
classes only, namely Native forest and viticulture, as a function of four predictor variables. The ancillary variables
considered for the model are elevation, slope, compound topographic index (cti), and normalized difference
vegetation index (ndvi). The dataset consists of 6710 observations, including 5509 observations from native forest
and 1201 observations from viticulture. We evaluate the effect of the four different designs, i.e., RS, LHS, cLHS
and mLHS on the performance of the classifier. For an illustration of the sampled points, Figure 14a show the
cLHD sampled points and Figure 14b show the mLHD sampled points for n0 = 10. However, in this section we
will use n0 = 15 and n0 = 50, respectively, for evaluation.
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Figure 14. Comparison of cLHD and mLHD in 2-dimensions

Figure 15a illustrates the learning curves of accuracy for n0 = 15. The maximum accuracy is achieved by the
mLHS design for a sample size of n = 70 and beyond. However, all the LHDs outperform the RS design when
n < 120. Similarly, as shown in Figure 15b, with a larger initial design size of n0 = 50, it is evident that the
LHDs also outperform the RS design for n < 120. Specifically, the mLHS design achieves the maximum accuracy
for sample sizes of around n = 70 and above. Since the dataset is highly class-imbalanced, Figure 16 shows the
F1-score for n0 = 15 and n0 = 50, respectively. The F1-score and accuracy yield similar trends.

Figure 17a presents the learning curves of the AUC for n0 = 15. The LHDs outperform the RS design
for n < 140. In Figure 17b, where an initial design size of n0 = 50 is used, the LHDs demonstrate superior
performance until n = 84.

Figure 18a illustrates the learning curves of the variance of prediction for n0 = 15, showing that the cLHS design
results in the smallest variance of prediction. Similarly, as observed in Figure 18b, with n0 = 50, the cLHS design
maintains the smallest variance of prediction up to n = 212.

In summary, these results demonstrate that the experimental design approaches significantly outperform the RS
design, particularly for smaller training sample sizes.

To assess the combined effects of the designs and initial sample sizes on the various evaluation criteria, Figure
19 provides the PCA biplot for n0 = 50. The first two principal components account for approximately 89% of the
variability in the data. The plot highlights distinct differences between the experimental designs and the RS design
in terms of performance across all evaluation criteria. Notably, the RS design requires a larger number of training
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samples to achieve a performance level comparable to that of the other designs. The mLHS and cLHS designs are
similar in performance. The performance measures do not change much for increasing the sample size for the LHS
design.

(a) n0 = 15 (b) n0 = 50

Figure 15. Accuracy plot for the Hunter Valley data for different initial sample sizes

(a) n0 = 15 (b) n0 = 50

Figure 16. F1-Score plot for the Hunter Valley data for different initial sample sizes

(a) n0 = 15 (b) n0 = 50

Figure 17. AUC plot for the Hunter Valley data for different initial sample sizes
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(a) n0 = 15 (b) n0 = 50

Figure 18. Variance of predictions plot for the Hunter Valley data for different initial sample sizes
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Figure 19. PCA biplot of the Hunter Valley data for n0 = 50. (Means v pi glm = V (π̂i), Det var betas Means =
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6. Conclusion

In this paper, the performance of three Latin hypercube designs, namely, the maximin Latin hypercube, the
conditioned Latin hypercube, and the modified Latin hypercube are compared to random sampling when selecting
the initial points to initiate the active learning process. Furthermore, we demonstrated the effectiveness of active
learning in reducing the number of points required to train an accurate model by employing the uncertainty-based
active learning criterion. Several performance measures were utilised, including accuracy, the F1-score, the AUC,
the average variance of predictions, the standardised variance of parameter estimates, and the mean squared error
of the slope and intercept of the classifier. It was shown that the performance of the designs varies depending
on the sample size, the specific performance measure under consideration, and the complexity of the dataset.
The Latin hypercube designs yield better results compared to the random sampling for all the performance
measures evaluated. It can be concluded that the cLHS design yields high accuracy, F1-score, and AUC at an
early stage for homogeneous classes; however, it necessitates a larger initial sample size for heterogeneous
classes. When prioritising the variance of the predicted posterior probability as the primary criterion, the mLHS
design demonstrates superior performance across different initial sample sizes and for both homogeneous and
heterogeneous classes. The results from the three simulated datasets, based on a combined performance assessment
via the PCA, indicate that approximately 120 to 140 points out of 1, 000 to 1, 250 are sufficient to construct an
accurate and precise logistic classifier, achieving high classification accuracy, recall, and AUC.

