‘ STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 15, February 2026, pp 1173-1180.

IAPress| pyblished online in International Academic Press (www.IAPress.org)
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Abstract This paper presents a numerical study of natural convection using the fractional derivative formalism. The model
adopts nonlinear axis transformations and applies the finite difference method for spatial and temporal discretization in
a square cavity filled with an incompressible fluid with a Prandtl number of Pr = 0.71. The configuration consists of
four rigid walls, subjected to a temperature gradient, which serves as the driving force behind the convection. No-slip
and constant temperature conditions are applied on the walls. The governing equations are solved using fractional-order
operators. Isotherms and streamlines are used to visualize the results, and the influence of varying the order of the fractional
derivatives is analyzed to capture fine-scale flow and heat transfer features.
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1. Introduction

The study of natural convection in enclosures has attracted considerable attention from both academia and
industries, especially in energy systems. This interest stems from its relevance in applications such as building
thermal management, electronics cooling, and solar collectors [1, 2, 3].

One fundamental configuration is the square cavity, where the flow behavior is governed by the thermal boundary
conditions and fluid properties. The key parameters controlling this process are the Prandtl number (Pr) and the
Rayleigh number (Ra). In this study, air is selected as the working fluid (Pr = 0.71), and the analysis is carried
out for Rayleigh numbers ranging from 10 to 10 [4, 5].

While classical models using integer-order derivatives (e.g., Navier-Stokes and energy equations) have been
widely used to study natural convection, they sometimes fail to capture complex phenomena involving non-locality
and memory effects. To address this limitation, we introduce a fractional-order formulation of the governing
equations, extending the classical approach and enabling the modeling of anomalous diffusion and temporal
persistence in the flow field [6, 7, 8].

Fractional calculus generalizes the concept of derivatives and integrals to non-integer orders, offering a powerful
tool to describe systems with memory and spatial heterogeneity [9, 10]. Recent studies have shown that fractional
differential equations are particularly effective in capturing both transient and steady-state behaviors in heat transfer
and fluid dynamics problems [11].
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2. Results and Discussion

This section presents and discusses the numerical results obtained from simulating natural convection in a square
cavity using the fractional derivative approach. The analysis is carried out for a Prandtl number fixed at Pr = 0.71
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(representative of air), and Rayleigh numbers varying from Ra = 10* to 10°. The fractional order () is varied
within the interval [0.7,1]. The results are presented in terms of isotherm contours, streamlines, and numerical
indicators such as the average Nusselt number, which allows the assessment of the heat transfer rate across the hot
wall.

2.1. Mesh Independence Study

To ensure the reliability of the numerical results, a mesh independence test was carried out. Table 1 displays the
values of the average Nusselt number at various Rayleigh numbers for different mesh sizes. It is observed that as
the mesh is refined, the variation in the average Nusselt number decreases significantly. For example, the difference
between 81 x 81 and 100 x 100 meshes is less than 0.1%, indicating convergence of the solution. Thus, a mesh
size of 100 x 100 was adopted for all further simulations.

Table 1. Mesh Independence Test for Average Nusselt Number at Different Rayleigh Numbers

Mesh Size | Nu at Ra = 10* | Nu at Ra = 10° | Nu at Ra = 10° | Error (%) vs 100x100
41 x 41 1.965 2.781 7.011 15.5%
51 x51 3.579 4.462 8.026 3.3%
61 x 61 3.698 4.637 8.298 0.5%
71 x71 3.701 4.640 8.302 0.3%
81 x 81 3.702 4.642 8.305 0.1%
100 x 100 3.703 4.645 8.310 0.0%

2.2. Model Validation and Benchmark Comparison

To validate the present numerical model, results were compared with the benchmark solutions of de Vahl Davis
(1983) as well as those obtained using COMSOL Multiphysics. Table 2 shows a detailed comparison for the case
o = 1, where the model reduces to the classical formulation. The differences in average Nusselt number, maximum
and minimum local Nusselt numbers, and the maximum stream function 1,y are all below 1%, confirming the
high accuracy of the present scheme. The pressure field was obtained from a discrete Poisson equation derived
from the momentum and continuity equations.

Table 2. Comparison with benchmark results (de Vahl Davis, 1983) ata =1

Ra | Nupes | Nuger | Err% | Nubax | Nult [ Err% | Nuley | hax | ¥ | Err%
107 ] 226 | 224 [ 089 | 353 353 1 0.00 | 058 | 5.08 | 5.07 | 0.20
10° | 454 | 452 | 044 | 772 | 7.717 | 0.04 | 0729 | 9.11 | 9.11 | 0.00

106 8.84 8.80 | 0.45 1793 | 17925 | 0.03 | 0989 | 16.32 | 16.32 | 0.00

In addition, Figures 1 to 3 provide a qualitative comparison of the isotherms and streamlines among the present
work, de Vahl Davis, and COMSOL. The qualitative agreement confirms the robustness and consistency of the
proposed fractional model.
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Figure 1. Comparison of streamlines and isotherms for Ra = 10* between present work, de Vahl Davis and COMSOL.
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Figure 2. Comparison for Ra = 10° between present work, de Vahl Davis and COMSOL.
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Figure 3. Comparison for Ra = 10° between present work, de Vahl Davis and COMSOL.

