

Improving Set-union Knapsack Problem Based on Binary Spotted Hyena Optimization Algorithm

Rana Bashar Hussein ¹, Zakariya Yahya Algamal ^{1,2,*}

¹*Department of Statistics and Informatics, University of Mosul, Mosul, Iraq*

²*Department of Management Information Systems, College of Administration and Economics, University of Mosul, Mosul, Iraq*

Abstract One pertinent model for intelligent systems and decision making is the Set-union Knapsack Problem (SUKP). Heuristic algorithms are helpful in finding high-quality answers in a reasonable amount of time, despite their inherent difficulty (NP-hardness). The binary spotted hyena optimization algorithm for the set-union knapsack problem is presented in this study. Numerous heuristic and approximation techniques for resolving the set-union knapsack issue have been documented in the literature. The quality of the solution still has to be improved, though. The purpose of this study is to apply Z-shaped transfer functions to the binary spotted hyena optimization algorithm used to solve the Set-union knapsack problem. Comparative experimental results show that Z-shaped transfer functions are competitive or superior than the other state-of-the-art transfer function. The experiments were done on three types of 30 popular SUKP benchmark examples.

Keywords Set-union knapsack problem; spotted hyena optimization algorithm; Z-shaped transfer functions; combinatorial optimization

AMS 2010 subject classifications 46N10, 65K05

DOI: 10.19139/soic-2310-5070-2687

1. Introduction

The set-union knapsack problem (SUKP) is one of the most important generalization and the natural extension of the standard 0-1 Knapsack problem [1, 2]. It is more complex of the 0-1 knapsack problem and it is a non deterministic polynomial time (NP) hard problem.

Recent years have seen a significant increase in interest in the SUKP among operational research scholars because of its broad scope, interesting application scenarios, and difficulties in answering large, complex situations in an efficient manner. Database partitioning, financial decision-making, smart cities, budgetary issues, manufacturing systems, enhancing the robustness and scalability of cybernetic systems, hydrology, and transportation are some of the applications.

Artificial intelligence techniques, particularly meta-heuristic algorithms, have opened up new avenues for solving these kinds of problems in recent years. They are also continuously being improved to address large, complex problems, decrease execution times, improve the quality of optimal solutions, and obtain improved results in a reasonable amount of time. For instance, set cover problems, knapsack issues, satisfiability questions, and numerical optimization problems [4, 5, 20, 21, 22, 23, 24, 25].

In the literature, there are several research studies and many successful applications of the SUKP. To address SUKP, [6] proposed an artificial bee colony algorithm by adopting a full mapping function to deal with or the goal

*Correspondence to: Zakariya Y. Algamal (Email: zakariya.algamal@uomosul.edu.iq). Department of Statistics and Informatics, University of Mosul, Mosul, Iraq.

of addressing infeasible solutions and the proposed algorithm integrates a greedy strategy with other evolutionary algorithms. Compared to existing approximation methods, the algorithm produces superior results for solving SUKP. [7] proposed twelve different transfer functions-based discrete Moth Search algorithm for solving SUKP.

A thorough comparison and analysis of the experimental data was conducted with regard to enhancing the quality of solutions and convergence rate. Methods based on swarm intelligence provide remarkable opportunities in solving complex problems, these methods have been proven to be effective in solving SUKP. [8] proposed an effective hybrid binary swarm intelligence technique based on two nature-inspired algorithms, Genetic Algorithm and Particle Swarm Optimization called the global particle swarm optimization algorithm (gPSO). The performance of the proposed method is applied on SUKP. The effectiveness of the proposed method is developed an optional mutation procedure that exponentially decreases the introduced diversity to the population to avoid local optima where it uses genetic operators such as crossover and mutation. Applied swarm optimization to explore local neighborhoods and applied genetic algorithm to diversify the search procedure. The goal of this hybrid algorithm is to maintain the diversity of the population throughout generations. The superiority of the solutions provided with this method represented with a comparative study.

Another hybrid binary swarm intelligence technique based on tabu search (HPSO/TS) is proposed by [9]. The hybrid algorithm used a tabu search mutation procedure to enhance the exploitation ability and enhance the solution quality to obtain optimal quality solutions for solving SUKP. An adaptive penalty function was used to evaluate the quality of solutions, to ensure the feasibility of the search by exploring the boundary of the solution space, and to avoid the violation of the problem constraints. The proposed algorithm outperformed on the other algorithms in terms of solution quality and the reduction execution time. The experimental results has proven its hybrid algorithm robustness.