Since the seminal paper by [6], there have been many extensions and improvements for generating Latin
hypercube designs with specific advantageous multivariate properties, such as orthogonal Latin hypercube designs
[5, 4]. Utilising subsampling in active learning when selecting the most informative data points may reduce
redundancy, enhance classification accuracy, and improve generalisation while minimising computational and
labelling costs. The mLHS exhibited highly promising results in comparison with the cLHS; therefore, it would
be beneficial to modify it to select actual observations directly from the training set, as is the case with the
cLHS. Furthermore, future research will extend this framework by incorporating more complex classifiers, such as
support vector machines and neural networks, and by comparing the proposed designs with advanced initialisation
and query strategies (e.g., query-by-committee). In addition, assessing performance on highly correlated or high-
dimensional datasets will provide further insight into the robustness of these sampling designs in more complex
data structures.
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A. Derivation of V(π̂i).

For convenience, in the following derivation, the subscripts are suppressed. The predicted probability π̂ = h(η̂) is a
nonlinear function of η̂. To approximate its variance, we linearize h(η̂) around the true η using a first-order Taylor
expansion. To this end, let η̂ = x⊺β̂, we obtain

π̂ = h(η̂) =
eη̂

1 + eη̂
.
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The Taylor series expansion of h(η̂) in a neighbourhood of η yields,

h(η̂) = h(η) + (η̂ − η)
∂h

∂η

= h(η) + (x⊺β̂ − x⊺β)π(1− π)

= h(η) + π(1− π)x⊺(β̂ − β),

since the derivative of h(η) = eη

1+eη with respect to η is given by

∂h

∂η
= (eη)2(−1)(1 + eη)−2 + (1 + eη)−1eη

= −
(

eη

1 + eη

)2

+
eη

1 + eη

= −π2 + π

= π(1− π).

The term x⊺(β̂ − β) is a linear combination of the random vector β̂. Its variance is given by,

Var
[
x⊺(β̂ − β)

]
= x⊺Var(β̂)x.

This follows from the property of covariance matrices, Var(AZ) = AVar(Z)A⊺, where A is a matrix (here, x⊺).
The variance of h(η̂) is approximated by the variance of the linear term,

Var(h(η̂)) ≈ Var
[
π(1− π) · x⊺(β̂ − β)

]
.

Since π(1− π) is a scalar constant (for a fixed x), we factor it out,

Var(h(η̂)) ≈ [π(1− π)]2 ·Var
[
x⊺(β̂ − β)

]
= [π(1− π)]2 · x⊺Var(β̂)x.

B. Derivation of MSE(ĉ) and MSE(m̂)

Let the intercept and slope of the classification boundary be defined as

ĉ = q1(β̂) = q1(β̂0, β̂2) = −
β̂0

β̂2

and

m̂ = q2(β̂) = q1(β̂1, β̂2) = −
β̂1

β̂2

.

The first-order Taylor expansion of q̂1 around the true parameters β0 and β2 is given by,

q̂1 ≈ q1 + (β̂0 − β0)
∂q1
∂β0

+ (β̂2 − β2)
∂q1
∂β2

.

The variance of q̂1 is,
V(q̂1) = E

[
(q̂1 − q1)

2
]
.

Substituting the first-order expansion,

V(q̂1) = V(β̂0)

(
∂q1
∂β0

)2

+V(β̂2)

(
∂q1
∂β2

)2

+ 2Cov(β̂0, β̂2)

(
∂q1
∂β0

)(
∂q1
∂β2

)
,
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where V(β̂) = (X⊺ŴX)−1, Ŵ = diag(π̂i(1− π̂i)), and

∂q1
∂β0

=
∂

∂β0

(
−β0

β2

)
= − 1

β2

and
∂q1
∂β2

=
∂

∂β2

(
−β0

β2

)
=

β0

β2
2

.

Therefore,

V(q̂1) = V (β̂0)

(
− 1

β2

)2

+ V (β̂2)

(
β0

β2
2

)2

+ 2Cov(β̂0, β̂2)

(
− 1

β2

)(
β0

β2
2

)
.