2.3. Effect of Rayleigh Number

The streamlines and isotherm plots reveal clear transitions in flow regime as the Rayleigh number increases. At
low Ra (10%), heat transfer is primarily due to conduction, with parallel isotherms and weak circulations. As Ra
increases to 108, the flow becomes convection-dominated, with enhanced circulations, complex vortical structures,
and sharp thermal gradients near the vertical walls. This reflects a physical transition from conduction-controlled
to convection-dominated regimes.

2.4. Effect of Fractional Order o

Figure 4 illustrates the influence of varying the fractional order a on the flow and thermal fields at Ra = 103. As «
decreases, the streamlines become denser and more vigorous, indicating enhanced flow strength. Simultaneously,
isotherms near the hot wall become less steep, indicating a reduction in thermal gradient. Fractional derivatives
have been widely employed to model complex fluid behaviors exhibiting memory effects and non-local dynamics.
In turbulent flows and non-Newtonian fluids, fractional orders can effectively capture anomalous diffusion and
viscoelastic properties that classical integer-order models fail to represent adequately [15, 16, 17, 18, 19]. For
example, fractional order o < 1 is often associated with subdiffusive transport in porous media, reflecting long-
range temporal correlations and spatial heterogeneity [15, 18]. Such fractional models provide a more accurate
description of transport phenomena in complex fluids compared to classical models.
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Figure 4. Streamlines and isotherms for different values of v at Ra = 10°

The impact of o on heat transfer is further quantified in Figure 5, where the average Nusselt number is shown
to decrease monotonically with decreasing «. This result can be attributed to the memory and non-local properties
inherent in fractional derivatives, which act to smooth out temperature gradients and reduce heat flux. When «
is close to 1, the system behaves similarly to the classical model. However, for lower values of «, the thermal
boundary layer thickens, and the effective convective heat transfer decreases significantly.
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Figure 5. Variation of average Nusselt number with fractional order o

2.5. General Discussion and Interpretation

These findings highlight the effectiveness of fractional derivative models in capturing complex flow and heat
transfer behaviors. The model not only reproduces classical results when a = 1, but also allows exploration of
intermediate regimes with anomalous diffusion. The close agreement with benchmark results and commercial
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software (COMSOL) validates the model’s accuracy, while the sensitivity to fractional orders reveals new physical
insights.

The fractional order o emerges as a tunable parameter to control the convective strength and thermal transport
efficiency. From a physical standpoint, smaller values of a simulate systems with memory or delay effects, typical
in non-Newtonian or porous media. The present study thus confirms the feasibility and accuracy of using fractional
calculus as an advanced modeling tool in natural convection studies.

Advantages of Fractional Models and Computational Considerations

Fractional-order models have demonstrated superior performance over classical models in capturing memory-
dependent and anomalous transport phenomena. In transient natural convection, especially under start-up or sudden
heating conditions, classical integer-order models often fail to reproduce the slow relaxation and non-local effects
observed in experiments. Fractional time derivatives, by incorporating memory kernels, offer a more accurate
depiction of such dynamics [20, 21].

In nanofluid heat transfer, where particle—fluid interactions introduce complex lagging behaviors, fractional
models have been employed to enhance thermal predictions. For instance, in [22], a Caputo time-fractional model
improved agreement with experimental Nusselt number measurements under oscillatory boundary conditions.

Fractional turbulence modeling is also an emerging area. Recent studies such as [23] used space-fractional
operators to capture non-Gaussian dissipation patterns in turbulent convection layers, outperforming eddy-viscosity
models in near-wall regions.

Numerical schemes like the L1 and L2 methods have been extended to simulate viscoelastic and fractional
convection flows. Works such as [24, 25] detail accurate temporal discretizations for fractional momentum
equations under complex boundary constraints.

Computational Costs and Mitigation

The main computational bottleneck in fractional PDE:s lies in the non-locality of time-fractional derivatives, which
require storing and updating solution histories at each time step. For long-time simulations, this results in O(N?)
memory and computational complexity.

To address this, several strategies have been proposed:

¢ Adaptive time-stepping: Dynamically adjusting At near transient regions to reduce unnecessary history
computations [26].

* Short memory principle: Truncating far history contributions beyond a memory threshold when their impact
becomes negligible.

* Fast convolution algorithms: Using FFT-based or sum-of-exponentials approximations to reduce time
complexity to near O(N log N) [27].

Despite the overhead, fractional models often justify their cost by yielding qualitatively improved solutions in
regimes where classical models exhibit significant discrepancies.

3. Conclusion

The application of the described methodology to natural convection in a square cavity for distinct values ofa allows
the execution of numerical simulations. Time-fractional NSEs, where alpha = 1, are a special case of NSEs in their
classical form. It should be emphasized that the obtained numerical results and the available numerical data agree
well for alpha = 1. The approach used in this paper to solve time-fractional nonlinear structural equations (NSEs)
proven to be valuable tools in modeling ,has a number of advantages, including flexibility in choosing the order
derivatives and The adaptability in selecting an accurate and stable FDE solver. In particular, semi-discretized
time-fractional NSEs can be time-integrated over time using FBDFs.
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