A neighbourhood competitive metaheuristic algorithm employing the concept kernel based tabu search algorithm components is proposed by [10] for the SUKP. The kernel based powerful tabu search algorithm merged three complementary search components to efficiently examine the search space, finding various local optima using effective local search procedure, and finding additional high-quality solutions. The results showed that the high performance of the proposed algorithm outperformed the existing best SUKP algorithms in terms of solution quality, robustness and computation time.

Three solution initialization strategies, random, greedy, and weighted, have been proposed and evaluated by [11]. Using k-means as a binarization technique, the initialization solutions have been combined within a sine cosine metaheuristic algorithm. The three initialization strategies. Testing is done on medium- sized and large-sized SUKP instances to evaluate the three initialization strategies. When applying the weighted method to the SUKP, it consistently outperforms the other two, with the aim of examining the impact of solution initialization methods on the performance of a hybrid algorithm. The results proven that an improvement in terms of the quality solutions, reiterating the importance of the initialization strategy on the effectiveness performance of the algorithm. The study discovered applicability to a variety of combinatorial problems including traveling salesman problem (TSP), vehicle routing problem (VRP), job shop scheduling problem (JSSP), and quadratic assignment problem (QAP).

[12] proposed a Q-learning reinforcement learning algorithm which uses Particle Swarm Optimization, Genetic Algorithm and a hybrid of these algorithms as metaheuristic optimization, namely, genetic-based PSO. To evaluate the used algorithms, the proposed algorithm worked as a reinforcement and recommendation system which selects optimization algorithms as actions at each iteration. The objective is to learn and claim the more promising algorithms by employing a variety of optimizers and obtaining more statistical data in order to avoid local optima. Adopting an initial solution generation technique and triggered random immigrants mechanism to preserve swarm diversity for improving all optimizers. In addition to these procedures, a mutation procedure that decreases the diversity is adopted. All enhanced optimization algorithms are employed by the proposed Q-learning mechanism. The performances of all used algorithms are analysed on the SUKP.

The goal of the current work is to create a binary version of the binary spotted hyena optimization algorithm, BSHO, which is based on Z-shape transfer functions. Additionally, to assess the efficacy of BSHO, an investigate of the enhanced BSHO algorithm for solving the SUKP.

2. Set-Union Knapsack Problem

The SUKP is a binary constrained combinatorial optimization problem [1, 2]. In SUKP, there is a set of items where each item has a profit. The total weight of a set of items is determined by the total weight of the union elements of the corresponding element sets. The SUKP is featured or identifies by two sets items and elements. Given a set of m items $S = \{1, 2, 3, \dots, m\}$ and a set of n elements $U = \{1, 2, 3, \dots, n\}$. The items and elements are associated by a relation matrix $R_{ij}(m \times n)$. Furthermore, each item $i \in S$ ($i = 1, 2, 3, \dots, m$) correlated to a subset U_i of elements, and $U_i \neq \emptyset \wedge U_i \subset U \wedge \bigcup_{i=1}^m U_i = U$. Each item $i \in S$ has non-negative profit p_i ($i = 1, 2, 3, \dots, m$) and each element $j \in U$ has non-negative weight w_j ($w_j > 0$) ($j = 1, 2, 3, \dots, n$). For a nonempty subset $A \subseteq S$, the total weight and the total profit of the subset A can be calculated by $W(A) = \sum_{j \in \bigcup_{i \in A} U_i} w_j$ and $P(A) = \sum_{i \in A} p_i$ respectively. Finding or selecting a subset of items $S^* \subseteq S$ is the purpose of the SUKP such that meet or satisfy the conditions $W(S^*) \leq C$, Where C is the capacity limit of the knapsack and a nonnegative value and maximizing the total profit $P(S^*)$.

The mathematical model of the SUKP can be expressed as follows:

$$\text{Max } P(A) = \sum_{i \in A} p_i \quad (1)$$

$$\text{Subject to } W(A) = \sum_{j \in \bigcup_{i \in A} U_i} w_j \leq C, \quad A \subseteq S \quad (2)$$

The previous set-based formulation of the set can be used to derive a mixed-integer programming model. It is based on two sets of binary variables. The first variable is associated with items $\{y_i = 1 \text{ if item } i \text{ is selected, } 0 \text{ otherwise}\}$ while the second variable is associated with elements $\{x_j = 1 \text{ if element } j \text{ is selected, } 0 \text{ otherwise}\}$. The new mathematical model of SUKP can be formulated as follows :

$$\text{Max } f(Y) = \sum_{i=1}^m y_i p_i \quad (3)$$

$$\text{Subject to } W(A_Y) = \sum_{j \in \bigcup_{i \in A_Y} U_i} w_j \leq C \quad (4)$$

The optimal solution can be represented by an m -dimensional binary vector $Y = (y_1, y_2, y_3, \dots, y_m) \in \{0, 1\}^m$, $A_Y = \{i \mid y_i \in Y, y_i = 1, 1 \leq i \leq m\} \subseteq S$ such that $y_i = 1$ if and only if $i \in A_Y$. In particular, Y feasible solution satisfies knapsack constraint in Eq.(4) and infeasible solution otherwise.