Second-order Taylor series for q1,

q̂1 ≈ q1 + (β̂0 − β0)
∂q1
∂β2

+ (β̂2 − β2)
∂q1
∂β2

+
1

2
(β̂0 − β0)

2 ∂
2q1
∂β2

0

+
1

2
(β̂2 − β2)

2 ∂
2q1
∂β2

2

+(β̂0 − β0)(β̂2 − β2)
∂2q1

∂β0∂β2
.

The bias of q̂1 is,

Bias(q̂1) = E(q̂1)− q1 =
1

2
V(β̂0)

∂2q1
∂β2

0

+
1

2
V(β̂2)

∂2q1
∂β2

2

+ Cov(β̂0, β̂2)
∂2q1

∂β0∂β2
,

where
∂2q1
∂β2

0

= 0,
∂2q1
∂β2

2

=
2β0

β3
2

, and
∂2q1

∂β0∂β2
=

1

β2
2

.

Therefore,

Bias(q̂1) =
1

2
V (β̂2)

(
2β0

β3
2

)
+ Cov(β̂0, β̂2)

(
1

β2
2

)
.

The mean square error (MSE) of q̂1 is given by,

MSE(q̂1) = V(q̂1) + (Bias(q̂1))2.

First-order Taylor series for q2,

q̂2 ≈ q2 + (β̂1 − β1)
∂q2
∂β1

+ (β̂2 − β2)
∂q2
∂β2

.

The variance follows from,

V(q̂2) = E [q̂2 − q2]
2

= V(β̂1)

(
∂q2
∂β1

)2

+V(β̂2)

(
∂q2
∂β2

)2

+ 2Cov(β̂1, β̂2)

(
∂q2
∂β1

)(
∂q2
∂β2

)
,

where
∂q2
∂β1

=
∂

∂β1

(
−β1

β2

)
= − 1

β2
,

and
∂q2
∂β2

=
∂

∂β2

(
−β1

β2

)
=

β1

β2
2

.
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Therefore,

V(q̂2) = V(β̂1)

(
− 1

β2

)2

+V(β̂2)

(
β1

β2
2

)2

+ 2Cov(β̂1, β̂2)

(
− 1

β2

)(
β1

β2
2

)
.

The second-order Taylor expansion of q̂2 is,

q̂2 ≈ q2 + (β̂1 − β1)
∂q2
∂β1

+ (β̂2 − β2)
∂q2
∂β2

+
1

2
(β̂1 − β1)

∂2q2
∂β2

1

+
1

2
(β̂2 − β2)

∂2q2
∂β2

2

+(β̂1 − β1)(β̂2 − β2)
∂2q2

∂β1∂β2
.

The bias follows as,

Bias(q̂2) = E(q̂2)− q2 =
1

2
V (β̂1)

∂2q2
∂β2

1

+
1

2
V (β̂2)

∂2q2
∂β2

2

+ Cov(β̂1, β̂2)
∂2q2

∂β1∂β2

where
∂2q2
∂β2

1

= 0,
∂2q2
∂β2

2

=
2β1

β3
2

, and
∂2q2

∂β1∂β2
=

1

β2
2

.

Therefore,
MSE(q̂2) = V(q̂2) + (Bias(q̂2))2.

In general, the expressions for the variances and biases for ĉ and m̂, along the p-th axis, where (k = 1, . . . , p),
are as follows:

V(ĉ) = V(q̂1) = V(β̂0)

(
∂q1
∂β0

)2

+V(β̂p)

(
∂q1
∂βp

)2

+ 2Cov(β̂0, β̂p)

(
∂q1
∂β0

)(
∂q1
∂βp

)
,

and

Bias(ĉ) = Bias(q̂1) =
1

2
V(β̂0)

∂2q1
∂β2

0

+
1

2
V(β̂p)

∂2q1
∂β2

p

+ Cov(β̂0, β̂p)
∂2q1

∂β0∂βp
.

V(m̂k) = V(q̂2) = V(β̂k)

(
∂q2
∂βk

)2

+V(β̂p)

(
∂q2
∂βp

)2

+ 2Cov(β̂k, β̂p)

(
∂q2
∂βk

)(
∂q2
∂βp

)
,

and

Bias(m̂k) = Bias(q̂2) =
1

2
V(β̂k)

∂2q2
∂β2

k

+
1

2
V(β̂p)

∂2q2
∂β2

p

+ Cov(β̂k, β̂p)
∂2q2

∂βk∂βp
.

Note that q1 and q2 are − β̂0

β̂p

and − β̂k

β̂p

, respectively.
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