The objective of SUKP is to identify a subset of candidate items (S) such that a profit function is maximized i.e. total profit associated with S , while satisfying a knapsack knapsack capacity constraint without exceeding it for a certain budget ($C > 0$) and maximal profit.

3. The Spotted Hyena Optimization (SHO)

The fact that the social bond that exists between spotted hyenas and the cooperative behavior that they exhibit while hunting prey served as the inspiration for a recently developed innovative swarm-based algorithm that was given the name “Spotted hyena optimization” (SHO) [13, 14]. This technique consists of three primary steps: encircling, hunting, and attacking prey. The mathematical modeling of the SHO algorithm is detailed in the following paragraphs.

Encircling prey:

Due to the unknown search space, the target prey is considered to be the current best candidate solution that is near the ideal solution. Once the intended prey has been identified, other hyenas will attempt to adjust their positions toward the location of the prey [15, 16].

$$\vec{D}_h = |\vec{B} \cdot \vec{P}_p(x) - \vec{P}(x)|$$

$$\vec{P}(x+1) = \vec{P}_p(x) - \vec{E} \cdot \vec{D}_h$$

where, \vec{D}_h is the distance between hyenas and their prey, x denotes the current iteration, \vec{P} represents the position vector of the hyena, \vec{P}_p denotes the position vector of the prey, and, \vec{B} and \vec{E} represent the coefficient vectors, which can be calculated as follows [17]:

$$\vec{B} = 2 \cdot \vec{r}d_1$$

$$\vec{E} = 2 \cdot \vec{h} \cdot \vec{r}d_2 - \vec{h}$$

$$\vec{h} = 5 - \left(I \times \frac{5}{Max_I} \right)$$

where, I denotes the iteration and Max_I is the maximum number of iterations.

In this scenario, the value of \vec{h} is reduced linearly from 5 to 0 throughout the repetitions. The stability that exists between exploration and exploitation is maintained by its use. The random vectors in the range [0,1] are denoted by $\vec{r}d_1$ and $\vec{r}d_2$. Adjustments are made to the values of \vec{B} and \vec{E} to allow spotted hyenas to go to other regions concerning their present location. Through the use of Equations (1) and (2), hyenas are able to update their locations in a random manner around the prey [15].

Hunting prey:

To simulate the hunting behavior of spotted hyenas, we use the assumption that the most effective search agent has information on the whereabouts of the prey. The rest of the search agents merge into a cluster of reliable acquaintances and adjust their location based on the most optimal search agent. The mathematical representation of the hunting mechanism can be described as follows [18]:

$$\vec{D}_h = |\vec{B} \cdot \vec{P}_h - \vec{P}_k|$$

$$\vec{P}_k = \vec{P}_h - \vec{E} \cdot \vec{D}_h$$

$$\vec{C}_h = \vec{P}_k + \vec{P}_{k+1} + \dots + \vec{P}_{k+N}$$

here, \vec{P}_h denotes the location of the first observed spotted hyena, \vec{P}_k shows the positions of the other spotted hyenas, whereas N represents the number of spotted hyenas, which is found using the following calculation [13]:

$$N = count_{nos}(\vec{P}_h, \vec{P}_{h+1}, \vec{P}_{h+2}, \dots, (\vec{P}_h + \vec{M}))$$

where \vec{M} represents a randomly generated vector with a value of [0.5, 1]. "nos" represents the number of solutions, while "count" refers to the total number of candidate solutions that, when combined with \vec{M} , closely resemble the best optimum solution in the search space. \vec{C}_h represents a group or cluster of N optimal solutions.

Attacking prey:

Mathematical modeling for assaulting the prey requires reducing the value of the vector \vec{h} . Over the course of repetitions, the value of the vector \vec{h} may decline from 5 to 0, and this is achieved by decreasing the variance in the vector \vec{E} . When $|E| < 1$, the spotted hyena gang attacks their victim. The following is the mathematical expression for the assault on the prey [17]:

$$\vec{P}(x+1) = \frac{\vec{C}_h}{N}$$

where $\vec{P}(x+1)$ indicates the optimal solution, and additional spotted hyena placements are adjusted according to the best search agent's position (the hyenas who are closest to the prey). Typically, SHO algorithm aims to balance exploration and exploitation, which can lead to competitive performance. However, its computation time can vary based on parameter settings and problem complexity. It usually be slower compared to more established algorithms in certain scenarios, especially if it involves complex operations or a high number of iterations.

The Binary Spotted hyena optimization (BSHO), a binary variation of the original SHO, is proposed in order to capitalize on the strengths of SHO. An effective method for turning an algorithm's continuous version into binary is the transfer function (TF). Its purpose is to transform a given vector of real values into a binary vector. Depending on the value of the step vector, the transfer function specifies the likelihood of converting an element in a solution vector to either 0 or 1. The continuous form of SHO is usable to binary search space by the use of two transfer functions: S-shaped (sigmoid) and V-shaped (hyperbolic tangent). The two binary variations in question are referred to as BSHO-S and BSHO-V, respectively.

4. Z-Shaped Probability Transfer Function

The transfer function (TS) is the important component of the binary version of the BSHO. Finding the best solution to this problem entails encoding a binary value between 0 and 1. In order to achieve this goal. With simplicity and accuracy, the transfer function determines the probability that an element of a position vector will change from 0 to 1 or vice versa.

In this study, the Z-Shaped transfer functions of Guo, Wang and Guo [19] were modified and suggested. These transfer functions have an asymmetric mapping function as their mapping function. There is a fast rate of convergence since this asymmetric mapping function essentially fulfills the absolute value in computing the mapping probability of the coyote position vector fluctuation.

One way to represent the Z-Shaped transfer function (ZTF) is as

$$T(x_i^k(t)) = \sqrt{1 - a^{x_i^k(t)}} , \quad (5)$$

where the number k is positive. By changing the value of k, a set of Z-shaped function families can be obtained. Table 1 illustrates the four different ZTFs.

Table 1. Z-shaped transfer functions

Name	Expression
Z_1	$T_9(x) = \sqrt{1 - 2^x}$
Z_2	$T_{10}(x) = \sqrt{1 - 5^x}$
Z_3	$T_{11}(x) = \sqrt{1 - 8^x}$
Z_4	$T_{12}(x) = \sqrt{1 - 20^x}$

5. Experimental Results

Three SUKP instance types are introduced by He et al. (2018) and are also used in this investigation. These examples are categorized based on how many things and elements there are. The number of elements in the second category is equal to the number of items in the first category. Lastly, there are fewer items than elements in the third category.

To simplify calculations, an $m \times n 0 - 1$ matrix $M = (r_{ij})$ denotes subset family $V = \{U_1, U_2, \dots, U_m\}$. For each element r_{ij} in M (i = 1, 2, ..., m ; j = 1, 2, ..., n), $r_{ij} = 1$ only if $j \in U_i$. To illustrate the value settings of parameters of SUKP instances, we name the SUKP instances as sukp m.n.α.β uniformly , where m is the number of items in instances, n is the number of elements , α denotes the density of element 1 in the matrix M, i.e., $\alpha = (\sum_{i=1}^m \sum_{j=1}^n r_{ij}) / (nm)$, and β is the ratio of C to the sum of all elements ,i.e., $\beta = C / \sum_{j=1}^n w_j$. According to the relationship between m and n, there are three kinds of SUKP instances: Eq. (1) 10 SUKP instance with m < n , (2) 10 SUKP instance with m = n , and (3) 10 SUKP instance with m > n.

Experimental results of S-shaped transfer (STF), V-shaped transfer (VTF) functions, and the proposed Z-transfer function of BAOA are summarized in Tables 2-4. The Best, Mean, and Std are the best value, the mean value and the standard deviation that are achieved by these methods over the 25 repetitions with bold font representing the best methods. Tables 2, 3, and 4 allow us to notice the following. For each of the 30 cases, our suggested Z-transfer functions outperformed the prior best-known findings. Additionally, there was a wide range of improvements in the objective function value, from 1.23% to 30.54%. (2)In each of the 30 cases, Z-transfer functions yielded superior mean objective function values. The range of improvements observed in the objective function value was 1.14% to 29.76%. Z-transfer functions outperformed SUKP, STF, and VTS in terms of the mean and best objective function values for every instance that was examined. In every case, Z-transfer functions produced superior results. (4) In

terms of the best and mean objective function values, the Z4 function outperformed the Z1, Z2, and Z3 in every instance. Eq.(5) When comparing the Z-transfer functions with the STF and VTF functions, the StD values are less than 150 in each of the thirty cases. Furthermore, in every scenario, the StD of the Z4 function is less than that of the Z1, Z2, and Z3 Z-transfer functions. As a result, we draw the conclusion that Z-transfer functions are generally stronger algorithms than STF and VTF.

Table 2. The results of the first kind of SUKP instances

Instance	Results	SUKP	STF	VTF	Z1	Z2	Z3	Z4
sukp	Best	12459	13057	13065	13076	13074	13083	13088
100_85_0.10_0.75	Mean	12459	12969.4	12977.4	12988.4	12986.4	12995.4	13000.4
	StD	0.00	143.66	138.21	120.54	128.24	118.47	113.36
sukp	Best	11119	12079	12087	12098	12096	12105	12110
100_85_0.15_0.85	Mean	11119	11559	11567	11578	11576	11585	11590
	StD	0.00	227.94	220.64	114.23	118.96	114.81	110.57
sukp	Best	11292	13077	13085	13096	13094	13103	13108
200_185_0.10_0.75	Mean	11292	12505.5	12513.5	12524.5	12522.5	12531.5	12536.5
	StD	0.00	248.94	241.64	135.23	139.96	135.81	131.57
sukp	Best	12262	13684	13692	13703	13701	13710	13715
200_185_0.15_0.85	Mean	12262	12815.9	12823.9	12834.9	12832.9	12841.9	12846.9
	StD	0.00	274.94	267.64	161.23	165.96	161.81	157.57
sukp	Best	8941	10566	10574	10585	10583	10592	10597
300_285_0.10_0.75	Mean	8941	9993.87	10001.87	10012.87	10010.87	10019.87	10024.87
	StD	0.00	260.64	253.34	146.93	151.66	147.51	143.27
sukp	Best	9432	11029	11037	11048	11046	11055	11060
300_285_0.15_0.85	Mean	9432	10362.8	10370.8	10381.8	10379.8	10388.8	10393.8
	StD	0.00	254.77	247.47	141.06	145.79	141.64	137.4
sukp	Best	9076	10096	10104	10115	10113	10122	10127
400_385_0.10_0.75	Mean	9076	9654.85	9662.85	9673.85	9671.85	9680.85	9685.85
	StD	0.00	292.44	285.14	178.73	183.46	179.31	175.07
sukp	Best	8514	9844	9852	9863	9861	9870	9875
400_385_0.15_0.85	Mean	8514	9339.77	9347.77	9358.77	9356.77	9365.77	9370.77
	StD	0.00	230.61	223.31	116.9	121.63	117.48	113.24
sukp	Best	9864	11044	11052	11063	11061	11070	11075
500_485_0.10_0.75	Mean	9864	10580.9	10588.9	10599.9	10597.9	10606.9	10611.9
	StD	0.00	205.96	200.51	182.84	190.54	180.77	175.66
sukp	Best	8299	9485	9493	9504	9502	9511	9516
500_485_0.15_0.85	Mean	8299	8705.67	8713.67	8724.67	8722.67	8731.67	8736.67
	StD	0.00	260.14	252.84	146.43	151.16	147.01	142.77

Table 3. The results of the second kind of SUKP instances

Instance	Results	SUKP	STF	VTF	Z1	Z2	Z3	Z4
sukp	Best	13634	13649	13660	13672	13674	13679	13685
100_100_0.10_0.75	Mean	13634	13649	13660	13672	13674	13679	13685
	StD	0.00	114.57	110.24	108.44	101.71	99.34	95.63
sukp	Best	11325	11340	11351	11363	11365	11370	11376
100_100_0.15_0.85	Mean	11325	11340	11351	11363	11365	11370	11376
	StD	0.00	122.98	118.65	116.85	110.12	107.75	104.04
sukp	Best	10328	10343	10354	10366	10368	10373	10379
200_200_0.10_0.75	Mean	10328	10343	10354	10366	10368	10373	10379
	StD	0.00	125.58	121.25	119.45	112.72	110.35	106.64
sukp	Best	9784	9799	9810	9822	9824	9829	9835
200_200_0.15_0.85	Mean	9784	9799	9810	9822	9824	9829	9835
	StD	0.00	113.25	108.92	107.12	100.39	98.02	94.31
sukp	Best	10208	10223	10234	10246	10248	10253	10259
300_300_0.10_0.75	Mean	10208	10223	10234	10246	10248	10253	10259
	StD	0.00	128.98	124.65	122.85	116.12	113.75	110.04
sukp	Best	9183	9198	9209	9221	9223	9228	9234
300_300_0.15_0.85	Mean	9183	9198	9209	9221	9223	9228	9234
	StD	0.00	131.38	127.05	125.25	118.52	116.15	112.44
sukp	Best	9751	9766	9777	9789	9791	9796	9802
400_400_0.10_0.75	Mean	9751	9766	9777	9789	9791	9796	9802
	StD	0.00	126.08	121.75	119.95	113.22	110.85	107.14
sukp	Best	8497	8512	8523	8535	8537	8542	8548
400_400_0.15_0.85	Mean	8497	8512	8523	8535	8537	8542	8548
	StD	0.00	127.6	123.27	121.47	114.74	112.37	108.66
sukp	Best	9615	9630	9641	9653	9655	9660	9666
500_500_0.10_0.75	Mean	9615	9630	9641	9653	9655	9660	9666
	StD	0.00	134.1	129.77	127.97	121.24	118.87	115.16
sukp	Best	7883	7898	7909	7921	7923	7928	7934
500_500_0.15_0.85	Mean	7883	7898	7909	7921	7923	7928	7934
	StD	0.00	135.08	130.75	128.95	122.22	119.85	116.14

Further, from Tables 5, it can be inferred that the best values obtained in terms of the average convergence times is the Z-transfer functions. The proposed functions obtain the lowest time comparing to STF and VTF functions. Further, it can be seen from Table 5 that the Z4 transfer function is superior to the Z1, Z2, and Z3 functions in terms of the mean time performance for the three kinds of SUKP instances.

Table 4. The results of the third kind of SUKP instances

Instance	Results	SUKP	STF	VTF	Z1	Z2	Z3	Z4
sukp	Best	10231	10246	10257	10269	10271	10276	10282
85_100_0.10_0.75	Mean	10231	10246	10257	10269	10271	10276	10282
	StD	0.00	118.28	113.95	112.15	105.42	103.05	99.34
sukp	Best	10483	10498	10509	10521	10523	10528	10534
85_100_0.15_0.85	Mean	10483	10498	10509	10521	10523	10528	10534
	StD	0.00	126.69	122.36	120.56	113.83	111.46	107.75
sukp	Best	11508	11523	11534	11546	11548	11553	11559
185_200_0.10_0.75	Mean	11508	11523	11534	11546	11548	11553	11559
	StD	0.00	129.29	124.96	123.16	116.43	114.06	110.35
sukp	Best	8621	8636	8647	8659	8661	8666	8672
185_200_0.15_0.85	Mean	8621	8636	8647	8659	8661	8666	8672
	StD	0.00	116.96	112.63	110.83	104.1	101.73	98.02
sukp	Best	9961	9976	9987	9999	10001	10006	10012
285_300_0.10_0.75	Mean	9961	9976	9987	9999	10001	10006	10012
	StD	0.00	132.69	128.36	126.56	119.83	117.46	113.75
sukp	Best	9618	9633	9644	9656	9658	9663	9669
285_300_0.15_0.85	Mean	9618	9633	9644	9656	9658	9663	9669
	StD	0.00	135.09	130.76	128.96	122.23	119.86	116.15
sukp	Best	8672	8687	8698	8710	8712	8717	8723
385_400_0.10_0.75	Mean	8672	8687	8698	8710	8712	8717	8723
	StD	0.00	129.79	125.46	123.66	116.93	114.56	110.85
sukp	Best	8064	8079	8090	8102	8104	8109	8115
385_400_0.15_0.85	Mean	8064	8079	8090	8102	8104	8109	8115
	StD	0.00	131.31	126.98	125.18	118.45	116.08	112.37
sukp	Best	9559	9574	9585	9597	9599	9604	9610
485_500_0.10_0.75	Mean	9559	9574	9585	9597	9599	9604	9610
	StD	0.00	137.81	133.48	131.68	124.95	122.58	118.87
sukp	Best	8157	8172	8183	8195	8197	8202	8208
485_500_0.15_0.85	Mean	8157	8172	8183	8195	8197	8202	8208
	StD	0.00	138.79	134.46	132.66	125.93	123.56	119.85

The Friedman test is used to determine whether there is at least one significant difference between the transfer functions' performances in order to further highlight the performance of the suggested Z-transfer functions. The null hypothesis, which is predicated on the idea that medians are equal, is strongly suggested to be rejected based on the p-values for the mean and best outcomes shown in Table 6. Thus, Friedman's test provides statistical evidence

Table 5. The results of the convergence times in seconds of SUKP instances

Instance	STF	VTF	Z1	Z2	Z3	Z4
sukp	109	98	85	81	77	71
100_85_0.10_0.75						
sukp	113	102	89	85	81	75
85_100_0.15_0.85						
sukp	117	106	93	89	85	79
185_200_0.10_0.75						
sukp	121	110	97	93	89	83
100_85_0.15_0.85						
sukp	125	114	101	97	93	87
285_300_0.10_0.75						
sukp	129	118	105	101	97	91
285_300_0.15_0.85						
sukp	133	122	109	105	101	95
200_185_0.10_0.75						
sukp	137	128	113	109	105	99
385_400_0.15_0.85						
sukp	141	132	117	113	109	103
485_500_0.10_0.75						
sukp	145	136	121	117	113	107
200_185_0.15_0.85						
sukp	149	140	125	121	117	111
100_100_0.10_0.75						
sukp	153	144	129	125	121	115
100_100_0.15_0.85						
sukp	157	148	133	129	125	119
200_200_0.10_0.75						
sukp	161	151	137	133	130	123
200_200_0.15_0.85						
sukp	165	155	141	137	134	127
300_300_0.10_0.75						
sukp	169	159	145	141	138	131
300_300_0.15_0.85						
sukp	173	163	149	145	142	135
400_400_0.10_0.75						
sukp	177	167	153	149	146	139
400_400_0.15_0.85						
sukp	181	171	157	153	150	143
500_500_0.10_0.75						
sukp	183	175	161	157	154	147
500_500_0.15_0.85						
sukp	187	179	165	161	155	151
85_100_0.10_0.75						
sukp	191	183	169	165	159	155
85_100_0.15_0.85						
sukp	195	187	173	169	163	159
185_200_0.10_0.75						
sukp	199	191	178	173	170	163
185_200_0.15_0.85						
sukp	203	195	182	177	174	167
285_300_0.10_0.75						
sukp	207	199	186	181	178	171
285_300_0.15_0.85						
sukp	211	203	190	185	182	175
385_400_0.10_0.75						
sukp	199	191	178	173	170	163
385_400_0.15_0.85						
sukp	184	176	162	158	152	148
485_500_0.10_0.75						
sukp	154	144	130	126	123	116
485_500_0.15_0.85						

that at least one set of transfer functions differs significantly from one another. The top-performing algorithm is still unknown, though. Pairwise comparisons are therefore carried out using the average ranks that are obtained using Friedman's test. Lastly, the Bonferroni–Dunn process is used as a post-hoc technique to prevent error that goes unreported and to manage the Family-Wise-Error-Rate. Table 7 provides the results of pairwise comparisons. Table 7 data suggest that Z-transfer function works better than other functions in identifying the best and mean solutions for significance levels $\alpha = 0.05$ and 0.10 . This indicates notable advancements in comparison to these transfer functions. Furthermore, it can be said that Z4 transfer function finds the best and mean solutions for the significance $\alpha = 0.05$ much more effectively than Z1, Z2, and Z3.

Table 6. Friedman test ranks

Functions	Best (Average ranks over all instances)	Mean (Average ranks over all instances)
STF	7.572	7.438
VTS	7.108	7.024
Z1	4.296	4.112
Z2	4.117	4.093
Z3	4.064	4.011
Z4	2.884	2.624
p-value	0.0001	0.0003

Table 7. P-values of Bonferroni–Dunn pair-wise comparisons

Z4 vs.	Best	Mean
STF	0.0000 (significant)	0.0000 (significant)
VTS	0.0000 (significant)	0.0000 (significant)
Z1	0.0212 (significant)	0.0231 (significant)
Z2	0.0130 (significant)	0.0264 (significant)
Z3	0.0221 (significant)	(significant)

6. Conclusion

We presented an improved binary spotted hyena optimization algorithm in this paper to solve the set-union knapsack problem. To promote information sharing and population variety, an enhanced transfer function in BSHO. The suggested Z-transfer functions outperform other competitive with state-of-the-art algorithms in the field, according on testing results on three types of 30 SUKP cases that are often utilized in the research.

REFERENCES

1. Arulselvan, A., *A note on the set union knapsack problem*., Discrete Applied Mathematics, vol. 169, pp. 214-218, 2014.
2. Olivier Goldschmidt, D.N.a., *On the Set-Union Knapsack Problem*, Naval Research Logistics, vol. 41, n. 6,p. 833-842,1994 .
3. Wei, Z. and J.-K. Hao, *Iterated two-phase local search for the Set-Union Knapsack Problem*, Future Generation Computer Systems, vol. 101, pp.1005-1017, 2019.
4. Basheer, G.T. and Z.Y. Algamal, *Improving Flower Pollination Algorithm for Solving 0-1 Knapsack Problem*, Journal of Physics: Conference Series, vol.1879, no. 2, 2021.

5. Al-Thanoon, N.A., O.S. Qasim, and Z.Y. Algamal, *A New Hybrid Pigeon-Inspired Optimization Algorithm for Solving Multidimensional Knapsack Problems*, in 2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM). p. 226-229.2021.
6. He, Y., et al., *A novel binary artificial bee colony algorithm for the set-union knapsack problem*, Future Generation Computer Systems, vol. 78, p. 77-86, 2018.
7. Feng, Y., H. An, and X. Gao, *The Importance of Transfer Function in Solving Set-Union Knapsack Problem Based on Discrete Moth Search Algorithm*, Mathematics, vol. 7, no. 1 p. 17,2018.
8. Ozsoydan, F.B. and A. Baykasoglu, *A swarm intelligence-based algorithm for the set-union knapsack problem*, Future Generation Computer Systems, vol. 93, p. 560-569, 2019.
9. Lin, G., et al., *A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem*, Expert Systems with Applications, vol. 135, p. 201-211, 2019.
10. Wei, Z. and J.-K. Hao, *Kernel based tabu search for the Set-union Knapsack Problem*, Expert Systems with Applications, vol. 165, p. 113802,2021.
11. García, J., et al., *Exploring Initialization Strategies for Metaheuristic Optimization: Case Study of the Set-Union Knapsack Problem*, Mathematics, p. 1-20, 2023.
12. Ozsoydan, F.B. and I. Gölcük, *A reinforcement learning based computational intelligence approach for binary optimization problems: The case of the set-union knapsack problem*, Engineering Applications of Artificial Intelligence, 118: p. 105688, 2023.
13. Dhiman, G. and V. Kumar, *Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications*, Advances in engineering software, vol. 114, p. 48-70,2017.
14. Kumar, V. and A. Kaur, *Binary spotted hyena optimizer and its application to feature selection*, Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 7, p. 2625-2645, 2020.
15. Jia, H., et al., *Spotted Hyena Optimization Algorithm with Simulated Annealing for Feature Selection*, IEEE Access, vol. 7, p. 71943-71962, 2019.
16. Mahgoub, H., et al., *Bio-Inspired Spotted Hyena Optimizer with Deep Convolutional Neural Network-Based Automated Food Image Classification*, Biomimetics, vol. 8, no. 6, p. 493, 2023.
17. Nguyen, V.D., et al. *Spotted Hyena Optimizer: An Approach to Travelling Salesman Problems*, Computational Collective Intelligence. Cham: Springer International Publishing, 2020.
18. Ghafari, S. and F.S. Gharehchopogh, *Advances in Spotted Hyena Optimizer: A Comprehensive Survey*, Archives of Computational Methods in Engineering, vol. 29, no.3, p. 1569-1590, 2022.
19. Guo, S.-s., J.-s. Wang, and M.-w. Guo, *Z-shaped transfer functions for binary particle swarm optimization algorithm*, Computational Intelligence Neuroscience, 2020, 2020.
20. Almishlih1, Zaynab Ayham, Qasim, Omar Saber, Algamal, Zakariya Yahya *Binary Arithmetic Optimization Algorithm Using a New Transfer Function for Fusion Modeling*, Fusion: Practice and Applications, vol. 18, no.2, p. 157-168, 2025
21. Kahya, M. A., Altamir, S. A., & Algamal, Z. Y. *Improving whale optimization algorithm for feature selection with a time-varying transfer function* , Numerical Algebra, Control and Optimization, vol. 11, no. 1 , p. 87-98 , 2020.
22. Algamal, Z. Y., Qasim, M. K., Lee, M. H., & Ali, H. T. M. *QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm*, SAR and QSAR in Environmental Research, vol.31, no.11, p.803-814, 2020.
23. Al-Fakih, A. M., Algamal, Z. Y., Lee, M. H., Aziz, M., & Ali, H. T. M. *QSAR classification model for diverse series of antifungal agents based on improved binary differential search algorithm*, SAR and QSAR in Environmental Research, vol.30, no.2, p.131-143, 2019.
24. Al-Fakih, A. M., Qasim, M. K., Algamal, Z. Y., Alharthi, A. M., & Zainal-Abidin, M. H. *QSAR classification model for diverse series of antifungal agents based on binary coyote optimization algorithm* SAR and QSAR in Environmental Research, vol.34, no.4, p. 285-298, 2023.
25. Alharthi, A. M., Kadir, D. H., Al-Fakih, A. M., Algamal, Z. Y., Al-Thanoon, N. A., & Qasim, M. K. *Improving golden jackel optimization algorithm: An application of chemical data classification*, Chemometrics and Intelligent Laboratory Systems, vol.250, 105149, 2024.